
The Drive & Control Company

Product catalog Industrial hydraulics

Part 10: ATEX units for potentially explosive atmospheres

Product catalog Industrial hydraulics

1

Part 10: ATEX units for potentially explosive atmospheres

Product catalogs Industrial hydraulics of Bosch Rexroth at a glance:

Part 1:	Pumps	RE 00112-01
Part 2	Motors	RE 00112-02
Part 3:	Cylinders	RE 00112-03
Part 4:	On/off valves	RE 00112-04
Part 5:	Proportional servo valves	RE 00112-05
Part 6:	Electronics	RE 00112-06
Part 7:	Systems	RE 00112-07
Part 8:	Power units, Manifolds and plates, Accumulators	RE 00112-08
Part 9:	Filters	RE 00112-09
Part 10:	ATEX units for potentially explosive atmospheres	RE 00112-10
For the latest r	product information from Bosch Peyroth, please visit our website	

For the latest product information from Bosch Rexroth, please visit our website: www.boschrexroth.com/ics

Publisher	Bosch Rexroth AG
	Zum Eisengießer 1
	97816 Lohr, Germany
	Phone +49(0)9352/18-0
	Fax +49(0)9352/18-40
	info@boschrexroth.de
	www.boschrexroth.com
Catalog No.	Document no.: RE 00112-10
	Material no.: R999000311
	Edition: 2013-12
	Replaces: RE 00112-07_2008-11

Reprints and translation, in whole or in part, only with the publisher's prior consent. Subject to revision.

Should you have queries with regard to the products in this catalog, please contact the Rexroth sales partner in your vicinity.

www.boschrexroth.com/contact

Contents

General	5	1
Cylinders	135	2
On/off valves	181	3
Proportional servo valves	461	4
Electronics	705	5
Mobile Hydraulics	729	6

General

Designation	Data sheet	Page

Explosion proof products – Installation, commissioning and maintenance		
Explosion-proof hydraulic products, Operating Instructions	07010-X-B1	7
Hydraulic cylinders, Tie rod / mill type, Mill type for explosive area 0710		15
Installation, commissioning and maintenance		
General product information on hydraulic products	07008	51
Installation, commissioning, maintenance of hydraulic systems	07900	83
Hydraulic fluids		
Hydraulic fluids based on mineral oil and related hydrocarbons	90220	89

Environmentally acceptable hydraulic fluids	90221	105
Fire- resistant, water- free hydraulic fluids (HFDR/ HFDU)	90222	119

Service

RE 07010-X-B1/03.12 Replaces: 03.05

1/8

Explosion-proof hydraulic products

Operating Instructions

for explosion-proof control valves continuous valves

> ATEX - units For potentially explosive atmospheres

Operating Instructions Part I General Information

CE

What you need to know about these Operating Instructions

These operating instructions apply to Rexroth explosion-proof hydraulic products and consist of the following three parts:

Part I General Information 07010-X-B1

Part II Data Sheet

Part III Product-specific instructions

For further information on the correct use of Rexroth hydraulic products please refer to our publication *General product information on hydraulic products, 07008.*

Contents

			-		
1	Important basic information				
	1.1	Conventions used in this product information document	2		
2	Resp	Responsibilities			
	2.1	Liability, warranty, guarantee	3		
	2.2	Operator/user responsibilities	3		
	2.3	Copyright	3		
3	Important basic safety instructions				
	3.1	Requirements of personnel, duty of care	4		
	3.2	Ancillary dangers and protective measures	5		
	3.3	Proper use	6		
	3.4	Use in areas endangered by explosion	6		
	3.5	Improper use	8		
	3.6	Disposal	8		

1 Important basic information

1.1 Conventions used in this product information document

Cross-references are printed in italics.

IMPORTANT

This symbol indicates additional information.

This symbol indicates a threat of danger which will result directly in death or very serious injury if not avoided.

A WARNING

This symbol indicates a threat of danger which may result in death or very serious injury if not avoided.

This symbol indicates possible danger which may lead to minor or serious injury and/or material damage.

8

2 Responsibilities

2.1 Liability, warranty, guarantee

Bosch Rexroth AG shall not be liable for damages resulting from these Operating Instructions not being adhered to or not being adhered to in full.

Unauthorised tampering shall render the warranty null and void.

Bosch Rexroth shall only be liable if the scope of delivery was shown to be defective. Bosch Rexroth shall not be liable if a deficiency occurs that involves parts that are replaced by the customer with equivalent but not identical parts as specified by the manufacturer.

Please refer to our general terms of supply or your contract for details of the guarantee and manufacturer's warranty.

2.2 Operator/user responsibilities

Mineral-oil-based pressure fluid is hazardous to water and flammable.

It may be used only if the relevant safety datasheet from the manufacturer is available and all the measures stipulated therein have been implemented.

If there is a risk of fluid leaking from the hydraulic product and contaminating water or the ground, the hydraulic product in question must be placed in a suitable collecting trough.

The operator is responsible for ensuring that

- the hydraulic product is used only in accordance with the proper use as defined in these Operating Instructions;
- the hydraulic product is used only in accordance with the technical data, as well as the ambient and operating conditions indicated in these Operating Instructions, and in particular that the limiting values given in the Data Sheet are not exceeded;
- the applicable rules, regulations, and directives on explosion protection are complied with.

If the hydraulic product is part of another product, e.g. a hydraulic system, then the person or organisation responsible for this other product (e.g. the designer/constructor of the system) shall ensure that

- the hydraulic product is used only in accordance with the proper use as defined in these Operating Instructions;
- the hydraulic product is used only in such a manner that the technical data, as well as the ambient and operating conditions indicated in these Operating Instructions, are complied with, and in particular that the limiting values given in the Data Sheet are not exceeded as far as anyone can judge and are in compliance with its user's manual;
- the applicable regulations and directives on explosion protection are complied with.

2.3 Copyright

9

This product information may only be reproduced – electronically or mechanically, in whole or in part – with the express permission of Bosch Rexroth AG. Similarly, it may not be distributed, amended, transmitted, translated into another language, or employed or copied for other purposes or by other parties without such consent.

3 Important basic safety instructions

3.1 Requirements of personnel, duty of care

3.1.1 General requirements, qualifications

Persons under the age of 18 who are currently receiving instruction or training or are working under supervision may not work on Rexroth hydraulic products.

This does not apply to young persons of 16 or over if

- working on Rexroth hydraulic products is necessary in order for them to accomplish their training objective;
- their protection is guaranteed through the supervision of an experienced, specialist member of staff;
- they are only allowed to use tools, equipment, and protective gear that preclude the risk of injury.

Specialist personnel are those who, using their specialist training, knowledge, and experience as well as familiarity with the relevant conditions, can recognise possible dangers and undertake the necessary measures to eliminate possible accidents.

3.1.2 Requirements of maintenance personnel

It may be necessary to carry out maintenance tasks on the hydraulic product in order to keep it in proper working order. For details, please refer to *Part III, Product-specific Instructions*. Maintenance tasks include the inspection, servicing, and repair of hydraulic and electrical components. Personnel carrying out these various tasks must have certain minimum qualifications.

For the inspection of the hydraulic components, personnel must fulfil the following requirements:

- > They must be instructed about the tasks.
- > Specialist knowledge of hydraulics is not required.

For the servicing of the hydraulic components, personnel must fulfil the following requirements:

- They have been instructed in the relevant activity.
- Specialist knowledge of hydraulics is not required to carry out servicing work.

For the maintenance of the hydraulic components, personnel must fulfil the following requirements:

- They must be hydraulics experts instructed in the tasks as defined above.
- They must be familiar with the function of the hydraulic system as a whole, from subsystems to their interaction with the function of the machine as a whole.
- They must be able to read hydraulic circuit diagrams, interpret individual functions from their symbols, and understand function diagrams.
- They must possess knowledge of the function and construction of hydraulic elements.

The following applies to work on the electrical systems:

All work on electrical equipment may only be carried out by an authorised, qualified electrician, or by instructed persons under the guidance and supervision of an authorised qualified electrician, in accordance with the rules applicable to electro-technical products.

1

3.2 Ancillary dangers and protective measures

Danger zone	Ancillary danger	Protective measure(s), safety instructions
Connections and pressure lines	Risk of injury or loss of life from sprayed pressure fluid under high pressure during maintenance work.	Depressurise hydraulic system before starting mainte- nance work. Relieve any accumulators of pressure.
(pipes and conduits)		Rectify leaks immediately.
Surfaces of compo- nents and pressure	Risk of burning due to high surface temperatures	Allow hydraulic parts to cool before commencing main- tenance work.
lines		Wear protective clothing.
Electrical compo- nents	Electric shock Loss of explosion protection	Work on electrical components only in a non-powered state.
		Switch electrical connections off before assembly and disassembly work begins.
		All tasks that require product components to be disman- tled may be performed only within the scope given in <i>Part III, Product-specific instructions.</i>
	Failure caused by excessive moisture penetration following cleaning with a high pressure cleaner	Shield the hydraulic product from the direct effect of high pressure water jets.

Handling pressure fluid without protection is hazardous to your health.

Please observe the manufacturer's *safety instructions* for the pressure fluid used and the associated *Safety Data Sheet*.

Danger zone	Ancillary danger	Protective measure(s), safety instructions
Connections and pressure lines (pipes and conduits)	Water or ground pollution due to leakage	Collecting trough. Rectify leaks immediately.

IMPORTANT

See also 2.2 Operator/user responsibilities.

3.3 Proper use

Your hydraulic product has been conceived and designed for the transmission, open-loop control, or closed-loop control of energy and signals with the aid of the flow of oil. It fulfils the requirements of EU Directive 94/9/EC on Equipment used in Potentially Explosive Atmospheres (Atex). The equipment groups and categories can be found in the Data Sheet under Areas of use in accordance with Directive 94/9/EC.

Safety components integrated in the Bosch Rexroth hydraulic product satisfy at least Safety Category B in accordance with EN ISO 13849-1:2008.

However, only by carefully observing this user's manual can accidents be prevented and the problem-free operation of your Bosch Rexroth hydraulic product be guaranteed.

Store the hydraulic product only in a dry, dust-free environment that is free of corrosive agents and vapours, has a low moisture content, and undergoes no large variations in temperature. We recommend the use of clean conservation oil for storage periods longer than six months.

IMPORTANT

The factory-applied corrosion protection is adequate for storage under the conditions given above, provided that no condensation or leaked water can penetrate the hydraulic product.

The hydraulic product is only to be used with the operating fluids listed in the *Data Sheet*. Information on using products with different pressure fluids is available on request.

Use the hydraulic product only if it is in perfect technical condition and only in accordance with the proper use as defined in these Operating Instructions. The connections, operating conditions and performance data defined in these Operating Instructions must not be changed.

IMPORTANT

Please contact Bosch Rexroth AG first should you wish to use the hydraulic product under other connection, usage, or performance data than those specified by Bosch Rexroth AG in these operating instructions. The hydraulic product may not be used with any other connection, usage, or performance data other than those described in these operating instructions without written permission from Bosch Rexroth AG.

The hydraulic product must only be converted within the scope given in *Part III, Product-specific Instructions.*

During setting up or maintenance work, the safety devices fitted by Bosch Rexroth AG must be present, properly installed, and in full working order, unless this is impossible. They must not be relocated, bypassed, or rendered ineffective.

Rexroth hydraulic products must never be operated or maintained by persons under the influence of alcohol, drugs, or other medication which can affect one's ability to react.

3.4 Use in areas endangered by explosion

A DANGER

The hydraulic product is only to be used in the areas indicated in the *Data Sheet, Requirements for explosion protection* or in areas with lower requirements.

3.4.1 Zones, equipment groups, and categories

The user/operator must divide areas endangered by explosion into zones in accordance with EU Directive 1999/92/ EC. The following table shows the equipment groups and categories alongside the zones.

The hydraulic product is to be used exclusively in the area and zone corresponding to the appropriate equipment group and category. Use of the product must also comply with the other Requirements for explosion protection in the *Data Sheet*. Comparison of the equipment groups and categories in accordance with 94/9/EC and the associated zone in accordance with 1999/92/EC

Equipment group to 94/9/EC	Category to 94/9/EC	Area of use, characteristics (extract from the Directive)	Usable in zone according to 1999/92/EC
I	M1	Atmospheres endangered by firedamp (equipment group I), i.e. under- ground mines and their surface installations. Can remain operational in the presence of a potentially explosive atmo- sphere. Very high level of safety.	-
I	M2	Atmospheres endangered by firedamp (equipment group I), i.e. under- ground mines and their surface installations. Must be able to be switched off in the presence of a potentially explo- sive atmosphere. High level of safety.	-
Ш	1G	Potentially explosive atmospheres in which potentially explosive gases, mists, or vapours are present permanently, or frequently, or for long periods (equipment group II). Equates to Zone 0 in accordance with Directive 1999/92/EC. Very high level of safety.	0, 1, 2
II	2G	Potentially explosive atmospheres in which potentially explosive gases, mists, or vapours are occasionally present (equipment group II). Equates to Zone 1 in accordance with Directive 1999/92/EC. High level of safety.	1,2
II	3G	Potentially explosive atmospheres in which potentially explosive gases, mists, or vapours are normally not present, or present only infrequently, or for short periods (equipment group II). Equates to Zone 2 in accordance with Directive 1999/92/EC. Normal level of safety.	2
II	1D	Potentially explosive atmospheres in which potentially explosive dust/ air mixtures are present permanently, or frequently, or for long periods (equipment group II). Equates to Zone 22 in accordance with Directive 1999/92/EC. Very high level of safety.	20, 21, 22
II	2D	Potentially explosive atmospheres in which potentially explosive dust/air mixtures are occasionally present (equipment group II). Equates to Zone 21 in accordance with Directive 1999/92/EC. High level of safety.	21, 22
II	3D	Potentially explosive atmospheres in which a potentially explosive atmosphere from raised dust is normally not present, or present only infrequently, or for short periods (equipment group II). Equates to Zone 22 in accordance with Directive 1999/92/EC. Normal level of safety.	22

3.4.2 Temperature classes in equipment group II

In potentially explosive atmospheres where a risk of explosion from explosive gases, mists, or vapours exists (zones 0, 1, 2, applicable devices: equipment group II, categories 1G, 2G and 3G), the maximum surface temperature of the hydraulic product must, in addition, be below the ignition temperature of the surrounding potentially explosive gases, mists, or vapours.

These hydraulic products are divided in accordance with EN 13463-1 into the temperature classes T1 to T6, in line with their maximum surface temperature. With hydraulic products of equipment group II and categories **16**, **2G** and **3G**, the temperature class is a constituent of the explosion protection mark, see *Part II*, *Data Sheet*, providing information on the suitability of the hydraulic product for use in a particular potentially explosive atmosphere where there are potentially explosive gases, mists, or vapours.

Tempera- ture class	Highest permissible surface temperature	Permissible ignition temperature of the gas, mist, or vapour
T1	450 ° C	>450 °C
T2	300 ° C	>300 °C
Т3	200 ° C	>200 °C
T4	135 °C	>135 °C
T5	100 °C	>100 °C
Т6	85 ° C	>85 °C

3.5 Improper use

Modifications to the product are only permitted within the scope given in *Part III, Product-specific Instructions*.

The hydraulic product is pre-coated at the factory with a surface protection ready for service. This surface protection must not normally be altered – through the application of paint, for example – as this would render the explosion protection ineffective. Should, by way of exception, alteration to the surface protection be permitted, this will be expressly stipulated in *Part III, Product-specific Instructions*. Please observe the limitations specified here, where applicable.

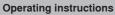
3.6 Disposal

- Empty the hydraulic product and dispose of it as scrap metal.
- Collect residual oil and dispose of it in accordance with the instructions in the safety datasheet for hydraulic fluids.
- Dispose of any electronic components properly and in accordance with applicable regulations.

Bosch Rexroth AG Hydraulics Zum Eisengießer 1 97816 Lohr am Main, Germany Telefon +49 (0) 93 52 / 18-0 documentation@boschrexroth.de www.boschrexroth.de © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The given information does not release the user from the obligation of own judgement and verification. It must be remembered that our products are subject to a natural process of wear and aging.

15


Service

Rexroth Bosch Group

Hydraulic cylinders

Tie rod / mill type Mill type for explosive areas

RE 07100-B/03.11 Replaces: RE 07100-B/08.07 RE 07100-X-B/10.04

The data specified below only serve to describe the product. Any information with regard to use only refers to application examples and recommendations.

Data available in catalogs are no guaranteed characteristics. The information given does not exempt the user from making own evaluations and tests. Our products are subject to a natural process of wear and aging.

© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

The cover shows an example configuration. The product supplied may therefore differ from the photo shown.

The original operating instructions were prepared in German.

Content

1 1.1 1.2 1.3 1.3.1 1.3.2 1.3.3 2 2.1 2.2 2.2.1 2.3 2.3.1 2.4 2.5 2.6 3	About this documentation	5 5 6 7 7 7 8 8 8
4	damage to the product Scope of delivery	
5 5.1 5.2 5.2.1 5.2.2 5.3	Information on this product	13 13 13 13 13
6 6.1 6.1.1 6.1.2 6.1.3 6.2 6.2.1 6.2.2 6.2.3 6.2.4	Transport and storage	15 15 16 17 17 17 18 19
7 7.1 7.2 7.3 7.3.1 7.3.2 7.3.3	Assembly Unpacking Installation conditions Assembling hydraulic cylinders Installing hydraulic cylinders Hydraulically connecting the hydraulic cylinder Connecting the electric supply	20 20 21 21 21 21 21
8 8.1 8.1.1 8.1.2 8.1.3 8.2 8.3	Commissioning First commissioning Filling hydraulic cylinders with hydraulic oil and bleeding them Commissioning the hydraulic cylinder Setting the end position cushioning Flushing the system / hydraulic cylinders Re-commissioning after extended standstill	22 22 25 26 27
9	Operation	
10 10.1 10.2 10.3 10.4	Maintenance and repair Cleaning and care (maintenance) Inspection Maintenance schedule Maintenance.	28 28 28

10.4.1 10.5 10.6 10.7	Piston rod maintenance Replacing wear parts Repair Spare parts	30 30
11	Decommissioning	31
11.1	Preparing for decommissioning	
11.2	Decommissioning the hydraulic cylinder	
11.3	Preparing disassembly	
11.4	Disassembling the hydraulic cylinder	
11.5	Preparing the hydraulic cylinder for storage/further use	
12	Disassembly and exchange	33
12.1	Preparing disassembly	
12.2	Disassembling the hydraulic cylinder	
12.3	Exchanging components	33
13	Disposal	34
13.1	Environmental protection	34
14	Extension and conversion	34
15	Troubleshooting	35
15.1	How to proceed for troubleshooting	35
16	Technical data	35
17	Appendix	35
17.1	Address directory	

1 About this documentation

1.1 Validity of the documentation

This documentation applies to hydraulic cylinders in mill type and tie rod design as well as to hydraulic cylinders in explosive areas.

This documentation is intended for system manufacturers, assembly fitters, operators and service technicians and system operators.

This documentation contains important information on the safe and appropriate transport, storage, assembly, commissioning, operation, maintenance, disassembly and disposal of the product.

You should read this documentation completely and in particular chapter 2 "Safety instructions" before working with the product.

1.2 Necessary and amending documentation

The product must not be commissioned until you have been provided with the documentation marked with the book symbol and you have understood and observed it.

Table 1: Necessary and amending documentation

Title	Document number	Document type
General Information on hydraulic products	RE 07008	Data sheet
General Information on the assem- bly, commissioning and mainte- nance of hydraulic systems	RE 07900	Data sheet

1.3 Illustration of information

Consistent safety instructions, symbols, terms and abbreviations are used so that you can quickly and safely work with your product using this documentation. For a better understanding, they are explained in the following sections.

1.3.1 Safety instructions

In this documentation, safety instructions are indicated whenever sequences of operations are explained which bear the risk of personal injury or damage to property. The measures described for preventing these hazards must be observed. Safety instructions are set out as follows:

About this documentation

Type and source of danger

- Consequences in case of non-compliance
- Measures for the prevention of dangers
- <Enumeration>

· Warning sign: Draws attention to the danger

- · Signal word: Identifies the degree of danger
- · Type and source of danger: Specifies the type or source of danger
- · Consequences: Describes the consequences in case of non-compliance
- · Precautions: Specifies how the danger can be prevented

Table 2: Risk classes according to ANSI Z535.6-2006

Warning sign, signal word	Meaning
	Indicates a dangerous situation which may cause death or severe personal injuries if not avoided.
A WARNING	Indicates a dangerous situation which may cause death or severe personal injuries if not avoided.
	Indicates a dangerous situation which may cause minor or medium personal injuries if not avoided.
NOTICE	Damage to property: The product or the environment could be damaged.

1.3.2 Symbols

The following symbols indicate notes which are not safety-relevant but increase the understanding of the documentation.

Table 3: Meaning of the symbols

Symbol	Meaning		
i	If this information is not observed, the product cannot be used and/or operated optimally.		
•	Individual, self-dependent step		
1.	Numbered instruction:		
2.	The numbers indicate that the steps must be carried out one after		
3.	the other.		

1.3.3 Abbreviations

The following abbreviations are used in this documentation:

Table 4: Abbreviations

Abbreviation	Meaning
S	Center of gravity
ATEX	EU Explosion Protection Directive (Atmosphère explosible)
Ex	EU Explosion Protection Directive (Atmosphère explosible)
ICS	Interactive Catalog System (Rexroth project planning software)

2 Safety instructions

2.1 General information on this chapter

The product has been manufactured according to the accepted rules of current technology. However, there is still the risk of personal injury and damage to properly if you do not observe this chapter and the safety instructions in this documentation.

- Read this documentation completely and thoroughly before working with the product.
- Keep this documentation in a location where it is accessible to all users at all times.
- Always include the required documentation when you pass the product on to third parties.

2.2 Intended use

The product is a hydraulic system component.

According to directive "2006/42/EC" by the EU and EN 982, this hydraulic cylinder is a component that is not ready for use and exclusively intended for installation into machinery or systems.

You may only use the product for installation into machinery or systems! Hydraulic cylinders are thus not covered by the Machinery Directive.

According to the Pressure Equipment Directive, hydraulic cylinders are not to be classified as pressure vessel but as hydraulic controlling equipment as the pressure is not the decisive factor for the construction but rigidity, dimensional stability and stability against static and dynamic operating loads.

The product is only intended for industrial use and not for private use.

Intended use includes having read and understood this documentation completely, especially the chapter 2 "Safety instructions".

The product may only be used within the data and specifications specified in the valid data sheets.

2.2.1 Intended use in explosive areas

Hydraulic cylinders without Ex mark must not be used and operated in explosive atmospheres.

Only hydraulic cylinders with the type designation CDH2..X.. and CGH2..X.. with Ex mark (see section 5.3 "Product identification") are suitable for use in explosive areas. The products are specified for device group and category according to EU Directive 94/9/EC which can be found in the data sheet of the ATEX hydraulic cylinder. They can be used in an Ex area according to the device group and category specified there. Safety instructions

2.3 Improper use

Any use deviating from the intended use is improper and thus not admissible. Bosch Rexroth AG does not assume any liability for damage caused by improper use. The user assumes all risks involved with improper use.

Not intended use of the product includes the operation of the hydraulic cylinders:

- With higher operating pressures than intended in the data sheets and/or installation drawings
- · With hydraulic fluids not corresponding to the specifications of the data sheets
- · With deviating operating and environmental conditions
- The hydraulic cylinder must not be used as guide element in the system (see section 7.2 "Installation conditions").

2.3.1 Improper use in explosive areas

The hydraulic cylinder may heat up considerably during operation. An additional protective structure like e.g. coating may only be applied in the usual layer thicknesses (~ 80 - 100 μ m) As a consequence of any non-compliance, the upper temperature limit of the product tested according to the Ex Directives may be exceeded.

2.4 Qualification of personnel

The activities described in this documentation require basic knowledge of mechanics, electrics and hydraulics as well as knowledge of the appropriate technical terms. In order to ensure safe use, these activities may only be carried out by a corresponding expert or an instructed person under the direction and supervision of an expert.

Experts are those who can recognize potential hazards and apply the appropriate safety measures due to their professional training, knowledge and experience, as well as their understanding of the relevant conditions pertaining to the work to be undertaken. An expert must observe the relevant specific professional rules.

The product may only be used by qualified persons who have been instructed

- · to carry out the transport.
- · to assemble and disassemble hydraulic and mechanical parts.
- · to commissioning hydraulic systems and assemblies.

2.5 General safety instructions

- Observe the valid regulations on accident prevention and for environmental protection.
- Observe the safety regulations and provisions of the country where the product is implemented/used.
- Exclusively use Rexroth products in good technical order and condition.
- Observe all notes on the product.

- Persons who assemble, operate, disassemble or maintain Rexroth products must not consume any alcohol, drugs or pharmaceuticals that may affect their ability to react and their ability to judge.
- Only use accessories and spare parts authorized by the manufacturer in order to exclude hazards to persons due to inappropriate spare parts.
- Comply with the technical data and environmental conditions indicated in the product documentation.
- The installation or use of inappropriate products in safety-relevant applications could result in unintended operating conditions when being used which in turn could cause personal injuries and/or damage to property. Therefore please only use a product for safety-relevant applications if this use is expressly specified and permitted in the documentation of the product. For example in explosion-proof areas or in safety-related control components (functional safety).
- Do not commission the product until you can be sure that the end product (for example a machine or system) where the Rexroth product is installed complies with the country-specific provisions, safety regulations and standards of the application.

2.6 Product- and technology-related safety instructions

The installation of the hydraulic cylinders in the machine may result in risks caused by the interaction of hydraulic cylinder and machinery which can only be identified and minimized by means of a risk assessment of the machine. Particularly the influence of hydraulic and electric controls on hydraulic drives generating mechanical movements requires a risk analysis and operating instructions for the machinery.

Pressurized system!

Danger to life, risk of injury, severe injury when working at systems that have not been stopped! Damage to property!

- Make sure that the hydraulic cylinder has been completely depressurized.
- Do not disconnect lines, connections or components as long as the hydraulic cylinder is under pressure.
- Switch off all force-transmitting components and ports (electric, pneumatic, hydraulic) according to the manufacturer's instructions and secure them against restarting. If possible, remove the main fuse of the system.

Leaking oil mist due to defective or improperly assembled seals!

Risk of fire, risk of explosion, risk due to allergic reactions, environmental pollution!

- Welding works may only be undertaken when the hydraulic cylinder is depressurized.
- ▶ Keep open fire and sources of ignition away from the hydraulic cylinder.
- Make sure that the earthing (electric welding circuit) during welding works at the system is not lead via hydraulic cylinders.

Safety instructions

A WARNING

Danger to life in the explosive area!

The equipotential bonding of the hydraulic ATEX cylinder must always be connected in order to prevent electrostatic charging.

Hot surfaces at hydraulic cylinders!

Risk of injury! Risk of burning!

- Only touch cylinder surfaces with protective gloves or do not work at hot surfaces. During or after the operation, the temperatures may exceed 60 °C (140 °F), depending on the operating conditions.
- Allow the hydraulic cylinder to cool down sufficiently before touching it.
- ▶ Observe the protective measures of the end machine manufacturer.

Hydraulic fluid leaking at the hydraulic cylinder in an uncontrolled form! Risk of fire! Risk of injury!

- Switch the system off immediately (emergency stop switch).
- Identify and remedy the cause of the leakage.
- Never try to stop or seal the leak or the oil jet using a cloth.
- > Avoid direct contact with the leaking oil jet. It might be under high pressure.
- Carry out visual inspections for tightness of the hydraulic cylinder and the oilcontaining components on a regular basis.

Slip hazard due to oily surfaces!

Risk of injury!

- Protect and mark the danger zone.
- Immediately remove leaked hydraulic oil.
- Use an oil binding agent in order to bind the leaked hydraulic oil.
- Remove and dispose of (see section 13 "Disposal") of the contaminated oil binding agent.
- Wear the protective equipment prescribed for your activity like e.g. safety boots.

3 General warnings of damage to property and damage to the product

NOTICE

Danger due to improper handling!

Damage to property!

- The product may only be operated according to section 2.2 "Intended use".
- Do not knock against areas relevant for the functioning (e.g. piston rod surfaces, mounting areas) and attachment parts (e.g. end switches and threaded coupling).

Mixing hydraulic fluids!

Damage to property!

Any mixing of hydraulic fluids of different manufacturers and/or of different types of the same manufacturer is generally not admissible.

Pollution by fluids and foreign bodies!

Early wear and malfunctions!

Take the following measures for protecting the hydraulic cylinder:

- During assembly, provide for cleanliness in order to prevent foreign bodies e.g. welding beads or metal chips from getting into the hydraulic lines and causing product wear or malfunctions.
- Make sure that all connections, hydraulic lines and attachment parts (e.g. measuring instruments) are clean and free of chips.
- For removing lubricants or any other pollution, use industrial residuefree wipes.
- Only complete cleaning processes at the hydraulic cylinder if the hydraulic connections are closed.
- Before commissioning, ensure that all hydraulic and mechanical connections are connected.

Improper cleaning!

Damage to property!

- Cover all openings with the appropriate protective plugs in order to prevent cleaning agents from penetrating the system.
- Check that all seals and electrical plug-in connections are firmly fitted to prevent the penetration of cleaning agents.
- Do not use aggressive cleaning agents for the cleaning. Clean the hydraulic cylinder using a suitable cleaning liquid.
- Do not use a pressure washer.
- Do not use compressed air for the cleaning at functional interfaces like e.g. spherical bearings, trunnion bearings, piston rods and in sealing areas.

Operation with a lack of hydraulic fluid!

Damage to property!

Observe the system manufacturer's specifications regarding the point "Control of the hydraulic fluid" and the prescribed remedial measures for the control result.

NOTICE

Leaking or spilt hydraulic fluid!

Environmental pollution and pollution of the ground water!

- Use an oil binding agent in order to bind the leaked hydraulic oil.
- When filling and draining the hydraulic fluid, always put a drain tray under the hydraulic cylinder.
- Observe the information in the safety data sheet of the hydraulic fluid and the system manufacturer's specifications.

4 Scope of delivery

The scope of delivery comprises the hydraulic cylinder as ordered by the customer observing the ordering code and confirmed in the order confirmation. In addition, the ports are closed by means of blanking plugs and/or cover plates. They exclusively serve as protection against pollution of the hydraulic cylinder during transport.

Fig. 1: Blanking plug

Fig. 2: Cover plate

5 Information on this product

5.1 Performance description

A hydraulic cylinder converts hydraulic energy into a linear movement. The drive power is determined by the hydraulic pressure in the cylinder chamber on the piston and/or annulus area.

5.2 Product description

In the following, the main and functional parts of mill type and tie rod cylinders are displayed.

For the mounting types, please refer to the valid data sheet!

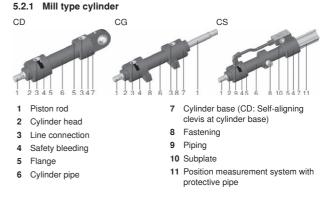
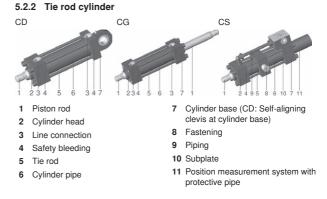
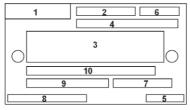
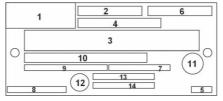


Fig. 3: H series (example CDH2 / CGH2 / CSH2)




Fig. 4: T3 series (example: CDT3 / CGT3 / CST3)

Information on this product


5.3 Product identification

The product is unambiguously identified by:

- The name plate
- · The product-specific documentation
- · The delivery note and accompanying documents

Name plate: R901052089 (original size: 36 x 20 mm)

Name plate: R900005158 (original size: 50 x 22 mm)

- 1 Rexroth logo
- 2 Material number
- 3 Material abbreviation
- 4 Serial number
- 5 Works number
- 6 Date of manufacture coded
- 7 RE number of the data sheet
- 8 Designation of origin
- 9 Customer, order or project number

- 10 Customer material number or additional information
- 11 CE mark
- 12 EX protection mark (only with ATEX version)
- 13 EX mark 1 (only with ATEX version)
- 14 EX mark 2 (only with ATEX version)

6

Transport and storage

6.1 Transporting hydraulic cylinders

WARNING

Uncontrolled extension of the piston rod and lifting of the hydraulic cylinder at set-ups (subplates, piping, etc.)!

Risk of injury or damage to property!

- Hydraulic cylinders may only be transported as described in section 6.1 "Transporting hydraulic cylinders".
- During transport, leave the plastic plugs in the line connections.

Depending on the size and the situation on site, hydraulic cylinders can be transported using a forklift, a crane or any other lifting gear.

When moving and lifting the hydraulic cylinder, please observe the following directives:

- Transport the hydraulic cylinder only in horizontal position, in its original packing, if possible, or on wooden blocks (prism-shaped squared timber) holding the hydraulic cylinder in a stable position.
- Make sure that when transporting the hydraulic cylinder on wooden blocks, there are no force effects on attachment parts (subplates, piping, threaded coupling, proximity switch, etc.).
- Use soft lifting slings in order to prevent damage in the preservation or coating.

Due to the tolerances, you must, during lifting, anticipate a weight of the hydraulic cylinder exceeding the one specified in the drawing or in the data sheets by 10 %. For the weight of the hydraulic cylinder (without packaging), please refer to the shipping documents.

Rexroth hydraulic cylinders are delivered without oil filling. Due to the final test in the Bosch Rexroth company there may, however, still be oil residues in the hydraulic cylinder (for deviations see 6.2 "Storing hydraulic cylinders").

6.1.1 Transport using forklifts

To transport the hydraulic cylinder using forklifts proceed as follows:

- Move the fork of the forklift under the packaging of the hydraulic cylinder or under the hydraulic cylinder secured for transport.
- Carefully lift the load for checking the position of the center of gravity. Ensure a stable position of the center of gravity (S)!
- 3. Make sure that the hydraulic cylinder cannot move out of the intended position.
- 4. Secure the hydraulic cylinder against the resulting acceleration forces.
- During transport, only lift the hydraulic cylinder as far off the floor as necessary for the transport.

Transport and storage

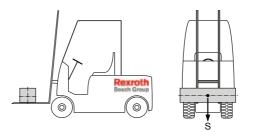


Fig. 5: Transport using forklifts

6.1.2 Transport using lifting gear

NOTICE

Action of forces caused by lifting slings on set-ups (subplates, piping, etc.) during lifting!

Damage to property!

Fasten the lifting gear (load chains, lifting slings) at the hydraulic cylinder so that during lifting, the lifting slings are free, i.e. do not rest against set-ups.

Lifting by means of eyebolts at the hydraulic cylinder Warning! Break of the eyebolt due to weight overload! Danger to life! Risk of injury! Damage to property!

- Attach suitable lifting gear at hydraulic cylinders using supplied and already attached eyebolts (load chains, lifting slings). The hydraulic cylinder may only be lifted and transported in the condition as supplied at the supplied eyebolts.
- Carefully lift the hydraulic cylinder for checking the position of the center of gravity. Ensure a stable position of the center of gravity (S)!
- 3. Make sure that the hydraulic cylinder cannot move out of the intended position.
- During transport, only lift the hydraulic cylinder as far off the floor as necessary for the transport.

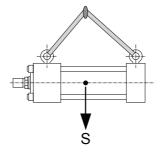
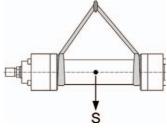


Fig. 6: Use of eyebolts


Lifting by means of lifting slings

 Fasten two lifting slings of equal length at both ends of the cylinder pipe of the hydraulic cylinder by forming loops.

Observe the admissible lifting capacity of the lifting slings!

- Carefully lift the load for checking the position of the center of gravity. Ensure a stable position of the center of gravity (S)!
- 3. Make sure that the lifting slings do not slip during lifting.
- During transport, only lift the hydraulic cylinder as far off the floor as necessary for the transport.

6.1.3 Manual transport

Wherever possible, suitable lifting aids should be used such as e.g. carrying straps.

6.2 Storing hydraulic cylinders

6.2.1 Corrosion protection applied by the factory

 Primer coat
 By default, Rexroth hydraulic cylinders are primed with a primer coat (color gentian blue RAL 5010) of at least 40 μm.

 With cylinders and attachment parts, the following surfaces are not primed or coated:

- · All fit diameters and connection surfaces to the customer side
- · Sealing faces for line connection
- Sealing faces for flange connection
- · Connection surface for valve mounting
- · Inductive proximity switches
- · Position measurement system
- · Minimess coupling
- Spherical/plain bearing
- · Lubrication nipples

The surfaces that are not primed are protected by means of a corrosion protection oil. With short storage times in dry rooms at constant temperature, the primer is sufficient as external preservation. Transport and storage

Internal preservation	By default, Rexroth hydraulic cylinders are tested with mineral oil according to
	DIN 51524, part 2. The oil film remaining inside after the test provides for short-
	term internal corrosion protection.
	The line connections are closed after the test by screw plugs or flange covers.

6.2.2 Storage times according to table 6

After the values specified in table 6, the internal preservation of the hydraulic cylinders is achieved by testing/flushing or filling with corrosion protection oil.

Storage of oil-filled hydraulic cylinders When storing hydraulic cylinders filled with oil, a pipeline from the line connection of the annulus area to the line connection of the piston chamber has to be attached on the customer side.

Hydraulic cylinders filled with oil must not be exposed to direct solar radiation or other sources of heat as due to the increase in the ambient temperature, the hydraulic pressure in the hydraulic cylinder increases.

	Packaging	Protective agent	Max. storage time in months	
Storage conditions			Test with the protective agent	Filling with the protective agent
	For carriage overseas	A	12	24
Storage in dry rooms at constant temperature	Not for carriage overseas	A	9	24
at constant temperature		В	12	24
	For carriage overseas	A	6	12
Outdoor storage (protected against damage		В	9	24
and water ingress)	Not for carriage	A	-	12
- /	overseas	В	6	24
Inspection with protective agent		A = Mineral oil		
Filling wi	th protective agent	B = Corrosion p	rotection oil	

Table 6: Storage times

Storage of more than six months

In case of storage of more than six months, the surface of the hydraulic cylinder must be coated or treated with corrosion protection oil. Unprotected parts like fitting surfaces or mechanical interfaces must be protected with corrosion protection oil.

- Protect spherical bearings and fitting surfaces from humidity.
- In case of storage with corrosion protection oil, completely empty the hydraulic cylinders before the commissioning.
- As deformations at the seals cannot be excluded, renew the seals.

In case of improper storage, seals may embrittle and the corrosion protection oil may resinify.

6.2.3 Inspection during the storage period

In order for the hydraulic cylinder to remain in perfect condition during the storage period, the following conditions have to be met:

- Subject the hydraulic cylinder to a careful inspection once per year. While doing so, observe in particular the following:
 - External conservation; visual inspection for damage and rust formation
 - Hydraulic fluid; control with regard to oxidation or acidification
 - Inspection and lubrication of spherical bearings that are not maintenance-free
 - Inspection of the preservation of fitting surfaces or mechanical interfaces
- Extend and retract the hydraulic cylinder several centimeters per year in order to prevent the seals from bonding. Depending on the results, you may have to take corrective measures.

In order to prevent damage at the seals, we recommend rotating the hydraulic cylinders by 90 $^{\circ}$ C every six weeks unless they are stored vertically.

6.2.4 Information on packed hydraulic cylinders

- If you open the packaging for control purposes, you have to close it again carefully.
- In case of packaging for carriage overseas, enclose a new drying agent.

7 Assembly

7.1 Unpacking

- Remove the hydraulic cylinder packaging.
- Dispose of the packaging material in accordance with the national regulations in your country and/or your company-internal specifications/procedures.

7.2 Installation conditions

Mounting surfaces at machines and systems must be designed so that any torsion of the hydraulic cylinder in the installed condition is avoided. The hydraulic cylinder must be installed so that unwanted lateral loads during operation are avoided. Stroke length, load and cylinder mounting must be observed in order to avoid bending and kinking in every stroke position (extract from: E DIN ISO 4413: 1990-10/6.2.2.3).

- Fasten the hydraulic cylinder so that the load acts axially on the center line of the hydraulic cylinder.
- Make sure that the hydraulic cylinder and particularly the piston rod are not damaged during installation. The counter bearings for spherical bearing, trunnion, foot and flange mounting must be able to absorb the occurring forces.
- When installing hydraulic cylinders and assemblies with spherical or plain bearings it has to be ensured that when installing the bolt, the bolt and/or the spherical or plain bearing is not damaged (if necessary, cool the bolt when installing it).
- Design the bolts for cylinder mounting according to the forces to be expected. Only use the genuine bolts when using accessories like clevis brackets etc.

We recommend limiting the swivel angles / tilting angles at the spherical bearings on the customer side in order to prevent the undesired action of forces on mounting elements.

In the fastening of the hydraulic cylinder at the system, the following enumeration must be kept to a minimum (extract from: E DIN ISO 4413: 1990-10/6.2.2):

- · Excessive deformation of the hydraulic cylinders due to pushing or pulling load
- · Introduction of lateral or bending loads
- Swiveling velocities in the trunnion assembly requiring continuous external lubrication
- Make sure that the "A piston chamber" and "B annulus area" line connections are not interchanged when connecting the hydraulic cylinders.

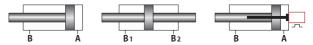


Fig. 8: Installation conditions

7.3 Assembling hydraulic cylinders

oncontrolled and dangerous machine mov

Risk of injury or damage to property!

- Depressurize the corresponding part of the system before mounting the hydraulic cylinder. Make sure that the system is mechanically unloaded, if necessary.
- When assembling swivel heads or other customer connection elements at the hydraulic elements, screw the swivel head to the stop.

The connection elements must not be used to set installation differences.

Remove the protective device like e.g. screw plugs only when establishing the corresponding connection.

7.3.1 Installing hydraulic cylinders in the system

To the lifting and moving during installation of the hydraulic cylinder into the system / machine, the same rules apply as already described under chapter 6.1.2 "Transport using lifting gear".

- During installation into the machine / system remember that damage a the hydraulic cylinder particularly at piston rods and mounting areas may reduce the functionality / standstill period.
- When installing hydraulic cylinders and assemblies with spherical or plain bearings, you must moreover ensure that when installing the bolt, the bolt and/ or the spherical or plain bearing is not damaged (if necessary, cool the bolt when installing it).

7.3.2 Hydraulically connecting the hydraulic cylinder

The hydraulic connection has to be established according to the specifications of the hydraulic diagram.

WARNING

7.3.3 Connecting the electric supply

Improper electrical connection in explosive areas!

Risk of explosion!

- Carry out the electrical connections in the system properly and carefully.
- The equipotential bonding must be connected.

The electrical connection of components that might already be available like end switches or position transducers must comply with the specification of the electric circuit diagram.

8 Commissioning

8.1 First commissioning

- Before the installation, clean the lines and all connection surfaces from dirt, scales, chips, etc. For that purpose, use industrial residue-free wipes. Particularly welded pipes must be blank on the inside and flushed.
- Observe the installation instructions of the fitting manufacturer.
 - Fittings with a soft seal at the screw-in stud are recommended (pipe thread ISO 228-1, metric thread ISO 261).
 - Sealants like hemp and kit are not admissible as they may cause pollution and thus malfunctions.
 - Hose lines must satisfy all applicable European and/or international standards.
- Check the system for tightness.
- The connection lines should be dimensioned in accordance with the performance data in the circuit diagram.

8.1.1 Filling hydraulic cylinders with hydraulic oil and bleeding them

🛦 WARNING

Uncontrolled and dangerous machine movements!

Danger to life, risk of injury or damage to property!

- Do not screw out the complete bleed valve.
- Only set the ventilation by adjusting the bleeding bolt.
- > The bleeding bolt may only be adjusted, however not removed.

Contact with hydraulic fluid!

Health hazard / impairment of health, e.g. eye injuries, skin lesions, intoxication upon inhalation!

- Avoid contact with hydraulic fluids.
- When dealing with hydraulic fluids, you must imperatively observe the safety instructions of the lubricant manufacturer.
- Use your personal protective equipment (like e.g. safety goggles, protective gloves, suitable working clothes, safety boots).
- If nevertheless, hydraulic fluid comes into contact with the eyes or gets into the bloodstream or is swallowed, please consult a doctor immediately.

The basic pollution of the hydraulic fluid filled in must not exceed the maximum admissible cleanliness class according to ISO 4406 (c) class 20/18/15. The cleanliness classes specified for the components (like valves) must be adhered to in hydraulic systems.

If you are not sure how your hydraulic cylinder is to be filled and bled, please contact the Bosch Rexroth service or your local Rexroth sales organization: www.boschrexroth.com

For filling and bleeding the hydraulic cylinder proceed as follows (the starting point is a retracted hydraulic cylinder in horizontal position):

- 1. Provide for an easily readable circuit diagram of the entire system.
- The oil leaking during the bleeding process must be collected in a corresponding container.
- Open the bleed screw on the piston rod side (at the cylinder head) of the depressurized hydraulic cylinder (see following figures).
- If there is a threaded coupling, you can bleed the hydraulic cylinder by connecting a corresponding hose to the coupling (the threaded coupling has an internal check valve).
- Set the hydraulic system so that the pressure at the hydraulic cylinder does not exceed approx. 5 bar.
- 6. Switch the hydraulic system on.
- Switch the control valves so that the hydraulic cylinder wants to retract at very low velocities (pressure at the piston rod side). The annulus on the piston rod side of the hydraulic cylinder is now filled with oil and the existing air exits via the bleed port or the threaded coupling.
- As soon as the oil does not contain air any more, i.e. it exits free from bubbles, the hydraulic accumulator has been sufficiently bled.

- 9. Then, switch off the hydraulic system and close the bleed screw.
- After bleeding the hydraulic fluid on the piston rod side of the hydraulic cylinder, bleed the bottom side in the same way.

- Now only operate the hydraulic cylinder with low pressure until the hydraulic

11. Afterwards, the hydraulic cylinder is ready for operation.

Filling and bleeding hydraulic cylinders with safety bleeding

Т

- system is completely bled.
- Observe the fluid level in the container and top up, if necessary.

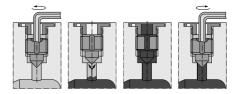


Fig. 9: Filling and bleeding hydraulic cylinders with safety bleeding

- 1. Opening: Screw out the bleeding bolt maximally to the stop, to the safety plug screw using a hexagon wrench.
- 2. Filling: Fill the hydraulic cylinder with oil; air and oil exit.
- Bleeding: The air has been completely removed from the hydraulic cylinder if the oil exits without bubbles.
- Closing: Tighten the bleeding bolt to the internal stop using a hexagon wrench until no more oil leaks.

Commissioning

Filling and bleeding hydraulic cylinders with internal hexagon bleed screw

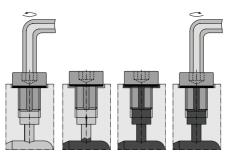


Fig. 10: Filling and bleeding hydraulic cylinders with internal hexagon bleed screw

- Opening: Screw out the internal hexagon bleed screw half a rotation using a hexagon wrench.
- 2. Filling: Fill the hydraulic cylinder with oil; air and oil exit.
- Bleeding: The air has been completely removed from the hydraulic cylinder if the oil exits without bubbles.
- 4. Closing: Screw in the internal hexagon bleed screw using a hexagon wrench. Close it in an oil-tight form. Observe the torque!

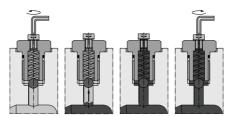


Fig. 11: Filling and bleeding hydraulic cylinders with check valve

- Opening: Screw out the internal hexagon bleed screw at the check valve half a rotation using a hexagon wrench.
- 2. Filling: Fill the hydraulic cylinder with oil; air and oil exit.
- Bleeding: The air has been completely removed from the hydraulic cylinder if the oil exits without bubbles.
- Closing: Close the internal hexagon bleed screw at the check valve in an oiltight form using a hexagon wrench. Observe the torque!

Filling and bleeding hydraulic cylinders with check valve

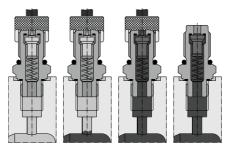


Fig. 12: Filling and bleeding hydraulic cylinders with threaded coupling

- Connect the pressure tapping hose: Screw off the end cap of the threaded coupling and screw the pressure tapping hose with fitting onto the threaded coupling to the stop.
- Filling: Fill the hydraulic cylinder with oil. Air and oil exit and are discharged via the pressure tapping hose.
- Bleeding: The air has been completely removed from the hydraulic cylinder if the oil exits without bubbles.
- Closing: When you screw off the pressure tapping hose, the spring presses the valve poppet back onto its seat. Screw the end cap of the threaded coupling on again in order to protect the device from dirt and damage.

8.1.2 Commissioning the hydraulic cylinder

After the hydraulic cylinder has been installed into the system, the system has been filled with the correct hydraulic fluid and the hydraulic cylinder has been bled correctly, you can commission the hydraulic cylinder.

Observe the product-specific and system-specific operating instructions.

Problems in the commissioning

Identical hydraulic cylinders may show different functions or malfunctions after the installation into a machine due to machine-specific conditions (weights, velocities, friction, electrical control, command value specification, etc.).

Commissioning

8.1.3 Setting the end position cushioning

Uncontrolled and dangerous machine movements!

Danger to life, risk of injury or damage to property!

- Do not screw out the complete throttle valve.
- Only set the throttle valve by adjusting the throttling pin.

Regarding the adjustable end position cushioning it has to be noted that the full cushioning capacity can only be achieved when the throttle valve is closed.

In this connection, you must always observe the information of the valid data sheets. The information of the data sheet is specified on the hydraulic cylinder's name plate (see section "5.3 Identification of the product") or on the Internet at:

www.boschrexroth.com/ICS

Hydraulic cylinders are supplied with greatest effect of the end position cushioning, i.e. the throttling pin of the throttle valves is screwed to the stop and closes the oil channel of the adjustable end position cushioning. By unscrewing the throttling pin, the velocity in the area of the end position cushioning is increased.

Observe the higher end stop velocity!

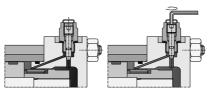


Fig. 13: Adjustable end position cushioning with secured throttling pin

In order to change the factory setting of the end position cushioning, screw out the throttling pin using a hexagon wrench until the desired cushioning behavior is achieved. Due to the securization, the throttling pin cannot be screwed out of the throttle valve completely.

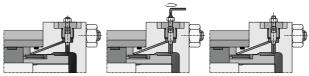


Fig. 14: Adjustable end position cushioning with locked throttling pin

- Loosen the throttle valve lock nut using a suitable tool (ring or open-end wrench) and screw the throttling pin out using a hexagon wrench until the desired cushioning behavior is achieved.
- Then tighten the throttle valve lock nut. The throttling pin is positioned by tightening the lock nut.

Adjustable end position cushioning with locked throttling pin

Adjustable end position cushioning with secured throttling pin

8.2 Flushing the system / hydraulic cylinders

When flushing the system, the hydraulic cylinder must be separated from the system.

When installing the hydraulic cylinder into the machine (amending components, line systems and drives), it has to be ensured that the maximum admissible cleanliness class (see section 8.1.1 "Filing hydraulic cylinders with hydraulic oil and bleeding them") for the entire system is not exceeded.

As many different situations are imaginable due to different installation situations, hydraulic functions of the hydraulic cylinder or the hydraulic system options, please observe section 8.1.1 "Filling hydraulic cylinders with oil and bleeding them".

8.3 Re-commissioning after extended standstill

In the re-commissioning, observe the commissioning instructions (see section 8 "Commissioning").

9 Operation

Information on operating the hydraulic cylinder can only be provided in connection with the machine or system.

 For this information, please refer to the operating instructions of the machine manufacturer.

Operating parameters, function and logics of the hydraulic cylinder are available to hydraulic experts in the relevant valid data sheets and the relevant valid product-specific documentation (see chapter 16 "Technical data"). Maintenance and repair

10 Maintenance and repair

According to DIN 31051, maintenance means all measures for maintaining and restoring as well as for determining and evaluating the actual condition of technical systems.

The tasks are divided into three partial areas:

- · Maintenance: Measures for maintaining the target condition
- · Inspection: Measures for determining and evaluating the actual condition
- · Repair: Measures for restoring the target condition

Due to these measures, the functionality of the hydraulic system and the hydraulic cylinders can be ensured.

Rexroth hydraulic systems and Rexroth hydraulic cylinders have the structural prerequisites for high functionality (operational safety, service life). They only require little maintenance work. The latter is, however, indispensable in order to ensure functionality.

Experience has shown that 70 % of the malfunctions and damage in hydraulic systems and hydraulic cylinders are indirectly caused by the hydraulic fluids. Consequently, the primary inspection and maintenance task is the examination and completion of measures to maintain the functionality (condition, cleanliness class) of the hydraulic fluid.

Ensure that no lubricants enter the hydraulic circuit.

10.1 Cleaning and care (maintenance)

- Ensure absolute cleanliness in all works.
- Before loosening fittings and components, clean the external environment using industrial residue-free wipes.
- Cover all openings with protective caps in order to prevent dirt from penetrating the system.

10.2 Inspection

Bosch Rexroth recommends documenting the inspection results

- So that considering functionality and economy, the inspection and maintenance intervals can be adjusted to the actual operating conditions.
- So that by comparing the documented values, you can identify faults at an early point in time.

10.3 Maintenance schedule

For the scope and time intervals of maintenance and inspection works, please refer to the system manufacturer's maintenance schedule.

10.4 Maintenance

Normally, hydraulic cylinders are almost maintenance-free after the commissioning. After a new system has been commissioned, regular checks are necessary in order to determine whether the hydraulic cylinder functions perfectly. During these checks, you must particularly watch out for the following:

- · Possible oil leaks at the oil ports
- Check with regard to "rubbing marks" or mechanical damage at the surface
 of the stroke-related piston rod running surfaces. Rubbing marks may be an
 indication of a polluted hydraulic system or of inadmissible traverse loads on the
 hydraulic cylinder.
- · Damage to the coatings
- · Possible leakage at the cylinder head or cylinder bottom
- Extreme temperatures and pollution shorten the hydraulic cylinder's service life. You should therefore provide for regular maintenance of the entire hydraulic system. For reference to the specific requirements of the hydraulic cylinder on the operating and ambient temperatures as well as the oil cleanliness please refer to the corresponding data sheet (see chapter 16 "Technical data"). For possible additional requirements, please refer to the installation and maintenance instructions of the hydraulic system and the data sheets of the hydraulic fluids used.
- The replacement intervals for wear parts like e.g. seals, guide sleeves and guide rings depend on the relevant application, the operating conditions, temperatures, etc. and on the medium quality. No fixed time has been determined for the exchange of these wear parts.
- Leakage in the area of the piston rod and the cylinder head is an indication of the necessity to exchange the wear parts.
- According to the operating requirements, the lubrication intervals for selfaligning clevis, trunnion, etc. must already be determined in the project planning of the hydraulic cylinder. The lubrication intervals are contained in the system manufacturer's maintenance schedule.

WARNING

Risk of ignition with hydraulic cylinders with EX marking due to insufficient maintenance or repair!

Danger to life! Risk of injury!

- Check regularly that the dust layer thickness of dust accumulations on the hydraulic cylinder stays below 5 mm or is regularly removed so that there is no risk of ignition in the explosive area.
- Check regularly that the equipotential bonding at the hydraulic cylinder remains functional and connected at all times; otherwise, there is a risk of ignition due to electrostatic charging.
- Check after repair and maintenance works that the equipotential bonding at the hydraulic cylinder is connected before operation in explosive areas.

Maintenance and repair

	10.4.1 Piston rod maintenance	
	In order to prevent corrosion at the piston rod, the piston rod should always be retracted during standstill times.	
	When using hydraulic fluids in hydraulic cylinders like e.g. HFD-R (phosphoric acid ester), HFA (oil-water emulsion) or HFC (water glycol), the following works have to be completed within the scope of the maintenance:	
General	The piston rod must always be covered by a protective oil film. Ensure compatibility of the medium used.	
	In areas with high humidity or strongly fluctuating conditions (e.g. temperature fluctuations or outdoor installation), check the protective oil film every week. In areas with moderate conditions, the protective oil film can be checked every month.	
	The protective oil film is necessary in order to guarantee corrosion protection of the exposed piston rod. In this connection, the following preventative maintenance is to be completed:	
Preventative piston rod maintenance	1. If possible, the preventative maintenance work should be completed in a dry environment.	
	 Using fresh water loosen and remove all salt, sand and machining residues as well other pollution from the piston rod. 	
	 Do not use steam cleaners or high-pressure water jets. 	
	 The preventative maintenance can only be completed with a clean and dry piston rod. If there is not sufficient time in order to let the piston rod dry completely, let it dry as long as possible before the maintenance. Repeat the maintenance as long as you have sufficient time. 	
	 Soak an industrial residue-free wipe with protection oil of low viscosity. Using the cloth, apply the protection oil to the entire piston rod. 	
Immediate maintenance for hydrau- lic cylinders and piston rods after contact with chemicals	After contact with chemicals, an immediate maintenance cycle has to be com- pleted as fast as possible. The immediate maintenance comprises the follow- ing works:	
	1. Loosen and remove all chemical residues using a suitable cleaning agent.	
	2. Perform the work steps of the preventative maintenance.	
Maintenance frequency	The preventative maintenance described here should be completed before the first commissioning of the hydraulic cylinder or after standstill times.	

10.5 Replacing wear parts

i

In case of questions or doubt, please contact Bosch Rexroth or your local Rexroth sales organization in any case.

Opening the hydraulic cylinder will invalidate the warranty claim.

10.6 Repair

Bosch Rexroth offers a wide range of repair services for your hydraulic cylinder. Please send any enquiry to your nearest Bosch Rexroth service center or directly contact the headquarters. For the addresses, please refer to www.boschrexroth.com.

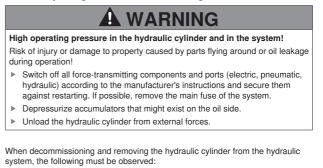
Decommissioning

10.7 Spare parts

NOTICE

Malfunction of the machine due to the use of incorrect spare parts! Damage to property!

- Only use components listed in the product-specific documentation (parts list).
- Only use new seals with the required resistance to media.
- As the sealing material may differ despite being of identical appearance, the material number should be checked.



In case of questions or doubt, please contact Bosch Rexroth or your local Rexroth sales organization in any case.

- Please send any enquiry to your nearest Bosch Rexroth service center or directly contact the headquarters. For the addresses, please refer to www.boschrexroth.com.
- Please provide the following information when ordering spare parts:
 - Material number and order number of the hydraulic cylinder (name plate)
 - Item number of the relevant component according to the parts list

11 Decommissioning

11.1 Preparing for decommissioning

- For safety reasons, you must not loosen any lines, connections and components as long as the system is under pressure. Lower loads in advance, unload the pressure accumulator, switch off pumps and secure the system against re-activation.
- You must provide collecting tanks that are large enough to accommodate the total oil volume.

11.2 Decommissioning the hydraulic cylinder

- Drain the oil into the collecting tank provided.
- In this connection, ensure complete draining of the lines and actuators.
- If necessary, carry out bleeding measures.

11.3 Preparing disassembly

Before starting the works at the hydraulic cylinder, take the following measures:

- Provide for an easily readable assembly drawing / spare parts list.
- Provide for clean, professional tools and a clean workplace.
- Due to the tolerances when lifting the hydraulic cylinder, anticipate a weight of the hydraulic cylinder exceeding the one specified in the drawing or in the data sheets by 10 %.
- During the removal of the hydraulic cylinder, no dirt must penetrate the hydraulic system. Seal the connection points using steel plugs, flange covers or special plastic plugs suitable for that purpose.
- Make sure that the hydraulic cylinder and particularly the piston rod are not damaged.
- Use a stable support for putting down the hydraulic cylinder and the removed parts.

11.4 Disassembling the hydraulic cylinder

To the lifting and moving during removal of the hydraulic cylinder from the system/ machine, the same rules apply as already described under chapter 6.1 "Transporting hydraulic cylinders".

11.5 Preparing the hydraulic cylinder for storage/ further use

For storing the hydraulic cylinder for later re-use, complete the necessary steps according to chapter 6.2 "Storing hydraulic cylinder".

12 Disassembly and exchange

12.1 Preparing disassembly

Before starting the disassembly of the hydraulic cylinder, the general conditions according to section 11 "Decommissioning" have to be met. Provide for good preparation.

In order for the hydraulic cylinder spare parts to be exchanged, the cylinder has to be disassembled.

12.2 Disassembling the hydraulic cylinder

For disassembly, you should proceed as follows:

- Drain the hydraulic fluid from the hydraulic cylinder that is still installed to the largest possible extent. The hydraulic cylinder can be completely drained as soon as it has been removed.
- Disassemble the cylinder head.
 - Pull the cylinder head off the pipe and drain the remaining hydraulic fluid from the pipe.
 - Then pull the piston rod out of the hydraulic cylinder using lifting strings, if necessary.
 - Put the piston rod on especially prepared blocks preventing the piston rod from rolling away (wooden blocks, prism-shaped squared timber or blocks with soft, rotating support, without pollution).
- If necessary, remove the locking device between cylinder eye and piston rod and plug the wrench into the provided bore or area. Put a lifting sling around the cylinder eye so that it gets caught when it is loosened from the piston rod. Now rotate the piston rod using the wrench until the cylinder eye loosens from the piston rod.
- Fasten the lifting slings at the cylinder head and slowly push it off the piston rod (if it is difficult to push the cylinder head on the piston rod, you must rotate the latter slowly).
- Remove the seals and clean the cylinder head carefully using a de-greasing agent (from old glue residues, dust particles, etc.). Also clean the piston rod carefully as any dirt particle may damage the seal during the assembly. Do not forget to clean the piston rod thread, the cylinder eyes and the protective cover.

12.3 Exchanging components

In case of questions or doubt, please contact Bosch Rexroth or your local Rexroth sales organization in any case: www.boschrexroth.com

13 Disposal

- Dispose of the individual materials according to the legal provisions. Particular attention is necessary when disposing of components with hydraulic fluid residues.
- Observe the disposal information in the hydraulic fluid safety data sheet.
- When disposing of electric and electronic components (e.g. position measurement systems, proximity switches) comply with the country-specific legal provisions and regulations.

13.1 Environmental protection

Careless disposal of the hydraulic cylinder, its components and the oil can lead to environmental pollution. Please observe the following points:

- Dispose of the product/components in accordance with the national regulations in your country and/or your company-internal specifications.
- Dispose of oil according to the legal provisions and moreover observing the safety data sheet of the hydraulic medium used.

14 Extension and conversion

You will be considered responsible for any extensions to or conversions of the product.

Declarations become invalid

If you undertake any extensions to or conversions of the product marketed by Bosch Rexroth, this means you are changing the condition of the product as supplied. Any statements made by Bosch Rexroth regarding this product will then become invalid.

Please send any queries you may have to your nearest Bosch Rexroth service center or directly to the headquarters. For the addresses, please refer to: www.boschrexroth.com

15 Troubleshooting

49

15.1 How to proceed for troubleshooting

Troubleshooting is primarily the exchange of the defective components.

Only replace the components mentioned in the parts list (spare parts list) by new, interchangeable and tested components in original equipment quality.

Regarding the repair of the defective hydraulic cylinder, please contact the nearest Bosch Rexroth service center or directly the headquarters. For the addresses, please refer to www.boschrexroth.com.

After remedy of the actual damage, you should imperatively remove the causes and/or consequential damage as well. After a component failure caused by wear, you must for example flush the system and clean and/or change the oil.

Error	Possible cause of fault	Troubleshooting
Stick-slip effect	Air in the hydraulic cylinder	Bleed the hydraulic cylinder, see section 8.1.1 "Filling hydrau- lic cylinders with hydraulic oil and bleeding them".
	Seals are worn	Initiate the exchange of the seals, see section 10.5 "Replac- ing wear parts"
	Introduced radial forces on piston rod and hydraulic cylinder	▶ In this connection, observe section 7.2 "Installation conditions".
Leakage at the piston rod side	Traces of wear at the piston rod surface Piston rod seals are worn	Initiate the exchange of the piston rod, see section 12.3 "Ex- changing components".
		Initiate the exchange of the seals, see section 12.3 "Exchanging components".
Leakage at line	Fittings are loose	 Tighten the fittings firmly.
connections	Defective sealing element	Exchange the sealing elements at the fitting.
Hydraulic cylinder has no cushioning effect/moves hard into the end position	The end position cushioning setting does not comply with the requirements	Set the adjustable end position cushioning, see section 8.1.3 "Setting the end position cushioning".

Table 15:	Troubleshooting
-----------	-----------------

16 Technical data

In this connection, please refer to the valid data sheets and the valid productspecific documentation (parts lists) for hydraulic cylinders.

For the valid data sheets, please refer to: www.boschrexroth.com/ICS

17 Appendix

17.1 Address directory

Please refer to www.boschrexroth.com for addresses of foreign subsidiaries.

Bosch Rexroth AG Hydraulics Zum Eisengießer 1 97816 Lohr am Main Germany Phone +49 (0) 9352 18-0 Fax +49 (0) 9352 18-2358 documents@boschrexroth.de

Subject to change without notice Printed in Germany RE 07100-B/03.11

Service

RE 07008/02.05 1/32

General product information on hydraulic products

- DE Ihre Sprache? Siehe Rückseite!
- EN Your language? See back page!
- FR Votre langue ? Voir au dos !
- IT La vostra lingua? Vedi retro!
- FI Kohdekielet? Katso takankatta!
- ES ¿Su idioma? iVea al dorso!
- NL Uw taal? Zie achterzijde!
- SV Ditt sprak? Se omslagets baksida!
- PT O seu idioma? Consulte a contracapa!
- DA Dit sprog? Se bagside!
- EL Η γλώσσα σαρ; Βλέπε πίσω πλευρά!

2 /32	Bosch	Rexroth	AG	H	vdraulics	

General product information | RE 07008

Page

Contents

1	Impor	tant basic information	4
	1.1	Conventions used in this product information	4
	1.2	What you need to know about this product information	4
	1.3	The contents of this product information	4
2	Scope	e of delivery and responsibilities	5
	2.1	Scope of delivery and responsibilities of Bosch Rexroth	5
	2.2	Responsibilities of the plant operator	5
	2.3	Liability, guarantee, warranty	6
	2.4	Copyright	6
3	Impor	tant basic safety instructions	7
	3.1	What to do in an emergency	7
	3.2	Safety labelling on the hydraulic product	7
	3.3	Proper use	7
	3.4	Requirements for personnel, duty of care	8
	3.5	General ancillary dangers and protective measures when operating hydraulic products	9
4	Techn	ical data and ambient conditions	11
	4.1	Information about pressure fluids	11
	4.2	Ambient conditions	11
5	What	you need to know about pressure fluids	13
	5.1	How to handle pressure fluids safely	13
	5.2	Functions and effectiveness	13
	5.3	Viscosity	13
	5.4	Leakage fluid	14
	5.5	Topping up/refilling	14
6	Const	ruction and mode of operation of a hydraulic system	15
	6.1	Definitions of terms	15
	6.2	Schematic	15
	6.3	Safety concept	15
7	Movin	g hydraulic units/components	16
8	Storag	ge and longer standstills	16
	8.1	Hydraulic systems - subsequent bringing into use after storage	16
	8.2	Seals, hoses and hose lines	17

Con	tents		Page
9	Asse	mbly and bringing into first use	18
	9.1	Safety advice for assembly and bringing into first use	18
	9.2	Before bringing into first use	18
	9.3	Bringing into first use, subsequent bringing into use	19
10	Oper	ation	22
11	Trout	ple-shooting	22
	11.1	What to do in the event of a fault	22
	11.2	The basic approach to trouble-shooting	22
	11.3	Trouble-shooting tables	23
12	Main	tenance	24
	12.1	Definitions of terms	24
	12.2	Safety during maintenance tasks	24
	12.3	Inspection and servicing	25
	12.4	Service and storage lives of hose lines	28
	12.5	Topping up the pressure fluid	29
	12.6	Servicing pressure accumulators	29
	12.7	Repair	29
13	Gene	ral information about hydraulic pressure accumulators	30
	13.1	General	30
	13.2	Safety devices relating to hydraulic pressure accumulators	30
14	Hydra	aulic systems	31
	14.1	Effects of leaks in the hydraulic system on the machine	31

1 Important basic information

1.1 Conventions used in this product information

Cross-references are printed in italics.

A DANGER

This symbol indicates a threat of danger which will result directly in death or very serious injury if not avoided.

A WARNING

This symbol indicates a threat of danger which may result in death or very serious injury if not avoided.

This symbol indicates possible danger which may lead to minor or serious injury and/or to material damage.

IMPORTANT

This symbol indicates additional information.

1.2 What you need to know about this product information

This product information applies to the following types of hydraulic products:

- Hydraulic components
- Hydraulic power units
- Hydraulic systems.

This product information applies exclusively to hydraulic products that are operated with mineral-oil-based pressure fluids, if the *Operating Instructions* do not expressly permit the use of other pressure fluids.

IMPORTANT

As this product information for Rexroth hydraulic products applies in a general sense, some of the content may not necessarily apply to the hydraulic product you have purchased.

However, only by strictly observing this product information and the Operating Instructions can accidents be prevented and problem-free operation of your Rexroth hydraulic product be guaranteed. Observing the product information and Operating Instructions

reduces downtimes and maintenance costs

54

increases the service life of your hydraulic products.

The Operating Instructions must be directly accessible to one of the personnel at the hydraulic product and kept readily available at all times in a place known to the personnel.

The Operating Instructions must be read and understood and all its provisions observed by those responsible and by the operative personnel. We recommend that a record is made in writing of the employees' familiarisation with all the relevant parts.

The cross-references to directives, standards and regulations contained in this product information refer to the versions current at the time of writing of this product information, which can be obtained from the title page of this product information.

1.3 The contents of this product information

In addition to this document, product information for Rexroth hydraulic products normally includes Operating Instructions consisting of three parts:

- Part I, the general Operating Instructions for the relevant class of products
- Part II, the Technical Datasheet
- Part III, the Product- and Application-specific Operating Instructions.

If you do not have all three parts, please request the missing part from Bosch Rexroth. Only if all the information contained in all parts of the three-part Operating Instructions is observed can safe operation of Rexroth hydraulic products be ensured.

Specific cross-references are used to draw your attention to information that you can find in the Operating Instructions.

The Operating Instructions contain detailed information about the product, including

- Information about the scope of delivery
- Safety instructions
- Technical data and operating limits
- > Information about bringing into (first) use and maintenance
- Information about the mode of operation
- Layouts, drawings
- Parts lists if appropriate
- Information about replacement parts and accessories.

2 Scope of delivery and responsibilities

2.1 Scope of delivery and responsibilities of Bosch Rexroth

Rexroth hydraulic products fulfil all safety requirements applicable to fluid power systems and their components.

IMPORTANT

For the scope of delivery and the responsibilities of Bosch Rexroth with respect to the product, please refer to the *Product-specific Operating Instructions.*

2.2 Responsibilities of the plant operator

If Rexroth hydraulic products are positioned in the vicinity of sources of ignition or strong radiators of heat, protection must be put in place that would prevent any escaping pressure fluid from igniting and the hose lines from aging prematurely.

Mineral-oil-based pressure fluid is hazardous to water and flammable. It may only be used if the relevant safety datasheet from the manufacturer is available and all the measures stipulated therein have been implemented.

If there is a risk of fluid leaking from the hydraulic product and contaminating water or the ground, the hydraulic product in question must be placed in a suitable collecting trough. In connection with this, the applicable statutory regulations must be observed.

You must also observe the EU directives for the use of work equipment (Directive 89/391/EC) and the associated individual directives, especially Directive 1999/92/EC for the protection from the danger arising from potentially explosive atmospheres and their implementations in national legislation. The legislation contains minimum requirements with respect to the making available by the employer of work equipment and for the use of work equipment by employees at work, including the regulations for operating equipment requiring supervision and the obligation to produce explosion protection documentation. This involves, for example, dividing areas endangered by potentially explosive atmospheres into zones and specifying suitable work equipment and procedures for these areas.

2.2.1 Noise protection

The A-weighted equivalent continuous sound power level of Rexroth hydraulic products can be obtained from the relevant *Operating Instructions.* If no values are documented then it can be taken that the value is less than 70 dB(A). Installation of Rexroth hydraulic products in a machine or system may increase this value, and if so, the manufacturer of the machine/system must document this.

At or above 85 dB(A), the plant operator must make suitable hearing protection available to the personnel.

2.2.2 Special points concerning the installation of certain products

A Rexroth hydraulic product is intended above all for installation in machines, systems and power units as a part machine or a component for installation into another machine or system and is not a complete machine in the sense of the EU directive. In addition to the Machinery Directive, still further directives may apply, such as the Pressure Equipment Directive or the Explosion Protection Directive.

A wide range of dangers can arise from the combined actions of the hydraulic product and the machine or system in which the hydraulic product is installed. Therefore you must always make sure that the hydraulic product is also suitable without restriction for the proposed application at the installation location. The interfaces with the overall machine and the operating conditions are also of the greatest importance. We recommend that the results of the hazard analysis (risk assessment) of the overall machine are taken into account in the design of the hydraulic product.

The functioning of the hydraulic product is also influenced by the machine or system in which it is installed.

For this reason, you must also always observe the Operating Instructions of the overall system in which your hydraulic product is installed. It is most important for you to also consider the possible use of the hydraulic product in a potentially explosive atmosphere (see 94/9/EC).

IMPORTANT

Bosch Rexroth points out that, at the time of their first introduction on to the market, hydraulic products comply with the requirements of all relevant EU directives and/or their implementation into national legislation in Germany. If the scope of delivery is intended to be installed in a machine or system, then the Machinery Directive applies as appropriate – including the then currently applicable amendments – in that the scope of delivery does not necessarily comply with the requirements of the Machinery Directive because the scope of delivery is intended for installation in a machine or because the scope of delivery is intended for combination with other machines into a machine or a hydraulic system.

The bringing into use of the scope of delivery shall therefore not be permitted until the machine or system in which the scope of delivery is to be installed or of which it represents a component complies with the requirements of all relevant EU directives.

Details of further responsibilities can be found in 3 *Important basic safety instructions* and in the Operating Instructions.

2.3 Liability, guarantee, warranty

Bosch Rexroth shall not be liable for damages that result from non-compliance with or disregard of these and other parts of the Operating Instructions.

Unauthorised tampering shall render the warranty null and void.

Bosch Rexroth shall only be liable if the scope of delivery was shown to be defective. Bosch Rexroth shall not be liable if a deficiency occurs that involves parts having been replaced by the customer with equivalent but not identical parts as specified by the manufacturer.

Please refer to our general terms of supply or your contract for details of the guarantee and manufacturer's warranty.

2.4 Copyright

This product information may only be reproduced – electronically or mechanically, in whole or in part – with the express written permission of Bosch Rexroth. It may likewise not be distributed, amended, transmitted, translated into another language or employed or copied for other purposes or by other parties without such consent.

3 Important basic safety instructions

3.1 What to do in an emergency

In the event of an emergency, fault or other abnormal occurrences:

- 1. Switch off the hydraulic system.
- 2. Secure the main switch against being unintentionally switched on again.
- 3. Secure the danger area so that no one can enter the danger area unknowingly or uncontrolled.
- 4. Notify the relevant specialist personnel immediately.
- 5. In the event of fire, observe the provisions of the safety datasheets issued by the manufacturer of the pressure fluid and the fire precautions specifically applicable to your place of work, which must be documented in the plant operator's operating manual.

Fighting fires with materials other than those permitted can lead to explosions and/or more rapid spread of the fire!

Danger to life from smoke inhalation!

3.2 Safety labelling on the hydraulic product

IMPORTANT

- The meanings of the safety labelling on the Rexroth product are explained in the Operating Instructions.
- For a diagram of the nameplate and an explanation of the information on it please refer to the Operating Instructions.

3.3 Proper use

Rexroth hydraulic products are designed and constructed for the provision, transmission, control or regulation of energy and signals using the flow of oil.

Unless otherwise agreed, the Rexroth hydraulic product satisfies at least safety category B in accordance with EN 954-1.

If the hazard analysis/risk assessment of the overall machine in which the Rexroth hydraulic product is to be installed indicates that a safety category higher than category B in accordance with EN 954-1 is required for the Rexroth hydraulic product, then a correspondingly higher rated hydraulic product can be supplied and installed only after special agreement with Bosch Rexroth.

IMPORTANT

The hydraulic product shall be operated exclusively with pressure fluids complying with DIN 51524. Where other pressure fluids are permitted, for example brake fluids for brake valves, this is specially mentioned in the *Operating Instructions*.

For details on proper use see 4 Technical data and ambient conditions.

The following information can be found in the *Operating Instructions*:

- > the proper use, specific to the hydraulic product
- where applicable, the safety category in accordance with EN 954-1
- > non-permitted and improper use.

3.3.1 Proper use, requirements before operation

- Rexroth hydraulic products may only be operated if they are in perfect technical condition.
 - In the event of disturbances in the power supply and/ or damage to the electrical equipment, switch off immediately and secure the main switch against being switched on again without authorisation.
 - Report and rectify all faults and damage indicated by the system or discovered by other means.
- The connections, operating conditions and performance data specified in the Operating Instructions must be observed and never changed.
- Rexroth hydraulic products shall not be converted or otherwise modified without prior consultation with Bosch Rexroth.
- The plant operator shall not modify the program code of programmable control systems.
- Dependencies and time factors shall not be modified without prior consultation.
- The safety devices fitted by Rexroth must be present, properly installed and in full working order – except when this is impractical during setting up or maintenance work. They shall not be relocated, bypassed or rendered ineffective.
- Safety components such as limit switches, valves and other control components shall not be rendered inoperative.
- Tamperproof lead seals installed by the manufacturer shall not be removed or damaged except when this is necessary in the course of maintenance tasks defined in the Operating Instructions.
- The specified maintenance tasks in the Operating Instructions shall be carried out at the intervals stated in the Operating Instructions.

- Uncontrolled access by persons unfamiliar with the system to the immediate operating zone of Rexroth hydraulic products is prohibited (even if the product in question has been shut down).
- Rexroth hydraulic products must never be assembled, operated or maintained by persons under the influence of alcohol, drugs or other medication which affect one's ability to react.

3.4 Requirements for personnel, duty of care

3.4.1 Qualifications of specialist personnel

A specialist person is someone who, using his specialist training, knowledge and experience as well as familiarity with the relevant conditions, can

- safely carry out the tasks allocated to him and correctly assess the scope and implications of his work
- recognise possible dangers
- undertake the necessary measures to eliminate possible accidents.

3.4.2 Requirements for hydraulics maintenance personnel

In accordance with DIN 31051, maintenance comprises the individual activities of **inspection**, **servicing** and **repair**. All personnel involved in maintenance shall be familiar with and observe all parts of the Operating Instructions and this product information.

Inspection personnel shall fulfil the following requirements:

- > They have been instructed in the relevant activity.
- Specialist knowledge of hydraulics is not required for purely inspection activities but the personnel must be aware of the particular dangers associated with hydraulic products.

Servicing personnel (who carry out filter and oil changes, for example) shall fulfil the following requirements:

- > They have been instructed in the relevant activity.
- Specialist knowledge of hydraulics is not required to carry out servicing work.

Repair personnel shall fulfil the following requirements:

- The personnel must be hydraulics experts, who have been instructed and meet the definition given above,
- Repair personnel must be familiar with the function of the hydraulic system as a whole, from subsystems to their interaction with the function of the entire machine.
- Repair personnel must be able to read hydraulic circuit diagrams, interpret individual functions from their symbols and understand function diagrams.
- Repair personnel must possess knowledge of the function and construction of hydraulic elements.

3.4.3 Requirements for electrical maintenance personnel

All work on electrical equipment shall only be carried out by an authorised, qualified electrician, or by instructed persons under the guidance and supervision of a qualified electrician, in accordance with the rules applicable to electrotechnical products.

3.4.4 Minimum age

Persons under the age of 18 who are currently receiving instruction or training or are working under supervision may not work on Rexroth hydraulic products.

This does not apply to young persons of 16 or over if

- working on Rexroth hydraulic products is necessary in order for them to accomplish a training objective
- their protection is guaranteed by the supervision of an experienced, competent person
- they are allowed to use only tools, work implements and protective gear that preclude the risk of injury.

3.4.5 Training

The plant operator using Bosch Rexroth hydraulic products shall train his personnel regularly in the following subjects:

- Observation and use of the Operating Instructions and legal requirements
- Proper operation of the Rexroth hydraulic product
- Observation of the instructions of safety officers and the plant operator's operating manual
- What to do in an emergency.

IMPORTANT

Bosch Rexroth can provide you with training support in specialist areas.

An overview of the training can be found on the Internet at http://www.boschrexroth.de/didactic.

3.5 General ancillary dangers and protective measures when operating hydraulic products

In the interests of your safety, all safety instructions shall be carefully observed, especially those in the Operating Instructions.

In spite of the high intrinsic safety of Rexroth hydraulic products, the risk of personal injury or damage to the environment cannot be excluded, even when the equipment is properly used.

New, additional dangers may arise if the hydraulic product is installed in another machine or installed with other machines in a system. This shall apply in particular to mechanical movements generated by the hydraulic product.

Information on these additional dangers can be found in the overall operating manual of the supplier of the overall system in which the hydraulic product is installed.

3.5.1 Dangers from pressure fluid

59

Handling pressure fluid without protection is **hazardous to** health.

Please observe the manufacturer's safety instructions and the safety datasheets for the pressure fluid that you are using.

Serious damage to health or death may result if pressure fluid enters the blood stream or is swallowed. If this occurs, contact a doctor immediately!

3.5.2 Malfunctions due to contamination of pressure fluid

Contamination of the pressure fluid can be caused by:

- Wear during operation of the machine/system (metallic and non-metallic abrasion)
- Leaks of the hydraulic product
- Contaminants introduced during servicing/repair
- The use of dirty (unfiltered) pressure fluid when the pressure fluid is changed.

Contaminants lead to malfunctions, increased wear and shorter service life of the hydraulic product. This can have negative effects on the safety and reliability of the hydraulic product.

Therefore the maintenance tasks specified in the *Operating Instructions* shall be carried out at regular intervals and the utmost cleanliness is required during work on the hydraulic product.

When changing the pressure fluid, always use factory-fresh pressure fluid and filter it before filling to remove any contaminants in the pressure fluid that it often contains from the packaging container (drum). Flush out lines and hoses before installation.

The cleanliness class of a pressure fluid is specified in accordance with ISO 4406. Detailed information can be obtained from the relevant datasheet or the *Operating Instructions*. In older datasheets, the cleanliness class is sometimes specified in accordance with NAS 1638. The following table can be used to convert this to an equivalent ISO 4406 cleanliness class:

Comparison table for cleanliness classes		
Earlier class to NAS 1638	Current class to ISO 4406 (c)	
Class 7	Class 18/16/13	
Class 9	Class 20/18/15	

3.5.3 Electrical dangers

When working on electrical systems:

- De-energise the hydraulic system before beginning any maintenance work.
- Cordon off the working area with red-white safety chain and warning signs.
- Lock the main switch, remove the key and keep it in a safe place until the work is completed.
- Attach a warning sign to the main switch.
- Check that there is no voltage using a two-pole voltage detector.
- · Earth and short-circuit the point where you are working.
- Cover neighbouring live parts.
- Clear your workplace to prevent contact with live parts as a result of tripping or slipping. Wear safety footwear.
- Always use electrically insulated tools.
- Disconnect plugs at sensors and valves even those with low voltages – after the system has been de-energised.

A DANGER

Even after disconnection of the electrical supply (main switch OFF) the following supply systems/danger areas can still give rise to life-threatening voltages:

- Electrics, electronics, hydraulics (e.g. accumulators, rechargeable batteries)
- Main switch
- Power supply cables
- > Points identified with an electric shock warning sign.

3.5.4 Product-specific ancillary dangers

All product-specific ancillary dangers and precautions can be found in the relevant *Operating Instructions*.

3.5.5 Disposal

60

- Take metal, cable and plastic ducts to a recycling materials collection centre.
- Dispose of electronic components as electronic waste.
- Dispose of back-up batteries as special waste.
- Cleaning agents, operating fluids and other materials:

Please observe the disposal regulations specified in the appropriate Safety Datasheets.

4 Technical data and ambient conditions

IMPORTANT

The product-specific technical data, operating limits and ambient conditions for the operation of your Rexroth hydraulic product can be found in the *Operating Instructions*.

This includes the following information:

- Minimum flow rate for adequate cooling
- Permissible maximum temperature of the coolant
- Performance data
- Type of control and regulation functions
- Permissible pressures, flow rates
- Connections.

4.1 Information about pressure fluids

Unless otherwise indicated in the Operating Instructions, the following specification applies to the pressure fluid to be used:

- Mineral-oil-based pressure fluid complying with the requirements of DIN 51524.
- Operating temperature range 0°C...+80°C (in tank < 72°C).

Any deviations from this can be found in the *Operating Instructions*.

IMPORTANT

Bosch Rewroth recommends a maximum operating temperature of 55 °C, because the rate of ageing of the pressure fluid increases and the service life of the seals and hoses is reduced at higher temperatures.

- Viscosity ranges: see RE 07075 and RE 90220
- Max. permissible contamination class of the pressure fluid in accordance with ISO 4406: see 3.5.2 Malfunctions due to contamination of pressure fluid.

The maximum permissible cleanliness class can be found in the *Operating Instructions*. The following types of pressure fluids shall be used.

IMPORTANT

Rexroth hydraulic components are tested with test oil MZ45 manufactured by ESSO (class ISO VG 46 at 40 °C), (Viscosity η = approx. 46 mm²/s).

4.2 Ambient conditions

4.2.1 Use in potentially explosive atmospheres

🛕 DANGER

Rexroth hydraulic products shall be used in potentially explosive atmospheres only if they are designed for this purpose and this is expressly stated in the Operating Instructions.

IMPORTANT

Directive 1999/92/EC of the European Parliament and Council dated 16 December 1999 concerning the minimum requirements for improving the safety and health protection of workers potentially at risk from explosive atmospheres governs protection from danger from potentially explosive atmospheres. Observe the requirements contained in the regulations for operating equipment requiring supervision and the obligation to produce explosion protection documentation. This involves, for example, dividing areas endangered by potentially explosive atmospheres into zones and specifying suitable

tially explosive atmospheres into zones and specifying suitable work equipment and procedures for these areas.

Observe the requirements of Directive 94/9/EC of the European Parliament and Council dated 23 March 1994 on the approximation of laws of the member states concerning equipment and protective systems intended for use in potentially explosive atmospheres (ATEX Product Directive) and/or the corresponding national legislation by means of which the Directive was implemented in law in the EU member states. The directive contains requirements for the use of equipment and protective systems in potentially explosive atmospheres.

4.2.2 Climatic operating conditions

Unless otherwise indicated in the Operating Instructions, the permissible ambient temperature

- ➢ for control units: 0 °C...+50 °C
- for drive units with electric motors without heat exchangers, surface-cooled by free air circulation: 0°C...+30°C
- ➢ for drive units with heat exchangers: <+40 °C.</p>

Unless otherwise specified, Rexroth hydraulic products are designed for use in temperate climate zones and in covered areas (not in the open air) at relative air humidities of < 70 % and at room temperatures of 22 °C.

IMPORTANT

For systems with oil-air heat exchangers: Observe the information given in the circuit diagram in the *Operating Instructions*.

In relation to the electronic equipment, the permissible ambient conditions apply to installed and protected electrical connections of class IP 55.

- Ambient temperature +5 °C...+40 °C assuming that the average air temperature over a 24 hour period does not exceed +35 °C.
- > Relative air humidity: 23...95 %, non-condensing.
- > Altitude: up to 1000 m above national datum.

A DANGER

Rexroth hydraulic products shall not be used in aeronautical equipment, except where they have been specially approved and appropriately labelled to this effect.

5 What you need to know about pressure fluids

5.1 How to handle pressure fluids safely

Mineral-oil-based pressure fluid is hazardous to water and flammable.

It may only be used if the relevant safety datasheet from the manufacturer is present and all the measures stipulated therein have been implemented.

5.2 Functions and effectiveness

Due to the many tasks of pressure fluid, its selection, inspection and maintenance are of vital importance for:

- proper functioning
- operating safety
- service life
- and the cost effectiveness of the hydraulic product.

The tasks of pressure fluid:

- to transmit hydraulic energy from the pump to the hydraulic cylinder/motor
- to lubricate parts moving against one another
- corrosion protection
- to remove contaminants
- to remove locally accumulated heat.

5.2.1 Reduced function due to ageing

The effectiveness of pressure fluid diminishes as it ages (undergoes chemical changes). Acids and resinous residues form, which may cause valve spools to stick.

The following factors accelerate the ageing process:

- high temperatures
- oxygen in the pressure fluid
- air humidity
- water
- metallic catalysers
- operating pressure
- contaminants.

IMPORTANT

Observe the following rules of thumb: At pressure fluid temperatures >70 °C, the rate of ageing doubles for each 10 °C.

5.3 Viscosity

5.3.1 Viscosity grades

The most important characteristic of a pressure fluid is its viscosity, i.e. stickiness. Viscosity range always plays a priority role in the selection of a pressure fluid.

Viscosity is measured in the SI unit [mm²/s]. Many manufacturers still provide their information in centiStoke [cSt], the equivalent of [mm²/s].

The viscosity grades (VG = viscosity grade) in accordance with ISO 3448 relate to the viscosity at 40°C. The viscosity grade is appended to the type designation or the commercial name of the pressure fluid.

Example: A pressure fluid with a viscosity grade of ISO VG 46 has a viscosity of 46 mm²/s at 40 °C.

The relationship between medium temperature and viscosity for hydraulic oil (example)

Medium temperature	Viscosity
3°C	800 mm ² /s
8°C	500 mm²/s
25 °C	100 mm²/s
60°C	20 mm ² /s
77 °C	12 mm ² /s

Too high a viscosity leads to the formation of air and vapour bubbles as a result of low pressure (cavitation). Too low a viscosity leads to increased leakage losses. Increased leakage losses cause the pressure fluid to heat up more, leading in turn to a further reduction in viscosity. The pressure fluid then loses its ability to lubricate.

Valves, pumps and hydraulic motors, in particular, require exact compliance with the defined viscosity ranges.

For certain ambient and operating temperatures, not all the requirements can always be covered with the available ranges of the viscosity grades.

In order to comply with all the requirements, high viscosity pressure fluids with viscosity index improvers or a pressure fluid cooler/heater may be used.

5.4 Leakage fluid

Clearances and play mean that some leakage fluid escapes from all hydraulic products. Leakage fluid can be lead away internally or externally, depending on the component. It can be fed back into the tank or must be disposed of.

Make sure that the leakage fluid is fed back into the tank in a proper manner.

Dispose of leakage fluid that is not fed back into the tank properly, in compliance with the applicable environmental protection regulations.

5.5 Topping up/refilling

When topping up/refilling your hydraulic system, make sure that you use pressure fluid of the same sort and type and from the same manufacturer.

If the fluid is heavily contaminated or prematurely aged, then the system, including the tank must be cleaned and flushed before refilling. New pressure fluid must always be filtered in accordance with the required cleanliness class, as it does not normally meet the required cleanliness class in the as-supplied state.

6 Construction and mode of operation of a hydraulic system

6.1 Definitions of terms

Hydraulics (fluid technology)

Transmission, control and distribution of energy and signals using a pressurised fluid medium.

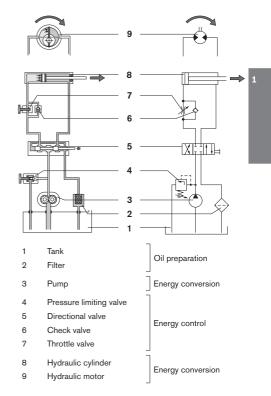
Hydraulic system

Arrangement of interconnected components for transferring and controlling hydraulic energy.

Component

A single unit (e.g. a valve, filter, cylinder, motor) that consists of one or more parts and which is a functional constituent of a hydraulic system.

Drive


A component that converts the energy of the hydraulic fluid into mechanical energy (e.g. motor, cylinder).

6.2 Schematic

In a system operated with hydraulic oil, first of all mechanical energy is converted into hydraulic energy, transported and controlled in this form, to finally be converted once more into mechanical work.

The hydraulic elements are arranged in accordance with these functions. The following diagram shows a schematic representation of the elements of a complete hydraulic system.

To demonstrate their operating principle, standardised symbols (ISO 1219) are used instead of sectional diagrams of the various devices. Line connections are represented by simple lines, as can be seen in the example.

6.3 Safety concept

Hydraulic products contain sensors and actuators, the interaction of which is particularly important with regard to the fulfilment of technical safety functions.

Individual hydraulic products form part of an overall safety concept.

Applications required to perform safety functions are designed using special hydraulic components that satisfy the requirements of the relevant directives, such as the Pressure Equipment Directive and other standards.

The manufacturer of the overall machine or system defines and bears responsibility for the safety category to EN 954-1 to be fulfilled.

IMPORTANT

A more detailed description of the safety concept and the specific safety components installed can be found in the Operating Instructions and the Operating Instructions of the supplier of the overall system in which the hydraulic product is installed.

7 Moving hydraulic units/components

Hydraulic units or components may be moved by a fork-lift truck or a hoist, depending on their size and the local conditions.

IMPORTANT

For details see the Operating Instructions.

Always ensure hydraulic products are empty of pressure fluid for transportation.

Rexroth hydraulic products are delivered empty of pressure fluid. However, products may contain oil residues left over from the final inspection at our factory.

8 Storage and longer standstills

8.1 Hydraulic systems - subsequent bringing into use after storage

Corrosion, especially oxidation, can cause metal surfaces to lose the standard of surface finish required for the hydraulic system to function properly.

Rust and other metallic and non-metallic particles lead to abrasive wear (erosion), which detrimentally affects the functioning of the hydraulic system.

If a hydraulic system is to be brought into use again following a long standstill, it must first be flushed clean.

8.1.1 Factory-applied corrosion protection

Revroth hydraulic products are tested in accordance with Class III using a hydraulic oil that has additional anti-corrosive properties. The film of oil that remains in the product after the test provides sufficient internal corrosion protection.

This factory lubrication ensures that valves do not stick during subsequent use of the hydraulic product, and guarantees compatibility with seals and the pressure fluid to be used.

IMPORTANT

The factory-applied corrosion protection is adequate provided that

- > no condensation or leakage water can enter the system
- Iong standstills are avoided.

Contact Bosch Rexroth if you are not clear about the consequences of long standstills on the state of the hydraulic product.

8.1.2 Storage times in relation to the ambient conditions

Delays in bringing into use, long shipping and storage times or long periods of non-use can lead to rust formation in Rexroth hydraulic products. Additional corrosion protection measures must be implemented to prevent this.

IMPORTANT

If all the openings on the hydraulic products are not sealed so as to be air-tight, this will reduce the storage life of the hydraulic product by nine months.

After the specified storage time has expired, in any event not longer than 24 months, the corrosion protection must be checked and further conservation measures applied if necessary.

8.2 Seals, hoses and hose lines

Seals:

Observe the requirements of ISO 2230 and/or DIN 7716 and the specific manufacturer's data on seals.

Hoses and hose lines:

In the Federal Republic of Germany, please observe the requirements of DIN 20066, ZH 1/74 Safety rules for hydraulic hose lines and the specific manufacturer's data on hoses and hose lines.

In addition, the following conditions shall be observed:

Seals, hoses and hose lines are stored in cool, dry and dust-free conditions.

The hoses and hose lines can be enclosed in plastic foil to ensure low-dust storage conditions. Ideal storage conditions for hoses and hose lines are temperatures from +15°C to +25°C and a relative humidity of below 65 %.

- Do not store elastomers below -10°C. The ideal storage conditions for seals are temperatures from +10°C to +20 °C and a relative humidity of between 65 % and 75 %.
- Store hoses and hose lines in the original packaging if possible. Prevent the entry of air.
- Avoid direct sunlight and UV radiation and shield from nearby sources of heat.
- Darkened storage locations are preferred.
- Do not use ozone-forming light sources or equipment (e.g. fluorescent lamps, mercury-vapour lamps, copiers, laser printers) or electrical spark-forming devices in the vicinity of hoses and hose lines.
- Seals, hoses and hose lines must not come into contact in particular with materials or vapours that could damage them (e.g. acids, alkalis, solvents).
- Store seals, hoses and hose lines lying down and free from tension. If the hoses and hose lines are coiled, take care not to bend them to less than the smallest bending radius specified by the manufacturer.

Maximum storage times

- NBR seals: 4 years
- FKM seals: 10 years
- Hoses: 4 years
- Hose lines: 2 years

For reasons of safety, seals, hoses/hose lines shall not be used once these permissible storage times are reached or exceeded. Permissible storage times could be considerably reduced if the permissible storage conditions are not maintained. If you are not clear about the storage times and/or storage conditions then you should not use the product. 68

9 Assembly and bringing into first use

IMPORTANT

Only the permissible pressure fluids given in the Operating Instructions are to be used. Information on other pressure fluids can be found in the *Operating Instructions* or are available on request.

Filling the pressure fluid tank must always take place through a suitable filter unit. Experience has shown that even new pressure fluid can often have more than the maximum permissible level of contamination.

All information specific to assembly and bringing into first use can be found in the *Operating Instructions*.

Pay attention to cleanliness:

Do not use cleaning wool or cloths containing fibres for cleaning.

Depending on the condition of the system or machine, cleaning with fibre-free cloths may be sufficient. Use suitable liquid cleaning agents to remove lubricants and other stronger contaminants. Make sure that cleaning agent does not get into the hydraulic system.

Never use hemp and putty as sealants.

The functional or failure behaviour of identical hydraulic products may vary due to conditions specific to the machine or system in which the hydraulic product is installed (mass, speed, electrical triggering at setpoint values, etc.), see also Section 11 Trouble-shooting.

9.1 Safety advice for assembly and bringing into first use

A DANGER

Hydraulic products are generally intended for installation in machines/systems or devices.

The function of the hydraulic product must therefore always be seen in relation to the function of this machine – i.e. seemingly identical hydraulic products may demonstrate different functional behaviours as a result of the function of the machine in which they are installed.

For this reason, a hydraulic drive must not be brought into use until it has been determined that the machine in which it is installed conforms to EU standards.

Do not bring hydraulic drives into use until you have familiarised yourself completely, firstly with the function of the hydraulic product and hydraulic equipment and secondly with the hydraulically powered machine functions, and have clarified and dealt with any possible dangers.

Bringing into (first) use shall only be done by an instructed, authorised hydraulics expert who has the required specialist knowledge.

Specialist hydraulics knowledge means, among other things, that the person can read and fully understand hydraulics drawings. In particular, he must fully comprehend the range of functions of the integrated safety components as part of the overall safety concept.

9.2 Before bringing into first use

- 1. Check the scope of delivery for transport damage.
- Check that the Operating Instructions for the Rexroth hydraulic product are present and complete.
 Contact us if the Operating Instructions are not there or are incomplete.
- 3. Assemble the hydraulic product.
 - Observe the *Operating Instructions* and this product information.
 - Assemble the hydraulic components, so that they are mounted strain-free on even surfaces.
 - Tighten the fastening bolts evenly using the specified tightening torque.
- Ensure that the interfaces of the system/machine and the installation conditions provide for safe operation of the hydraulic product. If in doubt, consult the people responsible for the overall system/functional machine.
- 5. Check the construction of the hydraulic product against the circuit diagrams, lists of equipment and assembly drawings. If there are any differences, draw this to the attention of the people responsible. If important documents are missing, they can be requested from Bosch Rexroth. Only documents issued by the bodies authorised to do so shall be used.
- Based on the Operating Instructions for the system or machine in which the hydraulic product is installed, check whether bringing the hydraulic system into use could lead to uncontrolled, dangerous movements. Where appropriate, take into account the hazard analysis/risk assessment for the system or machine.
- Take the precautions appropriate to the anticipated dangers, e.g.
 - Ensure that the cylinder piston rod can move out without danger.
 - Use a hoist or other lifting device to additionally secure lifted loads.

As part of bringing into (first) use, check whether the electric motors and valve solenoids can be switched manually using the electrical controls of the system/machine. If they cannot be switched manually – or can but with difficulty – you must provide a remote control (e.g. test boxes for Rexroth proportional valves) for the internal function test of the hydraulic system.

IMPORTANT

Starting up the hydraulics solely by means of emergency manual operation is not recommended, as several valves at once cannot be switched as required in the correct sequence.

 Draw up a sequential program for bringing into (first) use and store it with the technical documentation as an appendix to the Operating Instructions.
 For this you should consider the following: Hydraulic drives basically consist of the following func-

tional groups

- Pump circuit (generation of pressurised oil flow); pump, electric motor, oil tank, filters, monitoring devices, etc.
- Control system for at least one hydraulic consumer (cylinder, motor); directional control valves, pressure and flow control valves, check valves
- Hydraulic consumers (cylinders, motors) with specially assigned valves, e.g. braking valve.
- Divide the functional circuit diagram into separate mini-circuits that can each be started up in succession.
- Read the functional circuit diagram and seek clarification of any unclear text or diagrams. More information about the functioning of components, e.g. a pump regulator, is available in the *Technical Datasheet*.
- 12. Establish into which position valves are to be switched, or how valves are to be set.
- Put up any necessary directional, prohibitive or informative signs and check whether the meaning of these signs are explained in the Operating Instructions.
- 14. Follow this sequence for bringing into (first) use
 - Pump circuit
 - Parts of control system:
 e.g. pressure cut-off and switchover,
 open centre,
 pressure reduction etc.
 - Cylinder and motor circuits: First move, fill and bleed, then finally optimise all settings.

9.3 Bringing into first use, subsequent bringing into use

Before bringing into (first) use, have all pressure accumulators and safety systems checked by an expert or specialist in accordance with national regulations.

- 1. Clean the lock on the transport and storage container before opening.
- Clean the hydraulic unit and all other component groups, so that no dirt can get into the hydraulic system during bringing into (first) use.
- 3. Check the paint on the tank for integrity.
- 4. Flush the connection lines to remove dirt, scale, chips etc.
- 5. Pickle and flush welded pipes.

Remove all residues of water and cleaning agents before performing further work.

- Clean the interior of the hydraulic components to get rid of contaminants:
 - Clean the filler plug of the pressure fluid tank.
 - Remove dust and chips using an industrial vacuum cleaner, by rinsing parts or similar cleaning method.
 - Completely remove any oil residues left over from the factory test.
 - Remove any gummed oil which may have formed due to incorrect storage.
- 7. Connect up all connection lines.

IMPORTANT

Observe the installation instructions from the manufacturer of the connection components.

Make sure that pipes and hoses are connected at all ports or that the ports are sealed with screw plugs.

 Carry out a special check to make sure that the union nuts and flanges are correctly tightened at the pipe connections and flanges.

IMPORTANT

Mark all the checked connections, e.g. with paint.

Make sure that all pipes and hoses and every combination of connection pieces, couplings or connection points with hoses or pipes are checked for their operational safety by someone who has the appropriate knowledge and experience.

- 9. Connect the hydraulic consumers. Dimension the connection lines in accordance with the performance data in the *Circuit Diagram* and the *Operating Instructions*.
- Install the electrical system for the drive and control system:
 - Check the connected loads.
 - Connect coolant water if necessary.
 - Check the direction of rotation of the pumps (e.g. as indicated by attached arrow markings).
- 11. Check the pressure fluid to ensure that no water has entered it.
- Before filling the pressure fluid tank, please observe the following requirements:
 - The pressure fluid must conform to the specification in the Operating Instructions.

Never fill new hydraulic products with used pressure fluid.

> The drums of pressure fluid must be sealed and clean on the outside.

IMPORTANT

If the pressure fluid has a high level of initial contamination (see 4 Technical data and ambient conditions):

Use a filter unit to fill the pressure fluid tank. Ensure that the filter element is clean.

IMPORTANT

The fineness of the filter shall correspond to the cleanliness class required by the overall system and if possible be even finer.

The filter unit used shall fulfil the requirements for functional safety and service life.

 If possible, fill the pressure fluid tank via a filling coupling, using a return filter if possible.

70

Use oil filler units (filter units) suitable for pressure fluids.

- Do not remove the filter strainers from filler necks or the filter element from filters before filling the pressure fluid tank.
- Fill the pressure fluid tank up to the upper mark on the inspection window. Observe the maximum fluid level, taking into consideration the volume in the connection lines and hydraulic consumers.
- 14. Set the pressure and flow control valves, pump regulator, signalling elements such as pressure switches, limit switches and temperature regulators to the settings and values defined in the sequential program (see 9.2 Before bringing into first use).

Do not change the settings of valves with a safety function, valves with a position switch or valves with preset electronics.

- Set operating-pressure valves and flow control valves to the lowest possible values.
- Set directional control valves to their basic setting.
- Reduce the setpoint values of proportional values to minimum values.
- Do not remove the tamperproof lead seals. Damaged or removed tamperproof lead seals indicate improper use of the hydraulic product.
- 15. If applicable:

Fill the pressure accumulator to the specified gas precharge pressure and then check the pressure, see *Operating Instructions*.

- Fill the pump body: Use the leakage oil port to fill pump bodies that have this feature, see Operating Instructions.
- 17. If applicable: Open the cocks in the suction line.
- 18. Start the drive motors:
 - With electric motor in jogging mode, allow to start briefly
 - · Combustion engines in idle
 - Pay attention to the direction of rotation.

19. Bleed the hydraulics (valve, pump, motor, line, cylinder).

IMPORTANT

Details on bleeding can be found in the *Operating Instructions*.

- Operate the hydraulic product at low pressure until it is fully bled.
- Bleed the hydraulics lines to consumers or measuring points at the highest point, if possible.
- Operate the directional valves in jogging mode.
- Next, advance and retract all hydraulic consumers several times.
- Increase the load slowly. Check the pressure fluid level in the pressure fluid tank. If necessary, top it up with pressure fluid.

Bleeding has been accomplished fully and correctly if the pressure fluid in the tank does not foam, if the hydraulic consumers do not make any jerky movements and if no abnormal noises can be heard.

20. Set the valves and sensors and start up the machine:

- Set the switching operations of valves with a switching time adjustment/ramp in accordance with the dynamic conditions, see Operating Instructions.
- Finely adjust and optimise the setting of proportional valves without on-board electronics (OBE).

Manufacturing tolerances mean that valves and amplifiers have to be adjusted in line with one another. Valves with in-built electronics (OBE, On Board Electronics) have the valve and amplifiers adjusted in line with one another at the factory.

Amplifiers for valves without OBE are supplied from the factory with a basic setting. Depending on the type of valve and amplifier, you may have to fine-tune the null point and sensitivity before bringing the valve into use.

IMPORTANT

Details on fine-tuning can be found in the *Operating Instructions*.

- Check the operating temperature after the machine has been running continuously for several hours. Too high an operating temperature indicates that there are faults that need to be analysed and rectified.
- 22. Rectify any leakages, e.g. by relieving couplings from pressure and then retightening.

IMPORTANT

Apart from moisture, which should not be sufficient to form one drop, no measurable, unintentional leakage shall be found.

- 23. After bringing the machine into first use, have a sample of the pressure fluid analysed to ensure that it achieves the required cleanliness class. Change the pressure fluid if the required cleanliness class is not achieved. If the pressure fluid is not tested in the laboratory after bringing the machine into first use: Change the pressure fluid.
- 24. Replace the pressure fluid filter.
- 25. Document and file all set values.

71

- 26. To ensure the safety of persons and the system, after bringing the machine into first use, perform the following tests using the defined maximum values:
 - Function test
 - Pressure test.

Prepare a record of the bringing into (first) use or acceptance and have it signed by the plant operator. This record is an important document and requires to be filed.

IMPORTANT

Information on how to perform the function test and pressure test can be found in the *Operating Instructions*.

10 Operation

IMPORTANT

Please refer to the *Operating Instructions* for all information on how to operate the Rexroth hydraulic product.

11 Trouble-shooting

11.1 What to do in the event of a fault

In the event of abnormal occurrences or malfunctions, stop all work on the Rexroth hydraulic product immediately and inform the responsible personnel.

IMPORTANT

A table for product-specific trouble-shooting can be found in the *Operating Instructions*.

If the responsible personnel are unable to rectify the problem immediately:

- Switch off the main switch. If applicable, turn off any combustion engines used as drive motors.
- Secure the main switch against being unintentionally switched on again.
- Inform the machine manufacturer.

11.2 The basic approach to trouble-shooting

The information in this section is intended to help you create the ideal conditions for carrying out trouble-shooting as efficiently as possible.

11.2.1 General conditions

- Is all the necessary technical documentation to hand?
- If no hydraulic circuit diagram is available: Can a hydraulic circuit diagram be drawn using the structure, signs and labelling of the equipment?
- Are there enough measuring points?
- Has the customer provided useful information about how the malfunction manifests itself and about the functional behaviour of the system/component prior to the malfunction?

 Is there a machine record book that may document similar malfunctions in the past?

11.2.2 Recommended way of working when trouble-shooting

Successful trouble-shooting for a hydraulic product requires precise knowledge about the structure and method of operation of the individual components.

Where hydraulics are combined with electrics/electronics, in particular, trouble-shooting is rendered more difficult and cooperation between electricians and hydraulic specialists is required.

- Even if you are under time pressure, proceed systematically and methodically.
 Indiscriminate, hasty dismantling and readjustments may, in the worst case, result in the original cause of failure being impossible to determine.
- Make sure that you gain an overview of the function of the hydraulics in respect of the overall system in which the hydraulics are installed.
- Try to find out whether the hydraulics performed the required function in the overall system prior to the occurrence of the fault.
- Try to determine any modifications to the overall system in which the hydraulics are installed:
 - Have the operating conditions or operating range of the hydraulics been changed?
 - Have modifications (e.g. retrofitted equipment) or repairs been carried out on the overall system (machine/system, electrics, control system) or on the hydraulics? If yes: What were they?
 - > Have the set values of the hydraulics been changed?
 - Have the hydraulics recently undergone maintenance?
 - Has the hydraulic product/machine been operated improperly?
 - > How does the malfunction manifest itself?
- Form a clear picture of the cause of the fault. Ask the machine operators directly, if necessary.
- Document any work undertaken, changed set values, etc.
- Document any amendments/additional information that should be included in the *Operating Instructions*.

11.2.3 Systematic trouble-shooting procedure

- Is there an inspection and maintenance book which might provide information about the trend of test parameters (e.g. temperature of hydraulic fluid, replacement intervals of filter elements, noises)?
- Have there been any identical or similar failures in the past?
 - Make a note of causes of failures with a low probability. Only investigate the failure causes you have noted down if all failure causes with a high probability have been proven to be inapplicable.
 - Draw up a list of priorities of the most probable failure causes.
 - Verify these listed failure causes one after the other (by means of theoretical conclusions, disassembly, measurements or tests).
 - Document the causes of failure you have discovered, and note down how you discovered them.

11.3 Trouble-shooting tables

IMPORTANT

The causes of failure in hydraulic systems can be extremely complex. Therefore, general rules for trouble-shooting can only be laid down to a limited degree.

Please refer to the relevant *Operating Instructions* for product specific information about trouble-shooting the Rexroth hydraulic product.

12 Maintenance

12.1 Definitions of terms

The term **Maintenance** as defined in DIN 31051 encompasses all measures to maintain and restore the desired conditions and to determine and assess the actual condition of the technical devices of a system.

These measures are divided into the following categories:

- Inspection (determining the actual condition)
- Servicing (maintaining the desired condition)
- Repair (restoring the desired condition).

The above measures include:

- Adapting maintenance objectives to suit company objectives
- Determining appropriate maintenance strategies.

12.2 Safety during maintenance tasks

A DANGER

In the interests of safety, please observe all the following safety instructions carefully and at all times.

- Check safety devices regularly to see that they are working properly.
- Perform all maintenance work properly, completely and within the stipulated periods and make a record of the work.
- Inform all personnel before commencing maintenance work.
- Generously cordon off the maintenance zone before commencing work.
- Inform all persons of ongoing maintenance work by means of the appropriate signs.
 In particular, attach warning signs to the control cabinet, main switch, actuators and points of access.

If you have to switch off the hydraulic product, secure it against being unintentionally switched on again as follows:

- Switch off all drives, disconnect the hydraulics from the mains at the main switch.
- Depressurise the hydraulic product (relieve any pressure accumulators of pressure).
- Secure the main switch against being unintentionally switched on again.

Before undertaking any manual intervention in the Rexroth hydraulic product:

74

Please refer to the Operating Instructions for all the necessary information on depressurisation and on those parts of the Rexroth hydraulic product that are not depressurised automatically.

- Advance all cylinders to their safe end position.
- Lower all loads.
- Switch off all pumps.
- Mechanically support vertical cylinders so that they cannot drop. Never perform any maintenance work on raised units without external support.
- Relieve any accumulators of pressure in the proper manner.
- Switch off the pressure supply and secure the hydraulic product against being inadvertently switched on again.
- Ensure that only authorised personnel remain in the work zone.
- Wear safety glasses, gloves and boots.
- Allow pressure lines and sections of the system which have to be opened to cool down before commencing maintenance work.
- Open with care any segments that have to remain under pressure.

Since check valves are located in the pressure lines above the pumps, the hydraulic system may still be under pressure even after it has been disconnected from the actual pressure supply.

Certain segments, such as servo cylinders, also continue to remain under pressure because the proportional valves remain in the closed position (all valves are illustrated in their basic position in the hydraulics diagram).

Observe the following:

- Only new, interchangeable and tested components, replacement parts and lubricants in original-equipment quality are approved for use/replacement.
- For reasons of safety, the installation of used and/or untested components is strictly prohibited and leads to loss of EU Conformity.

Exercise extreme vigilance when operating the hydraulic product in maintenance mode, which may in certain circumstances necessitate the temporary removal of certain safety devices. Make sure that all safety devices are properly installed and have undergone a function test before bringing the system (back) into use.

- Perform welding, burning or grinding work on the hydraulic unit or its attachments only with the approval of local safety authorities/fire brigade and with suitable protective covering to prevent ingress of contaminants.
- When performing assembly work above your height, use the steps and platforms provided by the plant operator. Do not climb on any parts of the system.
- Remove all tools and materials needed for maintenance from the hydraulic product.
- Always rectify any leakage from the hydraulic product immediately.
- Always inform personnel before (re)starting the hydraulic product.

12.3 Inspection and servicing

The objective of inspection and servicing is

- To maintain all system functions along with the initial parameters of the system
- To ensure continual availability of the system
- To detect weak points
- To ensure that the system attains the required service life.

IMPORTANT

The following general specifications are based on use of the hydraulic product in central Europe and under the usual operating conditions of commercial and industrial plants.

We strongly recommend the use of an inspection and servicing book, in which all work specific to that site, and all inspection and servicing intervals should be defined and documented.

An inspection and servicing book is also helpful in that

- It provides comparison values to aid with early detection of malfunctions
- > It allows warranty claims to be dealt with more easily.

Ensure cleanliness during all work.

- Please observe the requirements for pressure fluids mentioned in Section 9 Assembly and bringing into first use.
- Clean the external environment of couplings/joints and devices before disassembly. Do not use cleaning wool or cloths containing fibres for cleaning.
- Seal all openings using protective caps.
- Bleed the hydraulic product after each item of servicing

work.

- Document and file details of any work undertaken, changed set values, etc.
- Document and file details of any amendments/additional information that should be included in the Operating Instructions.
- Modifications and additions could affect the validity of the EU Conformity Declaration/Manufacturer's Declaration. Always consult Bosch Rexroth about any proposed modifications or additions.

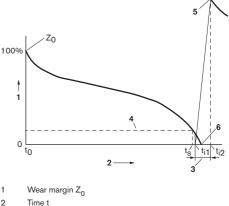
12.3.1 Inspection procedures and test equipment, general

The following are some of the typical inspection and testing procedures that are regularly used in connection with hydraulic systems and components.

IMPORTANT

Keep the indicated typical test equipment ready for this type of work

Type of test	Typical test equipment	Typical testing activities
Pressure measure- ment	Pressure gauge or sensor with suitable measuring range and connec- tion pipe and con- nection coupling	Checking of specified pressure opening pressure pressure difference before and after the object under test
Visual inspection	-	Checks for all components securely seated damage wear leakage (formation of oil droplets) presence of all warning and informative signs
Touch inspection	-	Checks for • unusual local vibrations
Temperature inspection	Temperature measuring instrument	Checks for • unusual local temperature zones
Acoustic inspection	_	 Checks for changes in running noise of the unit changes in flow noise changes in operating noise in the unit and valve control.


12.3.2 Location of testing and measuring points

IMPORTANT

Please refer to the Operating Instructions for the installation location of filling level indicators, filling points, drainage points, filters, testing points, strainers, solenoids, etc. that require regular inspection and servicing.

12.3.3 Inspection and servicing plan, hydraulic products, general

The graph illustrates the concept of wear/wear margin. The wear margin is a characteristic feature used to describe the condition of the system for the purpose of maintenance.

Time t

з

4 5

6

Repair (corrective maintenance) time (tip - tin)

Damage threshold (damage time t_S)

Desired condition after corrective maintenance

Failure

The reduction in the wear margin reflects wear. The curve represents one possible form of the wear profile during the period of use. It is determined during inspection and varies depending, firstly, on the system itself (e.g. material selection, surface treatment, quality) and secondly on external influences or boundary conditions such as servicing levels, corrosive circulating air and dust. Thirdly, it depends on how the system is operated; whether with partial load or partially with excess load, whether it is subject to surge loads or steady load, etc. Where hydraulic systems are concerned, the curve is also influenced by the cleanliness class and degree of fouling of the pressure fluid, the number of cycles and the ambient conditions.

All the factors mentioned above can exert an influence on the curve but this need not necessarily adversely affect the quality of its information, as wear always signifies the reduction in the wear margin, which is understood to be the primary initial variable before wear commences.

Consequently, this means that a sudden change in the wear margin must also count as wear, and that the element of time on its own is not of decisive importance for wear, but is of considerable interest in the assessment and evaluation of such wear.

An increase in the wear margin to over 100 % above its baseline may be achieved through corrective maintenance, if such measures entail an improvement and this increase is established as the new desired condition for future corrective maintenance.

Certain system parts may be subject to a wear margin which diminishes in such a way that the time available for use is insufficient for the requirements of the plant or operation. In this case, investigations must be carried out to ascertain whether the introduction of suitable technical measures might counter this reduction in the wear margin to a satisfactory extent. The time and expenditure required for such measures must naturally be kept in reasonable proportion to the expected degree of success.

If such conditions arise, we refer to these parts as weak points. Since their elimination may provide economic and safety advantages, weak points require to be rectified immediately.

IMPORTANT

The inspection and servicing plan for your particular product can be found in the *Operating Instructions*.

12.3.4 Inspection and servicing plan, electrohydraulic systems

Electrohydraulic systems with proportional valves must be serviced in accordance with hydraulic requirements and strategies. However, technical control components must also be incorporated in these servicing cycles.

On this basis, an overall strategy for system servicing must be developed and documented.

IMPORTANT

The appropriate component characteristics relevant to servicing can be found in the *Operating Instructions*.

12.3.5 Inspection and servicing plan: electrics and control system

IMPORTANT

The product-specific inspection and servicing plan for electrics and control systems can be found in the *Operating Instructions.*

12.3.6 Lubrication points, lubricants, intervals

IMPORTANT

The details of the specified lubricants, lubrication points and associated lubrication cycles can be found in the *Operating Instructions*.

12.3.7 Set values of valves, regulators and signalling elements

Pressure and flow control valves, pump regulators and signalling elements such as pressure sensors, pressure switches, limit switches and temperature regulators are given their optimum setting when the system is brought into first use.

Check regularly whether all values are correctly set with the aid of the hydraulics diagram and the documented values.

A DANGER

The set values of valves with position switches shall only be calibrated or readjusted at the factory. The set values of safety valves shall not be altered by the user. Any readjustment shall be performed by authorised testing bodies only.

Too low a pressure difference between the operating pressure and the opening pressure can lead to frequent opening of safety valves. This leads to increased power losses and an unacceptable increase in temperature of the pressure fluid. In this event, select a lower operating pressure.

12.3.8 Replacement of pressure fluid filters and ventilation filters

Unfiltered pressure fluid filters lead to increased wear of all the system's hydraulic products and can cause functional failures with dangerous effects. Therefore, always replace contaminated oil filters immediately.

Clogged ventilation filters result in inadequate cooling and can therefore cause excessive heating up and malfunctions of the hydraulic system. Therefore, always replace contaminated ventilation filters immediately.

- Clogged filters must always be replaced immediately. Do not clean clogged filters.
- Allow the contents of the replaced oil filter to drip and fully drain.
- Dispose of the filter in accordance with the applicable regulations.

Exact instructions on how to replace a filter can be found in the *Filter manufacturer's instructions for use*.

12.3.9 Checking filters with a contamination indicator

Filters with contamination indicators continuously measure the degree of fouling. The dirt-retention capacity of the filter is utilized to the full.

IMPORTANT

Check the contamination indicator when the pressure fluid is warm (during or immediately after operation).

If the ambient temperature is low or the pressure fluid is cold, its high viscosity may cause clogging to be indicated, although the pressure fluid is in fact clean.

Procedure:

- 1. Wait until the hydraulic product has reached operating temperature.
- Press the indicator button (check function): If the indicator button pops out again immediately, the filter must be replaced by the end of the shift at the latest.

Due to the progressive loss in pressure as the filter becomes increasingly contaminated, the indicator point has a certain reserve capacity, i.e. generally sufficient for a work shift of 8 h.

If the filter is not replaced after 8 h, dirt may penetrate the system, resulting in contamination of the hydraulic product.

In certain circumstances the contamination indicator does not show a required filter replacement.

If the check function never indicates filter replacement and the contamination indicator is functioning correctly, this may have the following causes:

- Faulty filter
- A bypass valve may have been installed and is not closing correctly, e.g. due to the entry of dirt particles.

12.4 Service and storage lives of hose lines

IMPORTANT

In terms of the service life of hydraulic hose lines in these Operating Instructions, replacement and storage lives are measured from the date of manufacture of the hose line.

Even when properly stored and subjected to permissible loads, seals, hoses and hose lines undergo a natural ageing process.

The replacement and storage lives of seals, hoses and hose lines are therefore limited (see 8.2 Seals, hoses and hose lines).

Hose lines must be replaced in accordance with the provisions of the servicing plan, even if there are no detectable technical defects in the hose line.

Hoses that have already been used as part of a hose line shall not be reused in a hose line.

The first use may have changed the properties of the hose material to such an extent that reuse of the hose represents a very high risk.

12.5 Topping up the pressure fluid

IMPORTANT

Only pressure fluids specified in the *Operating Instructions* are to be used.

When changing or topping up the pressure fluid, fill the pressure fluid tank on the hydraulic product as follows:

- Fill the pressure fluid tank using a special filling unit with an integral filter (min. 10 μm).
- Drop the system pressure right down by resetting the pump. Set the pressure setting value on the pump pressure control to minimum or zero pressure.
- Fill and bleed the line system of the hydraulic product from the unit to the cylinder. To do this actuate the cylinder in both directions, see Operating Instructions.
- 4. Top up the pressure fluid volume to the specified quantity.
- 5. Raise the pump pressure to the system pressure.

The hydraulic product is ready for operation.

- 6. Carry out a test run.
- Check the level of the fluid after the hydraulic product has warmed up to the operating temperature and adjust if necessary.

IMPORTANT

Check the contamination indicator when the pressure fluid is warm (during or immediately after operation).

If the ambient temperature is low or the pressure fluid is cold, its high viscosity may cause clogging to be apparently indicated.

12.6 Servicing pressure accumulators

A DANGER

Pressure accumulators are subject to the national legislation on safety requirements for pressure vessels applicable in the place of installation.

Observe the Pressure Equipment Directive 97/23/EC.

IMPORTANT

The gas precharge pressure is measured with a testing and filling device.

Details of the procedure can be found in the *Operating Instructions.*

Inspection and servicing

- Carry out the tests required by law.
- Test and monitor the gas precharge pressure regularly.

12.7 Repair

IMPORTANT

Repair (corrective maintenance) is the restoring of the desired condition.

In addition, observe the special safety instructions in 12 Maintenance and the safety instructions in the Operating Instructions.

A DANGER

Ensure cleanliness during all work.

- Clean the external environment of couplings/joints and devices before disassembly. Do not use cleaning wool or cloths containing fibres for cleaning.
- Seal all openings using protective caps.
- Bleed the hydraulic product after each item of repair work.
- If appropriate, follow the procedure for bringing into first use, see 9.3 Bringing into first use, subsequent bringing into use.
- Document any amendments/additional information that should be included in the Operating Instructions.

12.7.1 General safety instructions for repair work

Repair work shall only be done by an authorised hydraulics expert who has the required specialist hydraulics knowledge.

Specialist hydraulics knowledge means, among other things, that the person can read and fully understand hydraulics drawings. In particular, he must fully comprehend the range of functions of the integrated safety components.

Components may only be dismantled for the purpose of repair to the extent described in the *Operating Instructions*.

Never repair a defective safety valve. It must be completely replaced.

Faulty parts may only be replaced by new, interchangeable, tested components in original-equipment quality. Any deviations from this can be found in the *Operating Instructions*.

Before each subsequent bringing into use after repair work, the hydraulic product shall be accepted by a hydraulics expert.

The operator of the hydraulic product is required to check by means of a servicing record that the inspection and servicing plan as been complied with.

Pressure vessels have to be pressure tested every 10 years and the information recorded in accordance with the Pressure Equipment Directive 97/23/EC or its implementation in national legislation.

13 General information about hydraulic pressure accumulators

13.1 General

The regulations applicable at the place of installation concerning hydraulic pressure accumulators (hydrostatic accumulators) must be observed before bringing into use and during operation.

The plant operator bears sole responsibility for compliance with the existing regulations.

Hydrostatic accumulators are subject to the national implementation of the EU Pressure Equipment Directive 97/23/EC.

Documents supplied with accumulators must be preserved with care; they will be required during recurring inspections by specialists.

The bringing into use of hydrostatic accumulators shall be carried out by trained expert personnel only.

A WARNING

Do not perform any welding, soldering or mechanical work on accumulator vessels.

Welding and soldering carry a risk of explosion!

Mechanical tampering may cause the vessel to burst and the operating permit will be withdrawn.

Do not charge hydrostatic accumulators with oxygen or air. Risk of explosion!

Depressurise the system before working on hydraulic installations.

Improper installation can lead to serious damage to persons and property.

13.2 Safety devices relating to hydraulic pressure accumulators

The equipping, installation and operation of hydrostatic accumulators is regulated by the national implementation of the EU Pressure Equipment Directive 97/23/EC and additionally in the Federal Republic of Germany by the *Technical Regulations for Pressure Vessels (TRB)*. This legislation requires the following safety equipment:

- Device to protect against excessive pressure (prototype-tested)
- Pressure relief device
- Pressure measuring device
- Test gauge connection
- Shut-off device
- Optional: electromagnetically operated pressure relief device
- Safety device to protect against overheating.

IMPORTANT

See the Operating Instructions.

14 Hydraulic systems

Hydraulic systems are generally intended for installation in machines or systems. In addition to the basic information about the installed components, the information contained in the Operating Instructions made available for each hydraulic system by Bosch Rexroth also applies to hydraulic systems.

By installing the hydraulic system in a machine or system, the interaction of the hydraulic system with the overall machine may give rise to changes in the potential dangers. In particular the effect of hydraulic and electrical control of hydraulic drives that create mechanical movement are to be considered.

This information shall be included in the hazard analysis/risk assessment of the overall machine carried out by its supplier and in the Operating Instructions of the overall machine. This also applies to the specification of the interfaces between the hydraulic system and the overall machine.

Hydraulic systems are subject to legislation including the Pressure Equipment Directive and other relevant EU directives that have been implemented in national legislation. Exact information can be found in the EU Conformity Declaration or Manufacturer's Declaration that is supplied with the hydraulic system or the hydraulic product.

A WARNING

Before installing a hydraulic system in a machine or modifying an existing hydraulic system in a machine, satisfy yourself that

- the hydraulic system is suitable for its application in the machine
- the ambient conditions in the machine are suitable and/or permissible for the use of the hydraulic system
- other installed items on or in the machine cannot disturb or endanger the functioning or the safe operation of the hydraulic system.

If the overall machine is to be used in a potentially explosive atmosphere, then it must be ensured that the hydraulic system has been designed and is suitable for this use.

14.1 Effects of leaks in the hydraulic system on the machine

If pressure fluid escapes from the hydraulic system and comes into contact with hot surfaces on the machine, this can lead to the generation of life-threatening smoke, fire and/or other dangerous operating conditions.

These risks shall be determined by the machine manufacturer by means of a hazard analysis and if necessary provision made for the appropriate safety devices.

DE	Bestellinformation für deutsche Produktinformation:	RD 07008
EN	Ordering Information for Product Information in English:	RE 07008
FR	Information de commande pour la notice française Informations générales sur les produits :	RF 07008
IT	Informazioni d'ordine per le informazioni tedesche sul prodotto:	RI 07008
ES	Información para el pedido de la información del producto en español:	RS 07008
FI	Tilaustiedot - suomenkieliset tuotetiedot:	RSF 07008
NL	Bestelinformatie voor Nederlandse productinformatie:	RNL 07008
SV	Beställningsnummer för svensk produktinformation:	RSK 07008
PT	Informação dos dados de encomenda para informação de produto alemã:	RP 07008
DA	Bestillingsinformationer vedr. dansk produktinformation:	RDK 07008
EL	Πληροφορίερ παραγγελίαρ για τιρ γερμανικέρ πληροφορίερ προϊϋντορ:	RGR 07008

http://www.boschrexroth.com/bri-products

 \rightarrow Datenblatt-Suche/Datasheet search

→ Suche nach Datenblatt/Search by datasheet

Q 07008

Bosch Rexroth AG Hydraulics Zum Eisengiesser 1 97816 Lohr am Main, Germany Tel. + 49 (0) 9352/18-0 Fax + 49 (0) 9352/18-2358 documentation@boschrexroth.de www.boschrexroth.de © All rights reserved, Bosch Rexroth AG, including applications for intellectual property rights. We reserve all power of disposal, rights of reproduction and issue.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The given information does not release the user from the obligation of own judgement and verification. It must be remembered that our products are subject to a natural process of wear and aging. Hydraulics

Pneumatics

Service

1/6

Installation, commissioning and maintenance of hydraulic systems

RE 07900/10.06 Replaces: 08.06

1. General

1.1 Long service life and functional reliability of hydraulic systems and their components depend on correct handling.

Ensure trouble-free operation by observing the following points:

- The specific installation and operating instructions for the relevant components
- Special instructions in individual cases
- Technical data in the data sheet.

In addition, we would like to draw your attention to the following regulations:

- German standard "Hydraulic systems" DIN 24346
- ISO standard ISO 4413

2. Installation

- 2.1 Preparatory work for the installation
 - Sauberkeit der Anlage gewährleisten!
 - · For the surroundings:

Keep power units, line connections and components clean or clean them (e.g. pickling after, for example, processes have been carried out that involve heat, i.e. welding, hot bending, etc.)! · For hydraulics fluids:

Take care of contamination and humidity; contamination from the environment must not enter the tanks! Fill oil tanks only through filters, preferably system filters or portable filter stations with fine filters. Internal protective coatings, if any, must be resistant to the hydraulic fluid used!

· For parts taken from stock:

The storage of parts that were not filled or treated with anti-corrosion fluid can lead to the formation of resin. Solve the resin using a grease solvent and renew the lubricating film.

- Check to see that all of the parts required for the installation are available!
- Take note of any transport damage!
- 2.2 Carrying out the montage
 - Use lifting lugs and transport facilities!
 - Do not apply force to prevent transverse forces and tension on pipes and components. The valve mounting surfaces must be perfectly even. The fixing screws must be tightened evenly at the specified torque.

Take care that pipes are adequately fixed!

When selecting pipes, hoses and fittings/flanges, observe the correct pressure stage (wall thickness, material).
 Use only seamless precision steel pipes.

- Do not use hemp or putty as sealing materials! This may cause contamination and thus malfunction.
- To prevent external leakage, observe the installation instructions of the pipe fittings' manufacturer. We recommend the use of fittings with elastic seals.
- Make sure that hoses are properly laid! Rubbing and abutting of the lines must be prevented.
- Provide the correct hydraulic fluids
 - Mineral oils:

HLP hydraulic oils according to DIN 51524 part 2 are generally suitable for standard systems and components.

• Fast bio-degradable hydraulic fluids: VDMA 24568.

For these fluids, the system and components must be matched.

 Hardly inflammable hydraulic fluids: VDMA 24317. For these fluids, the system and components must be matched. (Before filling in the special media, check, whether the system is compatible with the intended fluid.)

The following points must be observed in accordance with the relevant requirements:

- Viscosity of the hydraulic fluid
- Operating temperature range
- Type of seals used on the components fitted

3. Commissioning

When the installation has been carried out correctly, proceed with commissioning and functional testing.

- 3.1 Preparations for trial run
 - Tank cleaned?
 - Lines cleaned and properly installed?
 - Fittings, flanges tightened?
 - Lines and components correctly connected in line with installation drawings and circuit diagram?

Is the accumulator filled with nitrogen? Fill in nitrogen until the pre-charge pressure p0 as specified in the cicuit diagram is reached. (On the fluid side the system must be pressureless!). It is recommended that the gas precharge pressure is marked on the accumulator itself (e.g. self-adhesive label) and in the hydraulic circuit so that a comparative check is possible, if required.

Caution! Use only nitrogen as pre-charge gas! Accumulators must comply with the safety regulations valid at the place of installation.

- Are the drive motor and pump properly installed and aligned?
- Is the drive motor correctly connected?
- Are filters with the prescribed filter rating used?
- Are filters fitted in the correct direction of flow?
- Has the specified hydraulic fluid filled up to the upper marking?

As the hydraulic fluids often do not comply with the required cleanliness, the fluids must be filled through a filter. The absolute filter rating of the filling filter should be at least that of the filters installed in the system.

- 3.2 Trial run
 - For safety reasons, only personnel of the machine manufacturer and, if required, maintenance and operating personnel should be present.
 - All pressure relief valves, pressure reducing valves, pressure controllers of pumps must be unloaded. An exemption to this are TÜV-set valves.
 - Open isolator valves completely!
 - Switch the system on briefly and check whether the direction of rotation of the drive motor matches the prescribed direction of rotation of the pump.
 - Check the position of the directional valves and, if necessary, move the spool to the required position.
 - Set the control spool to by-pass.
 - Open suction valves of the pump. If required for design reasons, fill pump housing with hydraulic fluids to prevent bearings and parts of the rotary group from running dry.
 - If a pilot oil pump is provided, commission it¹⁾.
 - Start up the pump, swivel it from its zero position and listen for any noises.
 - Swivel the pump slightly out (ca. 5°)1).
 - Bleed the system

Carefully loosen fittings or bleed screws at high points in the system. When the escaping fluid is free from bubbles, then the filling process is completed. Re-tighten fittings.

Flush the system; if possible, short-circuit actuators.
 Flush the system until the filters remain clean; check the filters!

With servo-systems, the servo-valves must be removed and replaced by flushing plates or direction valves of the same size. Short-circuit the actuators. During flushing, the hydraulic fluid in the complete hydraulic system should reach temperatures that are at least as high as later during operation. Change the filter elements as required.

Flushing continues until the required minimum cleanliness is reached. This can only be achieved by continuous monitoring using a particle counter.

- Check the system functions under no-load conditions, if possible, by hand; cold-test the electrohydraulic control.
- When the operating temperature has been reached, test the system under load; slowly increase the pressure.
- Monitor control and instrumentation equipment!
- Check the housing temperature of hydraulic pumps and hydraulic motors.
- Listen for noises!
- Check the hydraulic fluid level; if required, top up!
- ¹⁾ As far as possible with the control elements fitted; otherwise, start up at full displacement. In conjunction with combustion engines, start up at idle speed.

- Check the setting of pressure relief valves by loading or braking the system.
- Inspect the system for leaks.
- Switch off the drive.
- Retighten all fittings, even if there is no evidence of leakage.

Caution! Only tighten fittings when the system is depressurised!

- Is the pipe fixing adequate, even under changing pressure loads?
- Are the fixing points at the correct positions?
- Are the hoses laid so that they do not chamfer, even under pressure load?
- Check the fluid level.
- Test the system for all functions. Compare measured values with the permissible or specified data (pressure, velocity. Adjust further control components).
- Jerky movements indicate, amongst other things, the presence of air in the system. By briefly swivelling the pump in one or both directions with the actuator being loaded or braked, it is possible to eliminate certain air pockets. The system is completely bled when all functions are performed jerk-free and smoothly and the sur face of the hydraulic fluid level is free from foam. Experience has shown that foaming should have ceased one hour after start-up at the latest.
- Check the temperature.
- Switch off the drive.
- Remove filter elements (off-line and full-flow filters) and inspect them for residues. Clean filter elements or replace them, if required. Paper or glass fibre elements cannot be cleaned.
- If further contamination is found, additional flushing is required to prevent premature failure of the system components.
- All the adjustments made are to be recorded in an acceptance report.
- 3.3 Commissioning of fast running systems

Such system can often not be commissioning using the normal measuring instruments (such as pressure gauges, thermometers, electrical multimeters, etc.) and standard tools. Optimization is also not possible.

These systems include, for example, forging presses, plastics injection moulding machines, special machine tools, rolling tools, crane controls, machines with electrohydraulic closed-loop control systems.

Commissioning and optimization of these systems often require more comprehensive measuring equipment to allow several measurements to be taken at a time (e.g. several pressures, electrical signals, travel, velocities, flows, etc.).

3.4 The most common faults occurring during commissioning Apart from servicing, commissioning is very decisive for the service life and functional reliability of a hydraulic sys-

tem. For this reason, faults during commissioning must be avoided as far as possible. The most common faults are:

- The fluid tank is not inspected.
- The hydraulic fluid is not filtered before being filled in.
- The installation is not checked before commissioning (subsequent conversion with loss of fluid!).
- System components are not bled.
- Pressure relief valves are set only slightly higher than the operating pressure (closing pressure differential is not observed).
- Pressure controllers of hydraulic pumps are set higher or to the same pressure as the pressure relief valve.
- The flushing time of servo systems is not adhered to.
- Abnormal pump noise is ignored (cavitation, leaking suction lines, too much air in the hydraulic fluid).
- Transversal loads on cylinder piston rods are not observed (installation error!).
- Hydraulic cylinders are not bled (damage to seals!)
- Limit switches are set too low.
- The switching hysteresis of pressure switches is not taken into account when settings are made.
- Hydraulic pump and hydraulic motor housings are not filled with hydraulic fluid prior to commissioning.
- Settings are not documented.
- Adjustment spindles are not secured or sealed.
- Unnecessary personnel present during commissioning of the system.

4. Maintenance

According to DIN 31 051 the term "maintenance" includes the following fields of activity:

- Inspection

Measures to recognise and assess the actual situation, i.e. recognise how and why the so-called wear reserve continues to decrease.

- Maintenance

Measures to preserve the nominal conditions, i.e. to take precautions in order that the reduction in the wear reserve during the useful life is kept as low as possible.

Repair

Measures to restore the nominal condition, i.e. compensate for reduction in performance and restore the wear reserve.

Maintenance measures must be planned and taken in accordance with the operating time, the consequences of a failure and the required availability.

4.1 Inspection

The individual points to be inspected should be summarised for a specific system in so-called inspection lists in order that the inspections can be carried out adequately by employees with different qualification levels.

- Important points of inspection are:
- Checking the hydraulic fluid level in the tank.
- Checking the heat exchanger (air, water) for effectiveness.

- Checking the system for external leakage (visual inspection).
- Checking the hydraulic fluid temperature during operation.
- Checking pressures
- Amount of leakage
- Checking the cleanliness of the hydraulic fluid

▲ Caution!

Visual inspections can only give an approximation (clouding of the hydraulic fluid, darker appearance than at the time of filling, sediments in the fluid tank).

If conventional particle counting is impossible, the following three methods can be used for establishing the fluid cleanliness:

- Particle counts using electronic counting and sorting equipment.
- Microscopic examination.
- Gravimetric establishment of solids by means of finest filtration of a certain fluid volume (e.g. 100 ml) and weighing of the filter paper before and after the filtration process. This allows the establishment of the amount of solid particles in mg/l.
- Check the contamination of filters. A visual inspection of deep filters, which are widely used today, is **no** longer possible.
- Analyse the chemical properties of the hydraulic fluid.
- Check the temperature at points where bearings are located.
- Check the generation of noise.
- Test performance and velocity.
- Inspect pipes and hoses.

Caution!

Damaged pipes and hoses must be immediately replaced.

Inspect accumulator stations.

4.2 Maintenance

In practice, inspection, maintenance and repair work is not as strictly separated as the definitions may suggest. Servicing is often done in conjunction with inspections.

For safety reason, pipe fittings, connections and components **must not** be loosened or removed as long as the system is pressurised.

Important service work is:

- Create a maintenance book

We recommend that a maintenance book is created to lay down the parts to be inspected.

- Check the hydraulic fluid level
 - continuously during commissioning
 - · shortly after commissioning
 - · later, at weekly intervals
- Inspect filters
 - during commissioning every two to three hours and, if necessary, replace them.

- daily during the first week and replace them as required.
- After one week, the filters should be cleaned as required.
- · Maintenance of suction filters:

Suction filters require particularly thorough servicing. After the running-in period, they must be inspected at least once a week and cleaned, if necessary.

- Service the system fluid
 - Maintenance intervals depend on the following operating factors:
 - Hydraulic fluid condition (e.g. water in oil, strongly aged oil)
 - Operating temperature and oil fill

We recommend that the fluid be changed in dependence upon an oil analysis. With systems whose oil is not analysed at regular intervals the fluid should be replaced every 2000 to 4000 operating hours at the latest.

- Drain the system fluid at operating temperature and change it.
- Severely aged or contaminated system fluid **cannot** be improved by adding new fluid!
- Only fill in oil via filters that have at least the same separation capacity as the filters installed in the system, or use a system filter.
- Take samples of the system fluid to have the type, size and amount of particles analysed in the lab. Record the results.
- Check the accumulator for its pre-charge pressure; for this, the accumulator must be depressurised on the fluid side.

▲ Caution!

Work on systems that include accumulators may only be carried out after the fluid pressure was unloaded.

Welding or soldering work or any mechanical work on accumulators is not permitted.

Improper repairs can lead to severe accidents. Repairs on hydraulic accumulator may therefore only be carried out by Rexroth Service service personnel.

- The operating temperature must be measured. An increase in the operating temperature indicates increasing friction and leakage.
- Leakage in the pipework

Leakage, especially with underfloor piping, represents, apart from loss of fluid, a risk for equipment and concrete floors.

For safety reasons, sealing work on the pipes may only be carried out when the system is depressurised. Leakage at points that are sealed with soft seals (O-rings, form seal rings, etc.) **cannot** be eliminated by tightening as these sealing elements are either destroyed or hardened. Sealing can only be achieved by replacing the sealing elements.

- Check main and pilot pressure
- · Check interval: One week
- Document pressure corrections in the maintenance book.
- Frequent pressure adjustments indicate, among other things, wear of the pressure relief valve.
- 4.3 Repair
 - Locate and eliminate malfunction and damage.
 - Fault localisation

A precondition for system repairs is successful, i.e. systematic fault search.

This requires in any case detailed knowledge of the structure and the operating principle of the individual components as well as of the entire system. The required documentation should be available and easily accessible.

The most important measuring instruments (thermometer, electrical multimeter, industrial stethoscope, stop watch, rpm counter, etc.) should also be available in the vicinity of the system, especially in the case of large systems.

- Fault correction

When carrying out any work, observe strictest cleanliness. Before loosening fittings, clean the surrounding area.

Generally, defective components should not be repaired on site, since for the proper repair, the required tooling and the required cleanliness are usually not given on site. On site, only complete components should be changed whenever possible, in order

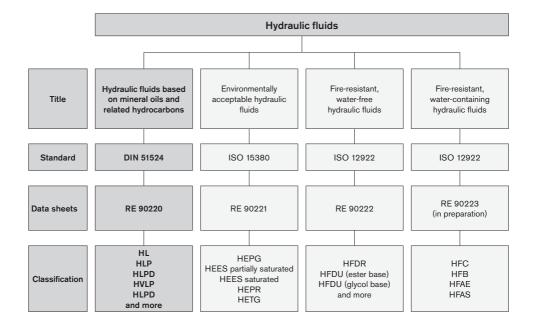
- to keep the time for which the opened system is exposed to ambient influences to a minimum,
- to keep the fluid loss as low as possible,
- to ensure the shortest possible downtime through the use of overhauled and tested components.

After failed components are located, it is essential to check whether the entire system or parts of the system have been contaminated by broken parts or larger amounts of abraded metal.

4.4 Repair and major overhaul of hydraulic components

Generally, it can be said that only the component manufacturer can carry out major overhauls in the most efficiently and reliably (same quality standard, trained personnel, test facilities, warranty, etc.).

Bosch Rexroth AG Hydraulics Zum Eisengießer 1 97816 Lohr am Main, Germany Telefon +49 (0) 93 52 / 18-0 Telefax +49 (0) 93 52 / 18-23 58 documentation@boschereroth.de www.boschereroth.de © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.


Bosch Rewroth AG Hydraulics Zum Eisengießer 1 97816 Lohr am Main, Germany Telefon +49 (0) 93 52 / 18-0 Telefax +49 (0) 93 52 / 18-23 58 documentation@boschrewroth.de www.boschrewroth.de © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Hydraulic fluids based on mineral oils and related hydrocarbons

RE 90220/05.12 1/16 Replaces: 05.10

Application notes and requirements for Rexroth hydraulic components

Contents

1 Basic information	3
1.1 General instructions	3
1.2 Scope	3
1.3 Safety instructions	3
2 Solid particle contamination and cleanliness levels	4
3 Selection of the hydraulic fluid	5
3.1 Selection criteria for the hydraulic fluid	5
3.1.1 Viscosity	5
3.1.2 Viscosity-temperature behavior	5
3.1.3 Wear protection capability	6
3.1.4 Material compatibility	6
31.5 Aging resistance	6
3.1.6 Air separation ability (ASA)	6
3.1.7 Demulsifying ability and water solubility	6
3.1.8 Filterability	6
3.1.9 Corrosion protection	6
3.1.10 Additivation	7
3.2 Classification and fields of application	7
4 Hydraulic fluids in operation	9
4.1 General	9
4.2 Storage and handling	9
4.3 Filling of new systems	9
4.4 Hydraulic fluid changeover	9
4.5 Mixing and compatibility of different hydraulic fluids	9
4.6 Re-additivation	9
4.7 Foaming behavior	9
4.8 Corrosion	10
4.9 Air	10
4.10 Water	10
4.11 Fluid servicing, fluid analysis and filtration	10
5 Disposal and environmental protection	11
6 Other hydraulic fluids based on mineral oil and related hydrocarbons	12
7 Glossary	15

90

RE 90220/05.12 | Hydraulic fluids based on mineral oils

1 Basic information

1.1 General instructions

The hydraulic fluid is the common element in any hydraulic component and must be selected very carefully. Quality and cleanliness of the hydraulic fluid are decisive factors for the operational reliability, efficiency and service life of a system.

Hydraulic fluids must conform, be selected and used in accordance with the generally acknowledged rules of technology and safety provisions. Reference is made to the countryspecific standards and directives (in Germany the directive of the Employer's Liability Insurance Association BGR 137).

This data sheet includes recommendations and regulations concerning the selection, operation and disposal of hydraulic fluids based on mineral oils and related hydrocarbons in the application of Rexroth hydraulic components.

The individual selection of hydraulic fluid or the choice of classification are the responsibility of the operator.

It is the responsibility of the user to ensure that appropriate measures are taken for safety and health protection and to ensure compliance with statutory regulations. The recommendations of the lubricant manufacturer and the specifications given in the safety data sheet are to be observed when using hydraulic fluid.

This data sheet does not absolve the operator from verifying the conformity and suitability of the respective hydraulic fluid for his system. He is to ensure that the selected fluid meets the minimum requirements of the relevant fluid standard during the whole of the period of use.

Other regulations and legal provisions may also apply. The operator is responsible for their observance, e.g. EU directive 2004/35/EG and their national implementations. In Germany the Water Resources Act (WHG) is also to be observed.

We recommend that you maintain constant, close contact with lubricant manufacturers to support you in the selection, maintenance, care and analyses.

When disposing of used hydraulic fluids, apply the same care as during use.

1.2 Scope

This data sheet must be observed when using hydraulic fluids based on mineral oils and related hydrocarbons in Bosch Rexroth hydraulic components.

Please note that the specifications of this data sheet may be restricted further by the specifications given in the product data sheets for the individual components.

The use of the individual hydraulic fluids in accordance with the intended purpose can be found in the safety data sheets or other product description documents of the lubricant manufacturers. In addition, each use is to be individually considered.

Rexroth hydraulic components may only be operated with hydraulic fluids based on mineral oils and related hydrocarbons according to DIN 51524 if specified in the respective component data sheet or if Rexroth approval for use is furnished.

Notes:

91

In the market overview RE 90220-01, hydraulic fluid based on mineral oil are described which, according to the information of the lubricant manufacturer, feature the respective parameters of the current requirements standard DIN 51524 and other parameters which are of relevance for suitability in connection with Rexroth components.

These specifications are not checked or monitored by Bosch Rexroth. The list in the market overview does not therefore represent a recommendation on the part of Rexroth or approval of the respective hydraulic fluid for use with Rexroth components and does not release the operator from his responsibility regarding selection of the hydraulic fluid.

Bosch Rexroth will accept no liability for its components for any damage resulting from failure to comply with the notes below.

1.3 Safety instructions

Hydraulic fluids can constitute a risk for persons and the environment. These risks are described in the hydraulic fluid safety data sheets. The operator is to ensure that a current safety data sheet for the hydraulic fluid used is available and that the measures stipulated therein are complied with.

2 Solid particle contamination and cleanliness levels

Solid particle contamination is the major reason for faults occurring in hydraulic systems. It may lead to a number of effects in the hydraulic system. Firstly, single large solid particles may lead directly to a system malfunction, and secondly small particles cause continuous elevated wear.

For hydraulic fluids, the cleanliness level is given as a threedigit numerical code in accordance with ISO 4406. This numerical code denotes the number of particles present in a hydraulic fluid for a defined quantity. Moreover, foreign solid matter is not to exceed a mass of 50 mg/kg (gravimetric examination according to ISO 4405).

In general, compliance with a minimum cleanliness level of 20/18/15 in accordance with ISO 4406 or better is to be maintained in operation. Special servo valves demand improved cleanliness levels of at least 18/16/13. A reduction in cleanliness level by one level means half of the quantity of particles and thus greater cleanliness. Lower numbers in cleanliness levels should always be striven for and extend the service life of hydraulic components. The component with the highest cleanliness requirements determines the required cleanliness of the overall system. Please also observe the specifications in table 1: "Cleanliness levels according to ISO 4406" and in the respective data sheets of the various hydraulic components. Hydraulic fluids frequently fail to meet these cleanliness requirements on delivery. Careful filtering is therefore required during operation and in particular, during filling in order to ensure the required cleanliness levels. Your lubricant manufacturer can tell you the cleanliness level of hydraulic fluids as delivered. To maintain the required cleanliness level over the operating period, you must use a reservoir breather filter. If the environment is humid, take appropriate measures, such as a breather filter with air drying or permanent off-line water separation.

Note: the specifications of the lubricant manufacturer relating to cleanliness levels are based on the time at which the container concerned is filled and not on the conditions during transport and storage.

Further information about contamination with solid matter and cleanliness levels can be found in brochure RE 08016.

Particles per 100 ml			
More than	Up to and including	Scale number	
8,000,000	16,000,000	24	20 / 18 / 15
4,000,000	8,000,000	23	>4 μm >6 μm >14 μm
2,000,000	4,000,000	22	
1,000,000	2,000,000	21	
500,000	1,000,000	20	
250,000	500,000	19	
130,000	250,000	18	
64000	130,000	17	
32000	64000	16	
16000	32000	15	
8000	16000	14	
4000	8000	13	
2000	4000	12	
1000	2000	11	
500	1000	10	
250	500	9	
130	250	8	
64	130	7	
32	64	6	

Table 1: Cleanliness levels according to ISO 4406

3 Selection of the hydraulic fluid

The use of hydraulic fluids based on mineral oils for Rexroth hydraulic components is based on compliance with the minimum requirements of DIN 51524.

3.1 Selection criteria for the hydraulic fluid

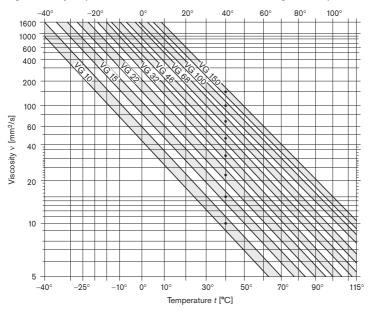
The specified limit values for all components employed in the hydraulic system, for example viscosity and cleanliness level, must be observed with the hydraulic fluid used, taking into account the specified operating conditions.

Hydraulic fluid suitability depends, amongst others, on the following factors:

3.1.1 Viscosity

Viscosity is a basic property of hydraulic fluids. The permissible viscosity range of complete systems needs to be determined taking account of the permissible viscosity of all components and it is to be observed for each individual component.

The viscosity at operating temperature determines the response characteristics of closed control loops, stability and damping of systems, the efficiency factor and the degree of wear.


We recommend that the optimum operating viscosity range of each component be kept within the permissible temperature range. This usually requires either cooling or heating, or both. The permissible viscosity range and the necessary cleanliness level can be found in the product data sheet for the component concerned. If the viscosity of a hydraulic fluid used is above the permitted operating viscosity, this will result in increased hydraulic-mechanical losses. In return, there will be lower internal leakage losses. If the pressure level is lower, lubrication gaps may not be filled up, which can lead to increased wear. For hydraulic pumps, the permitted suction pressure may not be reached, which may lead to cavitation damage.

If the viscosity of a hydraulic fluid is below the permitted operating viscosity, increased leakage, wear, susceptibility to contamination and a shorter component life cycle will result.

3.1.2 Viscosity-temperature behavior

For hydraulic fluids, the viscosity temperature behavior (V-T behavior) is of particular importance. Viscosity is characterized in that it drops when the temperature increases and rises when the temperature drops; see Fig. 1 "Viscosity temperature chart for HL, HLP, HLPD (VI 100)". The interrelation between viscosity and temperature is described by the viscosity index (VI).

The viscosity temperature diagram in Fig. 1 is extrapolated in the < 40 °C range. This idealized diagram is for reference purposes only. Measured values can be obtained from your lubricant manufacturer and are to be preferred for design purposes.

Fig. 1: Viscosity-temperature chart for HL, HLP, HLPD (VI 100, double logarithmic representation)

3.1.3 Wear protection capability

Wear protection capability describes the property of hydraulic fluids to prevent or minimize wear within the components. The wear protection capability is described in DIN 51524.2,3 via test procedures "FZG gear test rig" (ISO 14635-1) and "Mechanical test in the vane pump" (ISO 20763). From ISO VG 32 DIN 51524-2,3 prescribes a rating of at least 10 (FZG test). At present, the FZG test cannot be applied to viscosity classes < ISO VG 32.

3.1.4 Material compatibility

The hydraulic fluid must not negatively affect the materials used in the components. Compatibility with coatings, seals, hoses, metals and plastics is to be observed in particular. The fluid classifications specified in the respective component data sheets are tested by the manufacturer with regard to material compatibility. Parts and components not supplied by us are to be checked by the user.

Table 2: Known material incompatibilities

Classification	Incompatible with:
HLxx classifications	with EPDM seals
Zinc- and ash/free hydraulic fluids	with bronze-filled PTFE seals

3.1.5 Aging resistance

The way a hydraulic fluid ages depends on the thermal, chemical and mechanical stress to which it is subjected. Aging resistance can be greatly influenced by the chemical composition of the hydraulic fluids.

High fluid temperatures (e.g. over 80 °C) result in a approximate halving of the fluid service life for every 10 °C temperature increase and should therefore by avoided. The halving of the fluid service life results from the application of the Arrhenius equation (see Glossary).

Table 3: Reference values for temperature-dependent aging of the hydraulic fluid

Reservoir temperature	Fluid life cycle
80 °C	100 %
90 °C	50 %
100 °C	25 %

Hydraulic fluids based on mineral oils and related hydrocarbons are tested with 20% water additive during testing of aging resistance according to ISO 4263-1.

The calculated fluid service life is derived from the results of tests in which the long-term characteristics are simulated in a short period of time by applying more arduous conditions (condensed testing). This calculated fluid service life is not to be equated to the fluid service life in real-life applications.

Table 3 is a practical indicator for hydraulic fluids with water content < 0.1%, cf. chapter 4.10. "Water".

3.1.6 Air separation ability (ASA)

The air separation ability (ASA) describes the property of a hydraulic fluid to separate undissolved air. Hydraulic fluids contain approx. 7 to 13 percent by volume of dissolved air (with atmospheric pressure and 50 °C). Hydraulic fluids always contain dissolved air. During operation, dissolved air may be transformed into undissolved air, leading to cavitation damages. Fluid classification, fluid product, reservoir size and design must be coordinated to take into account the dwell time and ASA value of the hydraulic fluid. The air separation capacity depends on the viscosity, temperature, basic fluid and aging.

It cannot be improved by additives.

According to DIN 51524 for instance, an ASA value ≤ 10 minutes is required for viscosity class ISO VG 46, 6 minutes are typical, lower values are preferable.

3.1.7 Demulsifying ability and water solubility

The capacity of a hydraulic fluid to separate water at a defined temperature is known as the demulsifying ability. ISO 6614 defines the demulsifying properties of hydraulic fluids.

For larger systems with permanent monitoring, a demulsifying fluid with good water separation capability (WSC) is recommended. The water can be drained from the bottom of the reservoir. In smaller systems (e.g. in mobile machines), whose fluid is less closely monitored and where water contamination into the hydraulic fluid, for instance through air condensation, cannot be ruled out completely, an HLPD fluid is recommended.

The demulsifying ability up to ISO-VG 100 is given at 54 °C, and at 82 °C for fluids with higher viscosity.

Water emulsifying HLPD hydraulic fluids have no, or a very poor, demulsifying ability.

3.1.8 Filterability

Filterability describes the ability of a hydraulic fluid to pass through a filter, removing solid contaminants. The hydraulic fluids used require a good filterability, not just when new, but also during the whole of their service life. Depending on the basic fluid used and the additives (VI enhancers) there are great differences here.

The filterability is a basic prerequisite for cleanliness, servicing and filtration of hydraulic fluids. Filterability is tested with the new hydraulic fluid and after the addition of 0.2 % water. The underlying standard (ISO 13357-1/-2) stipulates that filterability must have no negative effects on the filters or the hydraulic fluid, see chapter 4 "Hydraulic fluids in operation".

3.1.9 Corrosion protection

Hydraulic fluids should not just prevent corrosion formation on steel components, they must also be compatible with non-ferrous metals and alloys. Corrosion protection tests on different metals and metal alloys are described in DIN 51524. Hydraulic fluids that are not compatible with the materials listed above must not be used, even if they are compliant with ISO 51524.

Rexroth components are usually tested with HLP hydraulic fluids or corrosion protection oils based on mineral oils before they are delivered.

3.1.10 Additivation

The properties described above can be modified with the help of suitable additives. A general distinction is made for fluids between heavy metal-free and heavy metal-containing (generally zinc) additive systems. Both additive systems are most often incompatible with each other. The mixing of these fluids must be avoided even if the mixing ratio is very low. See chapter 4, "Hydraulic fluids in operation".

Increasing additivation generally leads to deteriorated air separation ability (ASA) and water separation capability (WSC) of the hydraulic fluid. According to the present state of knowledge, all hydraulic fluids described in this document, independently of the actual additivation, can be filtered using all filter materials with all known filtration ratings $\geq 1~\mu m$ without filtering out effective additives at the same time.

Bosch Rexroth does not prescribe any specific additive system.

3.2 Classification and fields of application

Classification	Features	Typical field of application	Notes
HL fluids according to DIN 51524-1 VI = 100	Hydraulic fluids predominantly only with additives for oxidation and corro- sion protection, but no specific additives for wear protection in case of mixed friction	HL fluids can be used in hydraulic systems that do not pose any require- ments as to wear protection.	HL fluids may be used only for components whose product data sheet specifically allows HL fluids. For components which have not been approved according to the product data sheet, please consult your Bosch Rexroth sales partner.
			Hydraulic fluids that only comply with the requirements of classes HL and HR in accordance with ISO 11158 without proving that DIN 51524-1 is also met may be used only with written approval of Bosch Rexroth AG.
			Observe restrictions as to pressure, rotation speed etc.
HLP fluids according to DIN 51524-2 VI = 100	Hydraulic fluid with corrosion, oxidation and verified wear protection additives	HLP fluids are suit- able for most fields of application and components provided	For information on approved components, please refer to the respective product data sheet. For components which have not been approved according to the product data sheet, please consult your Bosch Rexroth sales partner.
		the temperature and viscosity provisions are observed.	For the viscosity classes VG10, VG15 and VG22, DIN 51524 defines no requirements as to wear protection (DIN 51354 part 2 and DIN 51389 part 2). Beyond the requirements of DIN 51524 part 2, we require the same base oil type, identical refining procedure, identical additivation and identical additivation level across all viscosity classes.

Table 4: Classification and fields of application

Classification	Features	Typical field of application	Notes
HVLP fluids according to DIN 51524-3 VI > 140	HLP hydraulic fluid with additional improved viscosity temperature behavior	HVLP fluids are used in systems operated over a wide tempera- ture range.	For information on approved components, please refer to the respective product data sheet. For components which have not been approved according to the product data sheet, please consult your Bosch Rexroth sales partner.
			The same notes and restrictions as defined for HLP fluids apply accordingly.
			The effect on Rexroth components (e.g. compatibility with material seals, wear resistance capacity) may differ when using related hydrocarbons instead of mineral oils, cf. Table 6, line 8.
			When using HVLP fluids, the viscosity may change on account of the shear of the long-chain VI enhancers. The viscosity index, high at the start, decreases during operation. This needs to be taken into account when selecting the hydraulic fluid.
			The only value at present that can be used to assess viscosity changes in operation is the result of the test in accordance with DIN 51350 part 6. Please note that there are practical applications that create a much higher shear load on such fluids than can be achieved by this test. Up to VI < 160, we recommend a maximum permitted viscosity drop of 15 %, viscosity at 100 °C.
			The viscosity limits given by Bosch Rexroth for its components are to be observed for all operating conditions, even after the hydraulic fluids have sheared.
			HVLP fluids should be used only if required by the temperature ranges of the application.
HLPD fluids according to DIN 51524-2, HVLPD fluids in	HLP and HVLP hydraulic fluid with additional detergent and or dispersant	HLPD and HVLPD fluids are used in systems where deposits as well	For information on approved components, please refer to the respective product data sheet. For components which have not been approved according to the product data sheet, please consult your Bosch Rexroth sales partner.
accordance with DIN 51524-3	additives	as solid or liquid contamination need to be kept temporarily suspended	Some of these fluids are able to absorb significant quantities of water (> 0.1 %). This may have negative implications for the wear protection and the aging properties of the fluid.
			The wetting ability of these fluids varies largely depending on the product. Therefore it is not correct to say that they are generally all very well able to prevent stick-slip.
			In individual cases where higher water contamination is to be expected (such as in steelworks or under humid conditions), the use of HLPD/HVLPD fluids cannot be recommended as the emulsified water does not settle in the reservoir but is evaporated in heavily loaded positions. For such cases, we recommend using HLP hydraulic fluids with particularly good demulsifying ability. The water collected at the reservoir bottom is to be drained regularly.
			If HLPD/HVLPD fluids are used, contamination does not settle. It rather remains suspended and needs to be filtered out or removed by appropriate draining systems. For this reason, the filter area must be increased.
			HLPD/HVLPD fluids may contain additives that in the long run are incompatible with plastics, elastomers and non-ferrous metals. Furthermore, these additives may lead to the premature clogging of hydraulic filters. Therefore, test the filterability and the selection of the filter material in consultation with the filter manufacturer.

Table 4: Classification and fields of application (continued from page 7)

4 Hydraulic fluids in operation

4.1 General

The properties of hydraulic fluids can change continually during storage and operation.

Please note that the fluid standard DIN 51524 merely describes minimum requirements for hydraulic fluids in new condition at the time of filling into the bins. The operator of a hydraulic system must ensure that the hydraulic fluid remains in a utilizable condition throughout its entire period of use.

Deviations from the characteristic values are to be clarified with the lubricant manufacturer, the test labs or Bosch Rexroth.

Please note the following aspects in operation.

4.2 Storage and handling

Hydraulic fluids must be stored correctly in accordance with the instructions of the lubricant manufacturer. Avoid exposing the containers to lengthy periods of direct heat. Containers are to be stored in such a way that the risk of any foreign liquid or solid matter (e.g. water, foreign fluids or dust) ingression into the inside of the container can be ruled out. After taking hydraulic fluids from the containers, these are immediately to be properly resealed.

Recommendation:

- Store containers in a dry, roofed place
- Store barrels on their sides
- Clean reservoir systems and machine reservoirs regularly

4.3 Filling of new systems

Usually, the cleanliness levels of the hydraulic fluids as delivered do not meet the requirements of our components. Hydraulic fluids must be filtered using an appropriate filter system to minimize solid particle contamination and water in the system.

As early as possible during test operation, new systems should be filled with the selected hydraulic fluid so as to reduce the risk of accidentally mixing the fluids (see chapter 4.5 "Mixing and compatibility of different hydraulic fluids"). Changing the hydraulic medium at a later point represents significant additional costs (see following chapter).

4.4 Hydraulic fluid changeover

Changeovers, in particular between hydraulic fluids with heavy metal-free and heavy metal-containing (generally zinc) additives, frequently lead to malfunctions, see chapter 3.1.10 "Additivation".

In the case of changeovers of the fluid in hydraulic systems, it is important to ensure compatibility of the new hydraulic fluid with the remainder of the previous hydraulic fluid. We recommend obtaining a written performance guarantee from the manufacturer or supplier of the new hydraulic fluid. The quantity of old fluid remaining should be minimized. Mixing hydraulic fluids should be avoided, see following chapter. For information on changing over hydraulic fluids with different classifications please refer to VDMA 24314, VDMA 24569 and ISO 15380 appendix A.

Bosch Rexroth will not accept liability for any damage to its components resulting from inadequate hydraulic fluid changeovers!

4.5 Mixing and compatibility of different hydraulic fluids

If hydraulic fluids from different manufacturers or different types from the same manufacturer are mixed, gelling, silting and deposits may occur. These, in turn, may cause foaming, impaired air separation ability, malfunctions and damage to the hydraulic system.

If the fluid contains more than 2 % of another fluid then it is considered to be a mixture. Exceptions apply for water, see chapter 4.10 "Water".

Mixing with other hydraulic fluids is not generally permitted. This also includes hydraulic fluids with the same classification and from the market overview RE 90220-01. If individual lubricant manufacturers advertise miscibility and/or compatibility, this is entirely the responsibility of the lubricant manufacturer.

Bosch Rexroth customarily tests all components with mineral oil HLP before they are delivered.

Note: With connectible accessory units and mobile filtering systems, there is a considerable risk of non-permitted mixing of the hydraulic fluids!

Rexroth will not accept liability for any damage to its components resulting from mixing hydraulic fluids!

4.6 Re-additivation

Additives added at a later point in time such as colors, wear reducers, VI enhancers or anti-foam additives, may negatively affect the performance properties of the hydraulic fluid and the compatibility with our components and therefore are not permissible.

Rexroth will not accept liability for any damage to its components resulting from re-additivation!

4.7 Foaming behavior

Foam is created by rising air bubbles at the surface of hydraulic fluids in the reservoir. Foam that develops should collapse as quickly as possible.

Common hydraulic fluids in accordance with DIN 51524 are sufficiently inhibited against foam formation in new condition. On account of aging and adsorption onto surfaces, the defoamer concentration may decrease over time, leading to a stable foam.

Defoamers may be re-dosed only after consultation with the lubricant manufacturer and with his written approval.

Defoamers may affect the air separation ability.

4.8 Corrosion

The hydraulic fluid is to guarantee sufficient corrosion protection of components under all operating conditions, even in the event of impermissible water contamination.

During storage and operation, hydraulic fluid based on mineral oils with anti-corrosion additives protect components against water and "acidic" oil degradation products.

4.9 Air

Under atmospheric conditions, the hydraulic fluid contains dissolved air. In the negative pressure range, for instance in the suction pipe of the pump or downstream of control edges, this dissolved air may transform into undissolved air. The undissolved air content represents a risk of cavitation and of the diesel effect. This results in material erosion of components and increased hydraulic fluid aging.

With the correct measures, such as suction pipe and reservoir design, and an appropriate hydraulic fluid, air intake and separation can be positively influenced.

See also chapter 3.1.7 "Air separation ability (ASA)".

4.10 Water

Water contamination in hydraulic fluids can result from direct ingress or indirectly through condensation of water from the air due to temperature variations.

Water in the hydraulic fluid may result in wear or direct failure of hydraulic components. Furthermore, a high water content in the hydraulic fluid negatively affects aging and filterability and increases susceptibility to cavitation.

Undissolved water can be drained from the bottom of the reservoir. Dissolved water can be removed only by using appropriate measures. If the hydraulic system is used in humid conditions, preventive measures need to be taken, such as an air dehumidifier at the reservoir vent. During operation, the water content in all hydraulic fluids, determined according to the "Karl Fischer method" (see chapter 6 "Glossary") for all hydraulic fluids must constantly be kept below 0.1% (1000 ppm). To ensure a long service life of both hydraulic fluids and components, Bosch Rexroth recommends that values below 0.05% (500 ppm) are permanently maintained.

To ensure a long service life for the hydraulic fluids and the components, we recommend that values below 0.05 % (500 ppm) are permanently maintained. Detergent and or dispersant hydraulic fluids (HLPD / HVLPD) are able to absorb (and keep suspended) more water. Prior to using these hydraulic fluids, please contact the lubricant manufacturer.

4.11 Fluid servicing, fluid analysis and filtration

Air, water, operating temperature influences and solid matter contamination will change the performance characteristics of hydraulic fluids and cause them to age.

To preserve the usage properties and ensure a long service life for hydraulic fluid and components, the monitoring of the fluid condition and a filtration adapted to the application requirements (draining and degassing if required) are indispensable.

The effort is higher in the case of unfavorable usage conditions, increased stress for the hydraulic system or high expectations as to availability and service life, see chapter 2 "Solid particle contamination and cleanliness level".

When commissioning a system, please note that the required minimum cleanliness level can frequently be attained only by flushing the system. Due to severe start-up contamination, it may be possible that a fluid and/or filter replacement becomes necessary after a short operating period (< 50 operating hours).

The hydraulic fluid must be replaced in regular intervals and tested by the lubricant manufacturer or recognized, accredited test labs. We recommend a reference analysis after commissioning.

The minimum data to be tested for analyses are:

- Viscosity at 40 °C and 100 °C
- Neutralization number NN (acid number AN)
- Water content (Karl-Fischer method)
- Particle measurement with evaluation according to ISO 4406 or mass of solid foreign substances with evaluation to EN 12662
- Element analysis (RFA (EDX) / ICP, specify test method)
- Comparison with new product or available trend analyses
- Assessment / evaluation for further use
- Also recommended: IR spectrum

Compared to the pure unused hydraulic fluid, the changed neutralization number NN (acid number AN) indicates how many aging products are contained in the hydraulic fluid. This value must be kept as low as possible. As soon as the trend analysis notes a significant increase in the acid number, the lubricant manufacturer should be contacted.

In case of warranty, liability or guarantee claims to Bosch Rexroth, service verification and/or the results of fluid analyses are to be provided. Hydraulic fluids based on mineral oil and related hydrocarbons are hazardous for the environment. They are subject to a special disposal obligation.

The respective lubricant manufacturers provide specifications on environmentally acceptable handling and storage. Please ensure that spilt or splashed fluids are absorbed with appropriate adsorbents or by a technique that prevents it contaminating water courses, the ground or sewerage systems.

It is also not permitted to mix fluids when disposing of hydraulic fluids. Regulations governing the handing of used oils stipulate that used oils are not to mixed with other products, e.g. substances containing halogen. Non-compliance will increase disposal costs. Comply with the national legal provisions concerning the disposal of the corresponding hydraulic fluid. Comply with the local safety data sheet of the lubricant manufacturer for the country concerned.

6 Other hydraulic fluids based on mineral oil and related hydrocarbons

Table 6: Other hydraulic fluids based on mineral oils and related hydrocarbons

Serial number	Hydraulic fluids	Features / Typical field of application / Notes
1	Hydraulic fluids with classification HL, HM, HV according to ISO 11158	 Can be used without confirmation provided they are listed in the respective product data sheet and are compliant with DIN 51524. Conformity with DIN 51524 must be verified in the technical data sheet of the fluid concerned. For classification see Table 4: "Hydraulic fluid classification".
		 Fluids only classified in accordance with ISO 11158 may be used only with prior written approval of Bosch Rexroth AG.
2	Hydraulic fluids with classification HH, HR, HS, HG ac- cording to ISO 11158	- May not be used.
3	Hydraulic fluids with classification HL, HLP, HLPD, HVLP, HVLPD to DIN 51502	 DIN 51502 merely describes how fluids are classified / designated on a national level. It contains no information on minimum requirements for hydraulic fluids. Hydraulic fluids standardized according to DIN 51502 can be used without confirmation provided they are listed in the respective product data sheet and are compliant with DIN 51524. Conformity with DIN 51524 must be verified in the technical data sheet of the fluid concerned. For classification see Table 4: "Hydraulic fluid classification".
4	Hydraulic fluids with classification HH, HL, HM, HR, HV, HS, HG according to ISO 6743-4	 ISO 6743-4 merely describes how fluids are classified / designated on an international level. It contains no information on minimum requirements for hydraulic fluids. Hydraulic fluids standardized according to ISO 6743 -4 can be used without confirmation provided they are listed in the respective product data sheet and are compliant with DIN 51524. Conformity with DIN 51524 must be verified in the technical data sheet of the fluid concerned. For classification see table 4: "Classification and fields of application".
5	Lubricants and regulator fluids for turbines to DIN 51515-1 and -2	 Turbine oils can be used after confirmation and with limited performance data. They usually offer lower wear protection than mineral oil HLP. Classification of turbine oils to DIN 51515-1 comparable to HL, turbine oils to DIN 51515-2 comparable to HLP. Particular attention must be paid to material compatibility!
6	Lube oils C, CL, CLP in accordance with DIN 51517	 Lube oils in acc. with DIN 51517 can be used after confirmation and with limited performance data. They are mostly higher-viscosity fluids with low wear protection. Classification: CL similar to HL fluids and CLP similar to HLP fluids. Particular attention must be paid to material compatibility, specifically with non-ferrous metals!
7	Fluids to be used in pharmaceutical and foodstuff industries, in acc. with FDA / USDA / NSF H1	 There are medical white oils and synthetic hydrocarbons (PAO). Can only be used after consultation and approval for use in the specific application, even if they are compliant with DIN 51524. May be used only with FKM seals. Other fluids used in pharmaceutical and foodstuff industries may be used only after confirmation. Attention is to be paid to material compatibility in accordance with the applicable food law. Caution! Fluids used in pharmaceutical and foodstuff industries should not be confused with environmentally acceptable fluids!

erial Imber	Hydraulic fluids	Features / Typical field of application / Notes
classe: HVLPE	Hydraulic fluids of classes HVLP and	 Can only be used after consultation and approval for use in the specific application even if they are compliant with DIN 51524.
	HVLPD based on related hydrocarbons	- Lower pour point than HLP
	related hydrocarbons	- Other wetting (polarity)
9	Automatic Transmission Fluids (ATF)	 ATF are operating fluids for automatic gearboxes in vehicles and machines. In spec cases, ATFs are also used for certain synchronous gearboxes and hydraulic system comprising gearboxes.
		- To be used only after confirmation!
		- Some of these fluids have poor air separation abilities and modified wear properties
		- Check material compatibility and filterability!
10	Multi-purpose oil (MFO) – Industry	 Multi-purpose oils (industry) combine at least two requirements for a fluid, for instance metal machining and hydraulics.
		- To be used only after confirmation!
		 Please pay particular attention to air separation ability, modified wear properties an the reduced material life cycle.
		 Check material compatibility and filterability!
11	Multi-purpose oils (MFO) – Mobil	 Multi-purpose oils combine requirements for wet brakes, gearboxes, motor oil (STOU only) and hydraulics.
	UTTO, STOU	- Fluids of the types:
		- UTTO (= universal tractor transmission oil) and
		- STOU (= Super Tractor super tractor universal oil)
		- To be used only after confirmation!
		 Please pay particular attention to shear stability, air separation ability and modified wear properties.
		- Check material compatibility and filterability!
12 Single-grade engine	- To be used only after confirmation!	
	oils 10W, 20W, 30W	- Please pay particular attention to the air separation ability and filtering ability.
13 Multi-grade engine oil: 0Wx-30Wx	Multi-grade engine oils	- To be used only after confirmation!
	0002-30002	 Please pay particular attention to air separation ability, changes in wear protection capability, viscosity changes during operation, material compatibility, dispersant an detergent properties and filterability.
		Caution! Multi-grade engine oils have been adapted to specific requirements in com bustion engines and are suitable for use in hydraulic systems only to a limited extent.
14	Hydraulic fluids for	- To be used only after confirmation!
1 1 1	military applications to MIL 13919 or H 540, MIL 46170 or H 544, MIL 5606 or H 515,	 Please pay particular attention to air separation ability, changes in wear protection capability, viscosity changes during operation, material compatibility, water separa- tion capability and filterability.
	MIL 83282 or H 537, MIL 87257	Caution! Hydraulic fluids for military applications do not meet the current requirement for high-quality hydraulic fluids and are suitable for use only to a limited degree.
15	Motor vehicle transmis- sion oils	 Motor vehicle transmission oil can be used after confirmation and with limited performance data.
		 Pay particular attention to wear protection, material compatibility, specifically with non-ferrous metals, as well as viscosity!

Table 6: Other hydraulic fluids based on mineral oils and related hydrocarbons (continued from page 12)

101

Continued on page 14

Bosch Rexroth AG **13**/16

Table 6: Other hydraulic fluids based on mineral oils and related hydrocarbons (continued from page 13)

Serial number	Hydraulic fluids	Features / Typical field of application / Notes
16	Diesel, test diesel in acc. with DIN 4113	 Diesel / test diesel has poorer wear protection capabilities and a very low viscosity (< 3 mm²/s).
		- May be used only with FKM seals
		- Please note their low flash point!
		- To be used only after confirmation and with limited performance data!
17	Hydraulic fluids for roller processes	 Hydraulic fluids for roller processes have lower wear protection capabilities than mineral oil HLP and a lower viscosity
		- Please note their low flash point!
		 Hydraulic fluids for roller processes with limited performance data can be used only after confirmation.
18	Fluids for power steering,	 Can only be used after consultation and approval for use in the specific application, even if they are compliant with DIN 51524.
	hydro-pneumatic sus- pension,	- Please note the low viscosity!
	active chassis etc.	- In most cases they have poor water separation capability
		 Check the material compatibility!

7 Glossary

Additivation

Additives are chemical substances added to the basic fluids to achieve or improve specific properties.

Aging

Hydraulic fluids age due to oxidation (see chapter 3.1.5 "Aging resistance"). Liquid and solid contamination acts as a catalyzer for aging, meaning that it needs to be minimized as far as possible by careful filtration.

API classification

Classification of basic fluids by the American Petroleum Institute (API) – the largest association representing the US oil and gas industry.

Arrhenius equation

The quantitative relation between reaction rate and temperature is described by an exponential function, the Arrhenius equation. This function is usually visualized within the typical temperature range of the hydraulic system. For a practical example, see chapter 3.1.5 "Aging resistance".

Related hydrocarbons

Related hydrocarbons are hydrocarbon compounds that are not classified as API class 1, 2 or 5.

Basic fluids

In general, a hydraulic fluid is made up of a basic fluid, or base oil, and chemical substances, the so-called additives. The proportion of basic fluid is generally greater than 90%.

Demulsifying

Ability of a fluid to separate water contamination quickly; achieved with careful selection of base oil and additives.

Detergent

Ability of certain additives to emulsify part of the water contamination in the oil or to hold it in suspension until it has evaporated with increasing temperature. Larger water quantities, in contrast (above approx. 2 %), are separated immediately.

Dispersant

Ability of certain additives to keep insoluble liquid and solid contamination in suspension in the fluid.

Diesel effect

If hydraulic fluid that contains air bubbles is compressed quickly, the bubbles are heated to such a degree that a selfignition of the air-gas mix may occur. The resultant temperature increase may lead to seal damage and increased aging of the hydraulic fluid.

Hydraulic fluids based on mineral oils

Hydraulic fluids based on mineral oils are made from petroleum (crude oil).

ICP (atomic emission spectroscopy)

The ICP procedure can be used to determine various wear metals, contamination types and additives. Practically all elements in the periodic system can be detected with this method.

Karl Fischer method

Method to determine the water content in fluids. Indirect coulometric determination procedure in accordance with DIN EN ISO 12937 in connection with DIN 51777-2. Only the combination of both standards will assure adequately accurate measured values.

Cavitation

Cavitation is the creation of cavities in fluids due to pressure reduction below the saturated vapour pressure and subsequent implosion when the pressure increases. When the cavities implode, extremely high acceleration, temperatures and pressure may occur temporarily, which may damage the component surfaces.

Neutralization number (NN)

The neutralization number (NN) or acid number (AN) specifies the amount of caustic potash required to neutralize the acid contained in one gram of fluid.

Pour point

The lowest temperature at which the fluid still just flows when cooled down under set conditions. The pour point is specified in the lubricant manufacturers' technical data sheets as a reference value for achieving this flow limit.

RFA (wavelength dispersive x-ray fluorescence analysis)

Is a procedure to determine nearly all elements in liquid and solid samples with nearly any composition. This analysis method is suitable for examining additives and contamination, delivering fast results.

Shearing/shear loss

Shearing of molecule chains during operation can change the viscosity of hydraulic fluids with long chain VI enhancers. The initially high viscosity index drops. This needs to be taken into account when selecting the hydraulic fluid.

The only value at present that can be used to assess viscosity changes in operation is the result of the test in accordance with DIN 51350 part -6. Please note that there are practical applications that create a much higher shear load on such hydraulic fluids than can be achieved by this test.

Stick-slip effect (sliding)

Interaction between a resilient mass system involving friction (such as cylinder + oil column + load) and the pressure increase at very low sliding speeds. The static friction of the system is a decisive value here. The lower it is, the lower the speed that can still be maintained without sticking. Depending on the tribologic system, the stick-slip effect may lead to vibrations generated and sometimes also to significant noise emission. In many cases, the effect can be attenuated by replacing the lubricant.

Viscosity

Viscosity is the measure of the internal friction of a fluid to flow. It is defined as the property of a substance to flow under tension. Viscosity is the most important characteristic for describing the load-bearing capacity of a hydraulic fluid.

Kinematic viscosity is the ratio of the dynamic viscosity and the density of the fluid; the unit is mm²/s. Hydraulic fluids are classified by their kinematic viscosity into ISO viscosity classes. The reference temperature for this is 40 °C.

Viscosity index (VI)

Refers to the viscosity temperature behavior of a fluid. The lower the change of viscosity in relation the temperature, the higher the VI.

 Bosch Rexroth AG

 Hydraulics

 Zum Eisengießer 1

 97816 Lohr am Main, Germany

 Phone
 +49 (0) 93 52 / 18-0

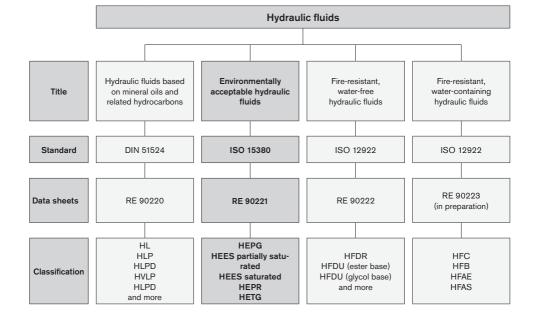
 Fax
 +49 (0) 93 52 / 18-23 58

 documentation@boschrexroth.de
 www.boschrexroth.de

© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

No statements concerning the suitability of a hydraulic fluid for a specific purpose can be derived from our information. The information given does not release the user from the obligation of own judgment and verification.

It must be remembered that our products are subject to a natural process of wear and aging.


Subject to change.

Environmentally acceptable hydraulic fluids

RE 90221/05.12 1/14 Replaces: 05.10

Application notes and requirements for Rexroth hydraulic components

Contents

1 Basic information	3
1.1 General instructions	3
1.2 Environmental compatibility	3
1.3 Scope	3
1.4 Safety instructions	3
2 Solid particle contamination and cleanliness levels	1
3 Selection of the hydraulic fluid	5
3.1 Selection criteria for the hydraulic fluid	5
3.1.1 Viscosity	5
3.1.2 Viscosity-temperature behavior	5
3.1.3 Wear protection capability	ò
3.1.4 Material compatibility	3
3.1.5 Aging resistance	ò
3.1.6 Biological degradation	ò
3.1.7 Air separation ability (ASA)	7
3.1.8 Demulsifying ability and water solubility	7
3.1.9 Filterability	7
3.1.10 Corrosion protection	7
3.1.11 Additivation	7
3.2 Classification and fields of application	3
4 Hydraulic fluids in operation)
4.1 General)
4.2 Storage and handling)
4.3 Filling of new systems1)
4.4 Hydraulic fluid changeover)
4.5 Mixing and compatibility of different hydraulic fluids1)
4.6 Re-additivation)
4.7 Foaming behavior)
4.8 Corrosion1	1
4.9 Air	1
4.10 Water 1	1
4.11 Fluid servicing, fluid analysis and filtration1	I
5 Disposal and environmental protection	2
6 Glossary	3

1 Basic information

1.1 General instructions

The hydraulic fluid is the common element in any hydraulic component and must be selected very carefully. Quality and cleanliness of the hydraulic fluid are decisive factors for the operational reliability, efficiency and service life of a system.

Hydraulic fluids must conform, be selected and used in accordance with the generally acknowledged rules of technology and safety provisions. Reference is made to the countryspecific standards and directives (in Germany the directive of the Employer's Liability Insurance Association BGR 137).

This data sheet includes recommendations and regulations concerning the selection, operation and disposal of environmentally compatible hydraulic fluids in the application of Rexroth hydraulic components.

The individual selection of hydraulic fluid or the choice of classification are the responsibility of the operator.

It is the responsibility of the user to ensure that appropriate measures are taken for safety and health protection and to ensure compliance with statutory regulations. The recommendations of the lubricant manufacturer and the specifications given in the safety data sheet are to be observed when using hydraulic fluid.

This data sheet does not absolve the operator from verifying the conformity and suitability of the respective hydraulic fluid for his system. He is to ensure that the selected fluid meets the minimum requirements of the relevant fluid standard during the whole of the period of use.

Other regulations and legal provisions may also apply. The operator is responsible for their observance, e.g. EU directive 2004/35/EG, 2005/360/EG and their national implementation. In Germany the Water Resources Act (WHG) is also to be observed.

We recommend that you maintain constant, close contact with lubricant manufacturers to support you in the selection, maintenance, care and analyses.

When disposing of used hydraulic fluids, apply the same care as during use.

Environmentally acceptable hydraulic fluids have been used successfully for many years. In some countries, the use of environmentally acceptable hydraulic fluids is already prescribed in ecologically sensitive areas (e.g. forestry, locks, weirs).

Environmentally acceptable hydraulic fluids may only be used in the pharmaceutical and food industry subject to required certification to FDA/USDA/NSF H1.

1.2 Environmental compatibility

There is no unambiguous legal definition for environmentally acceptable hydraulic fluids as different testing procedures can be applied for biological degradation and toxicity.

According to ISO 15380 the definition of "environmentally acceptable" is as follows: Humans, animals, plants, air and soil must not be endangered. With regard to hydraulic fluids in an unused condition in the bin this mainly means:

- biological degradation at least 60 % (according to ISO 14593 or ISO 9439)
- acute fish toxicity at least 100 mg/l (according to ISO 7346-2)

- acute daphnia toxicity at least 100 mg/l (according to ISO 5341)
- acute bacteria toxicity at least 100 mg/l (according to ISO 8192)

The same amount of care should be taken when handling environmentally acceptable hydraulic fluids as for mineral oils, leakage from the hydraulic system should be avoided. Environmentally acceptable hydraulic fluids are designed so that in the event of accidents and leakage,less permanent environmental damage is caused than by mineral oils, see also chapter 5 "Disposal and environmental protection".

In comparison to mineral oil HLP/HVLP, the biological degradation of environmentally acceptable hydraulic fluids may change fluid aging, see chapter 3.1.5 "Aging resistance", 3.1.6. "Biological degradation" and 4 "Hydraulic fluids in operation".

1.3 Scope

This data sheet must be applied when using environmentally acceptable hydraulic fluids with Rexroth hydraulic components. The specifications of this data sheet may be further restricted by the specification given in the data sheets for the individual components.

The use of the individual environmentally acceptable hydraulic fluids in accordance with the intended purpose can be found in the safety data sheets or other product description documents of the lubricant manufacturers. In addition, each use is to be individually considered.

Rexroth hydraulic components may only be operated with environmentally acceptable hydraulic fluids according to ISO 15380 if specified in the respective component data sheet or if a Rexroth approval for use is furnished.

The manufacturers of hydraulic systems must adjust their systems and operating instructions to the environmentally acceptable hydraulic fluids.

Notes:

In the market overview RE 90221-01, environmentally acceptable hydraulic fluids based on mineral oil are described which, according to the information of the lubricant manufacturer, feature the respective parameters of the current requirements standard ISO 15380 and other parameters which are of relevance for suitability in connection with Rexroth components.

These specifications are not checked or monitored by Bosch Rexroth. The list in the market overview does not therefore represent a recommendation on the part of Rexroth or approval of the respective hydraulic fluid for use with Rexroth components and does not release the operator from his responsibility regarding selection of the hydraulic fluid.

Bosch Rexroth will accept no liability for its components for any damage resulting from failure to comply with the notes below.

1.4 Safety instructions

Hydraulic fluids can constitute a risk for persons and the environment. These risks are described in the hydraulic fluid safety data sheets. The operator is to ensure that a current safety data sheet for the hydraulic fluid used is available and that the measures stipulated therein are complied with.

2 Solid particle contamination and cleanliness levels

Solid particle contamination is the major reason for faults occurring in hydraulic systems. It may lead to a number of effects in the hydraulic system. Firstly, single large solid particles may lead directly to a system malfunction, and secondly small particles cause continuous elevated wear.

For mineral oils, the cleanliness level of environmentally acceptable hydraulic fluids is given as a three-digit numerical code in accordance with ISO 4406. This numerical code denotes the number of particles present in a hydraulic fluid for a defined quantity. Moreover, foreign solid matter is not to exceed a mass of 50 mg/kg (gravimetric examination according to ISO 4405).

In general, compliance with a minimum cleanliness level of 20/18/15 in accordance with ISO 4406 or better is to be maintained in operation. Special servo valves demand improved cleanliness levels of at least 18/16/13. A reduction in cleanliness level by one level means half of the quantity of particles and thus greater cleanliness. Lower numbers in cleanliness levels should always be striven for and extend the service life of hydraulic components. The component with the highest cleanliness requirements determines the required cleanliness of the overall system. Please also observe the specifications in table 1: "Cleanliness levels according to ISO 4406" and in the respective data sheets of the various hydraulic components.

Hydraulic fluids frequently fail to meet these cleanliness requirements on delivery. Careful filtering is therefore required during operation and in particular, during filling in order to ensure the required cleanliness levels. Your lubricant manufacturer can tell you the cleanliness level of hydraulic fluids as delivered. To maintain the required cleanliness level over the operating period, you must use a reservoir breather filter. If the environment is humid, take appropriate measures, such as a breather filter with air drying or permanent off-line water separation.

Note: the specifications of the lubricant manufacturer relating to cleanliness levels are based on the time at which the container concerned is filled and not on the conditions during transport and storage.

Further information about contamination with solid matter and cleanliness levels can be found in brochure RE 08016.

Particles per 100 ml			
More than	Up to and including	Scale number	
8,000,000	16,000,000	24	20 / 18 / 15
4,000,000	8,000,000	23	>4 μm >6 μm >14 μm
2,000,000	4,000,000	22	
1,000,000	2,000,000	21	
500,000	1,000,000	20	
250,000	500,000	19	
130,000	250,000	18	
64000	130,000	17	
32000	64000	16	
16000	32000	15	
8000	16000	14	
4000	8000	13	
2000	4000	12	
1000	2000	11	
500	1000	10	
250	500	9	
130	250	8	
64	130	7	
32	64	6	

Table 1: Cleanliness levels according to ISO 4406

3 Selection of the hydraulic fluid

Environmentally acceptable hydraulic fluids for Bosch Rexroth hydraulic components are assessed on the basis of their fulfillment of the minimum requirements of ISO 15380.

3.1 Selection criteria for the hydraulic fluid

The specified limit values for all components employed in the hydraulic system, for example viscosity and cleanliness level, must be observed with the hydraulic fluid used, taking into account the specified operating conditions.

Hydraulic fluid suitability depends, amongst others, on the following factors:

3.1.1 Viscosity

Viscosity is a basic property of hydraulic fluids. The permissible viscosity range of complete systems needs to be determined taking account of the permissible viscosity of all components and it is to be observed for each individual component.

The viscosity at operating temperature determines the response characteristics of closed control loops, stability and damping of systems, the efficiency factor and the degree of wear

We recommend that the optimum operating viscosity range of each component be kept within the permissible temperature range. This usually requires either cooling or heating, or both. The permissible viscosity range and the necessary cleanliness level can be found in the product data sheet for the component concerned

If the viscosity of a hydraulic fluid used is above the permitted operating viscosity, this will result in increased hydraulic-mechanical losses. In return, there will be lower internal leakage losses. If the pressure level is lower, lubrication gaps may not be filled up, which can lead to increased wear. For hydraulic pumps, the permitted suction pressure may not be reached, which may lead to cavitation damage.

If the viscosity of a hydraulic fluid is below the permitted operating viscosity, increased leakage, wear, susceptibility to contamination and a shorter life cycle will result.

Please ensure that the permissible temperature and viscosity limits are observed for the respective components. This usually requires either cooling or heating, or both.

3.1.2 Viscosity-temperature behavior

For hydraulic fluids, the viscosity temperature behavior (V-T behavior) is of particular importance. Viscosity is characterized in that it drops when the temperature increases and rises when the temperature drops. The interrelation between viscosity and temperature is described by the viscosity index (VI).

If exposed to the cold for several days, viscosity may rise significantly (HETG and HEES). After heating, the characteristic values as specified on the data sheet are restored. Please ask your lubricant manufacturer for the "Flow capacity after 7 days at low temperature" (ASTM D 2532) of fluid classifications HETG and partially saturated HEES.

All known environmentally acceptable hydraulic fluids have better viscosity temperature behavior than mineral oil HLP and generally feature greater shear stability than HVLP mineral oils. This should be taken into consideration when selecting hydraulic fluid for the required temperature range. A lower viscosity level can frequently be used to save any drive power during a cold start and avoid viscosity being too low at higher temperatures. The required viscosity and temperature limits in the product data sheets are to be observed in all operating conditions.

Depending on the basic fluid types/classes, VI indices can be achieved of 140-220, see Fig. 1: "Examples: V-T diagrams in comparison to HLP (reference values)" and Table 4: "Classification and fields of application of environmentally acceptable hydraulic fluids".

-20 °C

1250

2500

2500

1400

4500

40 °C

46

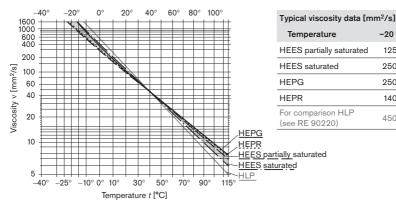
46

46

46

46

100 °C


9

8

10

10

7

Fig. 1: Examples V-T diagrams in comparison to HLP (reference values, double-logarithmic representation)

Detailed V-T diagrams may be obtained from your lubricant manufacturer for their specific products.

3.1.3 Wear protection capability

Wear protection capability describes the property of hydraulic fluids to prevent or minimize wear within the components. The wear protection capability is described in ISO 15380 via test procedures"FZG gear test rig" (ISO 14635-1) and "Mechanical test in the vane pump" (ISO 20763). From ISO VG 32, ISO 15380 prescribes a rating of at least 10 (FZG test). At present, the FZG test cannot be applied to viscosity classes < ISO VG 32. The wear protection capability of environmentally acceptable hydraulic fluids in relation to the two test procedures is comparable to that of mineral oil HLP/HVLP.

3.1.4 Material compatibility

The hydraulic fluid must not negatively affect the materials used in the components. Compatibility with coatings, seals, hoses, metals and plastics is to be observed in particular. The fluid classifications specified in the respective component data sheets are tested by the manufacturer with regard to material compatibility. Parts and components not supplied by us are to be checked by the user.

Table 2: Known material incompatibilities

Classification	Incompatible with:
HE general	One-component color coatings, lead, galva- nized zinc coatings, some non-ferrous metals, seals made of NBR. In some cases, the latter show major increases in volume when impermissibly aged hydraulic fluids come into contact with the material. NBR is only permitted by prior consent, please observe the customary seal and tube replacement intervals. Do not use any hydrolysis/suscep- tible polyurethane qualities.
	Note Please check seals and coatings of control cabinets, outer coatings of hydraulic compo- nents and accessories (connectors, cables, control cabinets) for resistance to vapors issuing from hydraulic fluids.
HETG/HEES	Zinc, some non-ferrous alloys with zinc
HEPG	Steel/aluminum tribocontacts, paper filters, polymethylmethacrylate (PMMA), NBR
	Note Check plastics for resistance

The material incompatibilities mentioned here do not automatically result in function problems. However the elements of the materials are found in the hydraulic fluids after use. The biological degradation of hydraulic fluids is negatively influenced.

3.1.5 Aging resistance

The way an environmentally acceptable hydraulic fluids ages depends on the thermal, chemical and mechanical stress to which it is subjected. The influence of water, air, temperature and contamination may be significantly greater than for mineral oils HLP/HVLP. Aging resistance can be greatly influenced by the chemical composition of the hydraulic fluids.

High fluid temperatures (e.g. over 80 °C) result in a approximate halving of the fluid service life for every 10 °C temperature increase and should therefore by avoided. The halving of the fluid service life results from the application of the Arrhenius equation (see Glossary).

Table 3: Reference values for temperature-dependent aging of the hydraulic fluid

Reservoir temperature	Fluid life cycle
80 °C	100 %
90 °C	50 %
100 °C	25 %

A modified aging test (without adding water) is prescribed for fluid classifications HETG and HEES. Hydraulic fluids with HEPG and HEPR classification are subjected to the identical test procedure as mineral oils (with 20 % water added). The calculated fluid service life is derived from the results of tests in which the long-term characteristics are simulated in a short period of time by applying more arduous conditions (condensed testing). This calculated fluid service life is not to be equated to the fluid service life in real-life applications.

Table 3 is a practical indicator for hydraulic fluids with water content < 0.1%, cf. chapter 4.10. "Water".

3.1.6 Biological degradation

Environmentally acceptable hydraulic fluids are ones which degrade biologically much faster than mineral oils. Biological degradation is a biochemical transformation effected by micro-organisms resulting in mineralization. For environmentally acceptable hydraulic fluids that make reference to ISO 15380, biological degradation according to ISO 14593 or ISO 9439 must be verified. 60% minimum degradation is defined as limit value. Proof of biological degradation is furnished for the new, unmixed, ready-formulated hydraulic fluids. Aged or mixed hydraulic fluids are less able to degrade biologically. Biological degradation outside the defined test procedure is subject to a variety of natural influences. The key factors are temperature, humidity, contamination, fluid concentration, type and quantity of micro-organisms. Environmentally acceptable hydraulic fluids require no extended maintenance in comparison to mineral oils, please observe chapter 4 "Hydraulic fluids in operation".

3.1.7 Air separation ability (ASA)

The air separation ability (ASA) describes the property of a hydraulic fluid to separate undissolved air. Hydraulic fluids always contain dissolved air. During operation, dissolved air may be transformed into undissolved air, leading to cavitation damages. Fluid classification, fluid product, reservoir size and design must be coordinated to take into account the dwell time and ASA value of the hydraulic fluid. The air separation capacity depends on the viscosity, temperature, basic fluid and aging. It cannot be improved by additives.

According to ISO 15380, for instance, an ASA value \leq 10 minutes is required for viscosity class ISO VG 46, 6 minutes are typical, lower values are preferable.

3.1.8 Demulsifying ability and water solubility

The capacity of a hydraulic fluid to separate water at a defined temperature is known as the demulsifying ability. ISO 6614 defines the demulsifying properties of hydraulic fluids.

Fluids classified HETG, HEES and HEPR separate from water. HETG and HEES hydraulic fluids have a different water separation ability to mineral oil HLP/HVLP. At 20 °C, in comparison to mineral oil HLP/HVLP, a multiple (> factor 3) of water can separate in the hydraulic fluid. Water solubility is also more temperature-dependent than for mineral oils. With regard to water solubility, HEPR hydraulic fluids behave like HVLP hydraulic fluids (see RE 90220). In the majority of cases, HEPG-classified fluids HEPG dissolve water completely , see chapter "4.10 Water".

3.1.9 Filterability

Filterability describes the ability of a hydraulic fluid to pass through a filter, removing solid contaminants. The hydraulic fluids used require a good filterability, not just when new, but also during the whole of their service life. Depending on the different basic fluids (glycols, saturated and partially saturated ester oils, hydrocrack oils, polyalpha olefins, triglycerides) and additives (VI enhancers), there are great differences here.

The filterability is a basic prerequisite for cleanliness, servicing and filtration of hydraulic fluids. Rexroth therefore requires the same degree of filterability of environmentally acceptable hydraulic fluids as for mineral oils HLP/HVLP to DIN 51524. As ISO 15380 does not comment on the filterability of hydraulic fluids, filterability comparable to that of mineral oils HLP/HVLP must be requested of lubricant manufacturers.

Filterability is tested with the new hydraulic fluid and after the addition of 0.2 % water. The underlying standard (ISO 13357-1/-2) stipulates that filterability must have no negative effects on the filters or the hydraulic fluid, see chapter 4 "Hydraulic fluids in operation".

3.1.10 Corrosion protection

Hydraulic fluids should not just prevent corrosion formation on steel components, they must also be compatible with non-ferrous metals and alloys. Corrosion protection tests on different metals and metal alloys are described in ISO 15380. Hydraulic fluids that are not compatible with the materials listed above must not be used, even if they are compliant with ISO 15380.

Rexroth components are usually tested with HLP hydraulic fluids or corrosion protection oils based on mineral oils before they are delivered.

3.1.11 Additivation

The properties described above can be modified with the help of suitable additives. Environmentally acceptable hydraulic fluids should never contain heavy metals. According to the present state of knowledge, all hydraulic fluids, regardless of additivation, can be filtered with all customary filter materials in all known filtration ratings (\geq 0.8 µm), without filtering out effective additives at the same time.

Bosch Rexroth does not prescribe any specific additive system.

3.2 Classification and fields of application

Table 4: Classification and fields of application

Classification	Features	Typical field of application	Notes
HEPG according to ISO 15380 Density at	Basic fluid, glycols	Systems on exposed water courses (locks, weirs, dredgers)	For information on approved components, please refer to the respective product data sheet. For components which have not been approved according to the product data sheet, please consult your Bosch Rexroth sales partner.
15 °C: typically > 0.97 kg/dm ³			 Very good viscosity/temperature characteristics, shear stability
VI: typical > 170			- Resistant to aging
			 Incompatible with mineral oil (exceptions must be confirmed by the lubricant manufacturer)
			- Can be water-soluble
			- Can be mixed with water
			- Very good wear protection properties
			 A higher implementation temperature with the same viscosity in comparison to mineral oil is to be expected
			 Due to the higher density in comparison to HLP, lower suc- tion pressures are to be anticipated for pumps. Reduce the maximum speed as required and optimize suction conditions.
			 Classified as insignificantly water-endangering (water hazard class WGK 1)
			 Prior to commissioning, contact the lubricant manufacturer, as the components are tested with mineral oil HLP/corrosion protection oil.
HEES partially saturated according to ISO 15380	Basic fluid: Ester based on renew- able raw materials, synthetic esters,	Suitable for most fields of application and components.	For information on approved components, please refer to the respective product data sheet. For components which have not been approved according to the product data sheet, please consult your Bosch Rexroth sales partner.
Density at 15 °C: typically	mixtures of various esters, mixtures with polyalphaolefines		 Preferred use of FKM seals. Please enquire for shaft seal rings and implementation temperatures under –15 °C.
0.90-0.93 kg/dm ³ VI: typical > 160 lodine count < 90	(< 30%)		 In operation, a higher temperature in comparison to mineral oil HLP/HVLP is to be expected given identical design and viscosity
			 Limit lower (depending on viscosity class) and upper implementation temperatures (maximum 80 °C due to aging)
			- Good viscosity/temperature characteristics, shear stability.
			- Good corrosion protection, if correspondingly additivized
			 Mostly classed as insignificantly water-endangering (water hazard class WGK 1), in some cases as not water-endangering
			- High dirt dissolving capacity on fluid changeovers
			 In unfavorable operating conditions (high water content, high temperature), HEES on ester basis have a tendency to hydrolysis. The acidic organic decomposition products can chemically attack materials and components.

Classification	Features	Typical field of application	Notes
HEES saturated according to ISO 15380	Basic fluid: Ester based on renew- able raw materials, synthetic esters,	Suitable for most fields of application and components. Saturated HEES	For information on approved components, please refer to the respective product data sheet. For components which have not been approved according to the product data sheet, please consult your Bosch Rexroth sales partner.
Density at 15 °C: typically	mixtures of various esters, mixtures with polyalphaolefines	should be preferred over partially saturated HEES	 Preferred use of FKM seals. Please enquire for shaft seal rings and implementation temperatures under –15 °C.
0.90-0.93 kg/dm ³ VI: typical 140-160	(< 30%)	and HETG for components and systems exposed to	 In operation, a higher temperature in comparison to mineral oil HLP/HVLP is to be expected given identical design and viscosity
lodine count <15		high stress levels.	- Good viscosity/temperature characteristics, shear stability
			- Good corrosion protection, if correspondingly additivized
			 Mostly classed as insignificantly water-endangering (water hazard class WGK 1), in the case of low viscosity classes (up to ISO VG 32) also classed as not water-endangering
			- High dirt dissolving capacity on fluid changeovers
HEPR according to ISO 15380 Density at 15 °C:	Basic fluid: synthetically manufactured hydro- carbons (polyalpha	Suitable for most fields of application and components. HEPR should be	For information on approved components, please refer to the respective product data sheet. For components which have not been approved according to the product data sheet, please consult your Bosch Rexroth sales partner.
typically 0.87 kg/ dm ³	ically 0.87 kg/ ³ ^(a) ^(b) ^{(b}	preterred over partially saturated HEES and HETG	 Behaves similarly to HVLP- hydraulic fluids, individual prod- ucts comply with ISO 15380 HEPR and DIN 51524-3 HVLP
VI : typical 140–160		for components and systems exposed to	 Preferred use of FKM seals. Please enquire for shaft seal rings and implementation temperatures under –15 °C.
		high stress levels.	- Good viscosity-temperature behavior
			 Classified as insignificantly water-endangering (water hazard class WGK 1)
			Note: Note shear stability (see chapter 4.11 "Fluid servicing, fluid analysis and filtration" and chapter 6 "Glossary")
HETG according to ISO 15380	Basic fluid: vegetable oils and triglycerides	Not recommended for Rexroth compo- nents!	Practical requirements are frequently not fulfilled by hydraulic fluids in this classification. Use only permissible after consultation.
Density at 15 °C:			- Viscosity is not stable over time
typically 0.90-0.93 kg/dm ³			 Very fast fluid aging, very hydrolysis-susceptible (please observe neutralization number)
VI: typical > 200			- Tendency to gumming, gelling and setting.
lodine count > 90			 Limit the lower (depending on viscosity class) and upper implementation temperatures (see chapter 3.1.5)
			 Only limited material compatibility
			 Filterability problems at water ingress
			- High dirt dissolving capacity on fluid changeovers
			 Mostly classed as not water-endangering

Table 4: Classification and fields of application (continued from page 8)

4 Hydraulic fluids in operation

4.1 General

The properties of hydraulic fluids can change continually during storage and operation.

Please note that the fluid standard ISO 15380 merely describes minimum requirements for hydraulic fluids in new condition at the time of filling into the bins. The operator of a hydraulic system must ensure that the hydraulic fluid remains in a utilizable condition throughout its entire period of use.

Deviations from the characteristic values are to be clarified with the lubricant manufacturer, the test labs or Bosch Rexroth.

Bosch Rexroth will accept no liability for damage to its components within the framework of the applicable liability legislation insofar as the latter is due to non-observance of the following instructions.

Please note the following aspects in operation.

4.2 Storage and handling

Hydraulic fluids must be stored correctly in accordance with the instructions of the lubricant manufacturer. Avoid exposing the containers to lengthy periods of direct heat. Containers are to be stored in such a way that the risk of any foreign liquid or solid matter (e.g. water, foreign fluids or dust) ingression into the inside of the container can be ruled out. After taking hydraulic fluids from the containers, these are immediately to be properly resealed.

Recommendation:

- Store containers in a dry, roofed place
- Store barrels on their sides
- Clean reservoir systems and machine reservoirs regularly

4.3 Filling of new systems

Usually, the cleanliness levels of the hydraulic fluids as delivered do not meet the requirements of our components. Hydraulic fluids must be filtered using an appropriate filter system to minimize solid particle contamination and water in the system.

As early as possible during test operation, new systems should be filled with the selected hydraulic fluid so as to reduce the risk of accidentally mixing fluids (see chapter 4.5 "Mixing and compatibility of different hydraulic fluids"). Changing the hydraulic medium at a later point represents significant additional costs (see following chapter).

4.4 Hydraulic fluid changeover

In particular with the changeover from mineral oils to environmentally acceptable hydraulic fluids, but also from one environmentally acceptable hydraulic fluids to another, there may be interference (e.g. incompatibility in the form of gelling, sitting, stable foam or reduced filterability or filter blockage).

In the case of changeovers of the fluid in hydraulic systems, it is important to ensure compatibility of the new hydraulic fluid with the remains of the previous hydraulic fluid. Bosch Rexroth recommends obtaining verification of compatibility from the manufacturer or supplier of the new hydraulic fluid. The quantity of old fluid remaining should be minimized. Mixing hydraulic fluids should be avoided, see following chapter.

For information on changing over hydraulic fluids with different classifications, please refer to VDMA 24314, VDMA 24569 and ISO 15380 appendix A.

Bosch Rexroth will not accept liability for any damage to its components resulting from inadequate hydraulic fluid changeovers!

4.5 Mixing and compatibility of different hydraulic fluids

If hydraulic fluids from different manufacturers or different types from the same manufacturer are mixed, gelling, silting and deposits may occur. These, in turn, may cause foaming, impaired air separation ability, malfunctions and damage to the hydraulic system.

If the fluid contains more than 2 % of another fluid then it is considered to be a mixture. Exceptions apply for water, see chapter 4.10 "Water".

Mixing with other hydraulic fluids is not generally permitted. This also includes hydraulic fluids with the same classification and from the market overview RE 90221-01. If individual lubricant manufacturers advertise miscibility and/or compatibility, this is entirely the responsibility of the lubricant manufacturer.

Bosch Rexroth customarily tests all components with mineral oil HLP before they are delivered.

Note: With connectible accessory units and mobile filtering systems, there is a considerable risk of non-permitted mixing of the hydraulic fluids!

Rexroth will not accept liability for any damage to its components resulting from mixing hydraulic fluids!

4.6 Re-additivation

Additives added at a later point in time such as colors, wear reducers, VI enhancers or anti-foam additives, may negatively affect the performance properties of the hydraulic fluid and the compatibility with our components and therefore are not permissible.

Rexroth will not accept liability for any damage to its components resulting from re-additivation!

4.7 Foaming behavior

Foam is created by rising air bubbles at the surface of hydraulic fluids in the reservoir. Foam that develops should collapse as quickly as possible.

Common hydraulic fluids in accordance with ISO 15380 are sufficiently inhibited against foam formation in new condition. On account of aging and adsorption onto surfaces, the defoamer concentration may decrease over time, leading to a stable foam.

Defoamers may be re-dosed only after consultation with the lubricant manufacturer and with his written approval.

Defoamers may affect the air separation ability.

4.8 Corrosion

The hydraulic fluid is to guarantee sufficient corrosion protection of components under all operating conditions, even in the event of impermissible water contamination.

Environmentally acceptable hydraulic fluids are tested for corrosion protection in the same way as mineral oil HLP/ HVLP. When used in practice other corrosion mechanisms are revealed in detail and in individual cases, for the most part in contact with non-ferrous and white alloys.

4.9 Air

Under atmospheric conditions the hydraulic fluid contains dissolved air. In the negative pressure range, for instance in the suction pipe of the pump or downstream of control edges, this dissolved air may transform into undissolved air. The undissolved air content represents a risk of cavitation and of the diesel effect. This results in material erosion of components and increased hydraulic fluid aging.

With the correct measures, such as suction pipe and reservoir design, and an appropriate hydraulic fluid, air intake and separation can be positively influenced.

See also chapter 3.1.7 "Air separation ability (ASA)".

4.10 Water

Water contamination in hydraulic fluids can result from direct ingress or indirectly through condensation of water from the air due to temperature variations.

HEPG dissolves water completely. This means that any water that has ingressed into the system cannot be drained off in the sump of the reservoir.

In the case of hydraulic fluids classed HETG, HEES and HEPR undissolved water can be drained off from the reservoir sump, the remaining water content is however too high to ensure that the maximum permissible water limit values are observed in the long term.

Water in the hydraulic fluid can result in wear or direct failure of hydraulic components. Furthermore, a high water content in the hydraulic fluid negatively affects aging and filterability and increases susceptibility to cavitation. During operation, the water content in all hydraulic fluids, determined according to the "Karl Fischer method" (see chapter 6 "Glossary") for all environmentally acceptable hydraulic fluids must constantly be kept below 0.1% (1000 ppm). To ensure a long service life of both hydraulic fluids and components, Bosch Rexroth recommends that values below 0.05% (500 ppm) are permanently maintained.

Due to the higher water solubility (except for HEPR) in comparison to mineral oil HLP/HVLP it is urgently advised that precautions be taken when using environmentally acceptable hydraulic fluids, such as a dehumidifier on the reservoir ventilation.

Water content has an affect particularly in the case of HETG and partially saturated HEES in that it accelerates aging (hydrolysis) of the hydraulic fluid and biological degradation, see chapter 4.11 "Fluid servicing, fluid analysis and filtration".

4.11 Fluid servicing, fluid analysis and filtration

Air, water, operating temperature influences and solid matter contamination will change the performance characteristics of hydraulic fluids and cause them to age.

To preserve the usage properties and ensure a long service life for hydraulic fluid and components, the monitoring of the fluid condition and a filtration adapted to the application requirements (draining and degassing if required) are indispensable.

The effort is higher in the case of unfavorable usage conditions, increased stress for the hydraulic system or high expectations as to availability and service life, see chapter 2 "Solid particle contamination and cleanliness levels".

When commissioning a system, please note that the required minimum cleanliness level can frequently be attained only by flushing the system. Due to severe start-up contamination, it may be possible that a fluid and/or filter replacement becomes necessary after a short operating period (< 50 operating hours).

The hydraulic fluid must be replaced at regular intervals and tested by the lubricant manufacturer or recognized accredited test labs. We recommend a reference analysis after commissioning.

The minimum data to be tested for analyses are:

- Viscosity at 40 °C and 100 °C
- Neutralization number NN (acid number AN)
- Water content (Karl-Fischer method)
- Particle measurement with evaluation according to ISO 4406 or mass of solid foreign substances with evaluation to EN 12662
- Element analysis (RFA (EDX) / ICP, specify test method)
- Comparison with new product or available trend analyses
- Assessment / evaluation for further use
- Also recommended: IR spectrum"

Differences in the maintenance and upkeep of environmentally acceptable hydraulic fluids with the corresponding suitability characteristics (as required in market overview RE 90221-01) in comparison to mineral oil HLP/HVLP are not necessary. Attention is however drawn to the note in chapter 1.3.

After changing over hydraulic fluids it is recommended that the filters be replaced again after 50 operating hours as fluid aging products may have detached themselves ("self-cleaning effect").

Compared to the pure unused hydraulic fluid the changed neutralization number NN (acid number AN) indicates how many aging products are contained in the hydraulic fluid. This difference must be kept as low as possible. As soon as the trend analysis notes a significant increase in the values, the lubricant manufacturer should be contacted.

A higher viscosity than that of new materials indicates that the hydraulic fluid has aged. Evaluation by the test lab or lubricant manufacturers is however authoritative, whose recommendation should be urgently observed. On systems where the possibility of water contamination cannot be completely ruled out (also condensation), it should be ensured via the hydraulic system circuit that fluid aging products are not accumulating in individual areas of the hydraulic system, but are being removed from the system in a controlled manner via the filtration system. This should be ensured via suitable hydraulic circuits (e.g. flushing circuit) or system manufacturer's operating instructions/specifications.

In case of warranty, liability or guarantee claims to Bosch Rexroth, service verification and/or the results of fluid analyses are to be provided.

5 Disposal and environmental protection

All environmentally acceptable hydraulic fluids, are like mineral oil-based hydraulic fluids, subject to special disposal obligations.

The respective lubricant manufacturers provide specifications on environmentally acceptable handling and storage. Please ensure that spilt or splashed fluids are absorbed with appropriate adsorbents or by a technique that prevents it contaminating water courses, the ground or sewerage systems.

It is also not permitted to mix fluids when disposing of hydraulic fluids. Regulations governing the handing of used oils stipulate that used oils are not to mixed with other products, e.g. substances containing halogen. Non-compliance will increase disposal costs. Comply with the national legal provisions concerning the disposal of the corresponding hydraulic fluid. Comply with the local safety data sheet of the lubricant manufacturer for the country concerned.

6 Glossary

Additivation

Additives are chemical substances added to the basic fluids to achieve or improve specific properties.

Aging

Hydraulic fluids age due to oxidation (see chapter 3.1.5 "Aging resistance"). Liquid and solid contamination acts as a catalyzer for aging, meaning that it needs to be minimized as far as possible by careful filtration. Please refer to Hydrolysis.

Arrhenius equation

The quantitative relation between reaction rate and temperature is described by an exponential function, the Arrhenius equation. This function is usually visualized within the typical temperature range of the hydraulic system. For a practical example, see chapter 3.1.5 "Aging resistance".

Basic fluids

In general, a hydraulic fluid is made up of a basic fluid, or base oil, and chemical substances, the so-called additives. The proportion of basic fluid is generally greater than 90%.

Diesel effect

If hydraulic fluid that contains air bubbles is compressed quickly, the bubbles are heated to such a degree that a selfignition of the air-gas mix may occur. The resultant temperature increase may lead to seal damage and increased aging of the hydraulic fluid.

Saturated esters

Esters differ by the number of C atoms (chain length) and position of the bonds between the C atoms. Saturated esters do not have double/multiple bonds between C atoms and are therefore more resistant to aging than partially saturated esters.

Partially saturated esters

In contrast to saturated esters, partially saturated esters have double/multiple bonds between C atoms. Rexroth defines partially saturated esters as unsaturated bonds and mixtures of esters with unsaturated and saturated bonds. Esters with unsaturated bonds are produced on the basis of renewable raw materials.

Depending on their number and position, these unsaturated bonds between the C atoms are instable. These bonds can detach themselves and form new bonds, thus changing the properties of those liquids (an aging mechanism). One of the underlying requirements for inclusion in the market overview RE 90221-01 is an aging stability characteristic. Attention is however drawn to the note in chapter 1.3.

Hydrolysis

Hydrolysis is the splitting of a chemical bond through the reaction with water under the influence of temperature.

ICP (atomic emission spectroscopy)

The ICP procedure can be used to determine various wear metals, contamination types and additives. Practically all elements in the periodic system can be detected with this method.

lodine count

The iodine count is a yardstick for the quantity of single and multiple unsaturated bonds between C atoms in the basic fluid. A low iodine count indicates that the hydraulic fluid contains few unsaturated bonds and is thus considerably more resistant to aging than a hydraulic fluid with a high iodine count. A statement about the position at which these multiple bonds are located and about how "stable" they are against influencing factors cannot be derived simply by stating the iodine count.

Karl Fischer method

Method to determine the water content in fluids. Indirect coulometric determination procedure in accordance with DIN EN ISO 12937 in connection with DIN 51777-2. Only the combination of both standards will assure adequately accurate measured values. For hydraulic fluids based on glycol, DIN EN ISO 12937 is to be applied in conjunction with DIN 51777-1.

Cavitation

Cavitation is the creation of cavities in fluids due to pressure reduction below the saturated vapour pressure and subsequent implosion when the pressure increases. When the cavities implode, extremely high acceleration, temperatures and pressure may occur temporarily, which may damage the component surfaces.

Neutralization number (NN)

The neutralization number (NN) or acid number (AN) specifies the amount of caustic potash required to neutralize the acid contained in one gram of fluid.

Pour point

The lowest temperature at which the fluid still just flows when cooled down under set conditions. The pour point is specified in the lubricant manufacturers' technical data sheets as a reference value for achieving this flow limit.

RFA (wavelength dispersive x-ray fluorescence analysis)

Is a procedure to determine nearly all elements in liquid and solid samples with nearly any composition. This analysis method is suitable for examining additives and contamination, delivering fast results.

Shearing/shear loss

Shearing of molecule chains during operation can change the viscosity of hydraulic fluids with long chain VI enhancers. The initially high viscosity index drops. This needs to be taken into account when selecting the hydraulic fluid.

The only value at present that can be used to assess viscosity changes in operation is the result of the test in accordance with DIN 51350 part -6. Please note that there are practical applications that create a much higher shear load on such hydraulic fluids than can be achieved by this test.

Stick-slip

Interaction between a resilient mass system involving friction (such as cylinder + oil column + load) and the pressure increase at very low sliding speeds. The static friction of the system is a decisive value here. The lower it is, the lower the speed that can still be maintained without sticking. Depending on the tribologic system, the stick-slip effect may lead to vibrations generated and sometimes also to significant noise emission. In many cases, the effect can be attenuated by replacing the lubricant.

Viscosity

Viscosity is the measure of the internal friction of a fluid to flow. It is defined as the property of a substance to flow under tension. Viscosity is the most important characteristic for describing the load-bearing capacity of a hydraulic fluid.

Kinematic viscosity is the ratio of the dynamic viscosity and the density of the fluid; the unit is mm²/s. Hydraulic fluids are classified by their kinematic viscosity into ISO viscosity classes. The reference temperature for this is 40 °C.

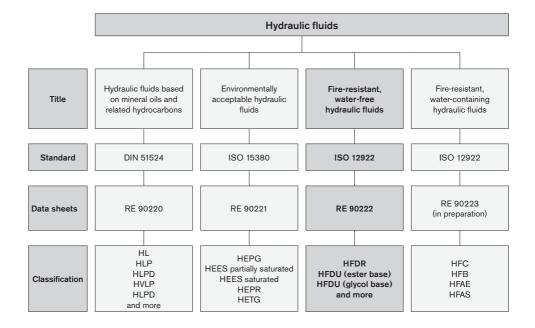
Viscosity index (VI)

Refers to the viscosity temperature behavior of a fluid. The lower the change of viscosity in relation the temperature, the higher the VI.

Bosch Rexroth AG Hydraulics Zum Eisengießer 1 97816 Lohr am Main, Germany Phone +49 (0) 93 52 / 18-0 Fax +49 (0) 93 52 / 18-23 58 documentation@boschrexroth.de www.boschrexroth.de © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

No statements concerning the suitability of a hydraulic fluid for a specific purpose can be derived from our information. The information given does not release the user from the obligation of own judgment and verification.

It must be remembered that our products are subject to a natural process of wear and aging.


Subject to change.

Fire-resistant, water-free hydraulic fluids (HFDR/HFDU)

RE 90222/05.12 1/16

Application notes and requirements for Rexroth hydraulic components

Contents

1 Basic information	3
1.1 General instructions	3
1.2 Fire resistance	3
1.3 Scope	4
1.4 Safety instructions	4
2 Solid particle contamination and cleanliness levels	5
3 Selection of the hydraulic fluid	6
3.1 Selection criteria for the hydraulic fluid	6
3.1.1 Viscosity	6
3.1.2 Viscosity-temperature behavior	7
3.1.3 Wear protection capability	7
3.1.4 Material compatibility	7
31.5 Aging resistance	7
31.6 Environmentally acceptable	8
3.1.7 Air separation ability (ASA)	8
3.1.8 Demulsifying ability and water solubility	8
31.9 Filterability	8
3.1.10 Corrosion protection	8
3.1.11 Additivation	8
3.2 Classification and fields of application	9
4 Hydraulic fluids in operation	.11
4.1 General	.11
4.2 Storage and handling	.11
4.3 Filling of new systems	.11
4.4 Hydraulic fluid changeover	.11
4.5 Mixing and compatibility of different hydraulic fluids	. 11
4.6 Re-additivation	.11
4.7 Foaming behavior	.11
4.8 Corrosion	.12
4.9 Air	.12
4.10 Water	.12
4.11 Fluid servicing, fluid analysis and filtration	.12
5 Disposal and environmental protection	.13
6 Glossary	. 14

1 Basic information

1.1 General instructions

The hydraulic fluid is the common element in any hydraulic component and must be selected very carefully. Quality and cleanliness of the hydraulic fluid are decisive factors for the operational reliability, efficiency and service life of a system.

Hydraulic fluids must conform, be selected and used in accordance with the generally acknowledged rules of technology and safety provisions. Reference is made to the countryspecific standards and directives (in Germany the directive of the Employer's Liability Insurance Association BGR 137).

This data sheet includes recommendations and regulations concerning the selection, operation and disposal of fire-resistant, water-free hydraulic fluids in the application of Rexroth hydraulic components.

The individual selection of hydraulic fluid or the choice of classification are the responsibility of the operator.

It is the responsibility of the user to ensure that appropriate measures are taken for safety and health protection and to ensure compliance with statutory regulations. The recommendations of the lubricant manufacturer and the specifications given in the safety data sheet are to be observed when using hydraulic fluid.

This data sheet does not absolve the operator from verifying the conformity and suitability of the respective hydraulic fluid for his system. He is to ensure that the selected fluid meets the minimum requirements of the relevant hydraulic fluid standard during the whole of the period of use.

The currently valid standard for fire-resistant hydraulic fluids is the ISO 12922. In addition, other, more detailed documents, guidelines, specifications and legislation may also be valid. The operator is responsible for ensuring that such regulations are observed, for example:

- 7th Luxembourg Report: Luxembourg, April 1994, Doc. No. 4746/10/91 EN "Requirements and tests applicable to fire-resistant hydraulic fluids for hydrostatic and hydrokinetic power transmission and control"
- VDMA 24314 (1981-11): "Changing hydraulic fluids guidelines"
- VDMA 24317 (2005-11): "Fire-resistant hydraulic fluids minimum technical requirements"
- FM Approval Standard 6930 (2009-04): "Flammability Classification of Industrial Fluids" (only available in English)
- DIN Technical Report CEN/TR 14489 (2006-01): "Selection guidelines for protecting safety, health and the environment"

We recommend that you maintain constant, close contact with lubricant manufacturers to support you in the selection, maintenance, care and analyses.

When disposing of used hydraulic fluids, apply the same care as during use.

1.2 Fire resistance

There is no clear legal definition of fire-resistant hydraulic fluids. There are great differences regarding fire resistance. The selection is the sole responsibility of the system operator with respect to requirements (application, construction and design of the system, hottest source in the system, necessary fire protection).

Different test procedures are applied for evaluating fire resistance.

Fire resistance test procedure according to ISO 12922:

- Ignition properties of spray according to ISO 15029-1 (Spray flame persistence – hollow-cone nozzle method)
- Ignition properties of spray according to ISO 15029-2 (Stabilized flame heat release)
- Wick flame persistence of fluids according to ISO 14935 (average flame persistence)
- Determination of the flammability characteristics of fluids in contact with hot surfaces, ignition process according to ISO 20823 (ignition temperature, flame spread)

In general, fire-resistant hydraulic fluids are distinguished between **water-containing** fire-resistant and **water-free** fire-resistant hydraulic fluids. Water-containing fire-resistant hydraulic fluids are described in RE 90223.

Water-free, fire-resistant hydraulic fluid means hydraulic fluids with a water-proportion of 0.1% by volume ("Karl Fischer method", see chapter 6 "Glossary"), measured at the time of filling in the transport container.

In Europe water-free, fire-resistant hydraulic fluids are not approved for use in underground coal mining. The classification HFDU is no longer included in the VDMA 24317: 2005.

Note

In contrast to water-containing fluids, all water-free, fireresistant hydraulic fluids have a flash point and a fire point. Specific parameters for flash point and fire point can be found in the technical and/or safety data sheet for the hydraulic fluid concerned.

Just as much care should be taken when working with fireresistant hydraulic fluids are with other hydraulic fluids, e.g. mineral oils. A leak from the hydraulic system must be avoided. The best and most cost-effective protection against fire and explosion is to prevent leakage with meticulous service, maintenance and care of the hydraulic system.

1.3 Scope

This data sheet must be applied when using water-free, fireresistant hydraulic fluids with Rexroth hydraulic components. The specifications of this data sheet may be further restricted by the specifications given in data sheets for the individual components concerned.

The use of the individual water-free, fire-resistant hydraulic fluids in accordance with the intended purpose can be found in the safety data sheets or other product description documents of the lubricant manufacturers. In addition, each use is to be individually considered.

Rexroth hydraulic components may only be operated with water-free, fire-resistant hydraulic fluids according to ISO 12922 if specified in the respective component data sheet or if a Rexroth approval for use is furnished.

The manufacturers of hydraulic systems must adjust their systems and operating instructions to the water-free, fire-resistant hydraulic fluids.

Bosch Rexroth will accept no liability for its components for any damage resulting from failure to comply with the notes below.

1.4 Safety instructions

Hydraulic fluids can constitute a risk for persons and the environment. These risks are described in the hydraulic fluid safety data sheets. The operator is to ensure that a current safety data sheet for the hydraulic fluid used is available and that the measures stipulated therein are complied with.

2 Solid particle contamination and cleanliness levels

Solid particle contamination is the major reason for faults occurring in hydraulic systems. It may lead to a number of effects in the hydraulic system. Firstly, single large solid particles may lead directly to a system malfunction, and secondly small particles cause continuous elevated wear.

For mineral oils, the cleanliness level of water-free, fire-resistant hydraulic fluids is given as a three-digit numerical code in accordance with ISO 4406. This numerical code denotes the number of particles present in a hydraulic fluid for a defined quantity. Moreover, foreign solid matter is not to exceed a mass of 50 mg/kg (gravimetric examination according to ISO 4405).

In general, compliance with a minimum cleanliness level of 20/18/15 in accordance with ISO 4406 or better is to be maintained in operation. Special servo valves demand improved cleanliness levels of at least 18/16/13. A reduction in cleanliness level by one level means half of the quantity of particles and thus greater cleanliness. Lower numbers in cleanliness levels should always be striven for and extend the service life of hydraulic components. The component with the highest cleanliness requirements determines the required cleanliness of the overall system. Please also observe the specifications in table 1: "Cleanliness levels according to ISO 4406" and in the respective data sheets of the various hydraulic components.

Table 1: Cleanliness levels according to ISO 4406

Particles per 100 ml Scale number Up to and More than including 8.000.000 16.000.000 24 20 / 18 / 15 4,000,000 8,000,000 23 >4 µm >6 µm >14 µm 2.000.000 4.000.000 22 1,000,000 2,000,000 21 500,000 1,000,000 20 250,000 500,000 19 130,000 250,000 18 64000 130,000 17 32000 64000 16 16000 32000 15 8000 16000 14 4000 8000 13 2000 4000 12 1000 2000 11 1000 10 500 250 500 9 130 250 8 64 130 7 32 64 6

Hydraulic fluids frequently fail to meet these cleanliness requirements on delivery. Careful filtering is therefore required during operation and in particular, during filling in order to ensure the required cleanliness levels. Your lubricant manufacturer can tell you the cleanliness level of hydraulic fluids as delivered. To maintain the required cleanliness level over the operating period, you must use a reservoir breather filter. If the environment is humid, take appropriate measures, such as a breather filter with air drying or permanent off-line water separation.

Note: the specifications of the lubricant manufacturer relating to cleanliness levels are based on the time at which the container concerned is filled and not on the conditions during transport and storage.

Further information about contamination with solid matter and cleanliness levels can be found in brochure RE 08016.

3 Selection of the hydraulic fluid

Water-free, fire-resistant hydraulic fluids for Bosch Rexroth hydraulic components are assessed on the basis of their fulfillment of the minimum requirements of ISO 12922.

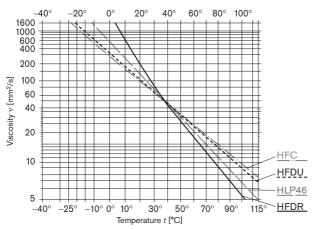
3.1 Selection criteria for the hydraulic fluid

The specified limit values for all components employed in the hydraulic system, for example viscosity and cleanliness level, must be observed with the hydraulic fluid used, taking into account the specified operating conditions.

Hydraulic fluid suitability depends, amongst others, on the following factors:

3.1.1 Viscosity

Viscosity is a basic property of hydraulic fluids. The permissible viscosity range of complete systems needs to be determined taking account of the permissible viscosity of all components and it is to be observed for each individual component.


The viscosity at operating temperature determines the response characteristics of closed control loops, stability and damping of systems, the efficiency factor and the degree of wear. We recommend that the optimum operating viscosity range of each component be kept within the permissible temperature range. This usually requires either cooling or heating, or both. The permissible viscosity range and the necessary cleanliness level can be found in the product data sheet for the component concerned.

If the viscosity of a hydraulic fluid used is above the permitted operating viscosity, this will result in increased hydraulic-mechanical losses. In return, there will be lower internal leakage losses. If the pressure level is lower, lubrication gaps may not be filled up, which can lead to increased wear. For hydraulic pumps, the permitted suction pressure may not be reached, which may lead to cavitation damage.

If the viscosity of a hydraulic fluid is below the permitted operating viscosity, increased leakage, wear, susceptibility to contamination and a shorter component life cycle will result.

Please ensure that the permissible temperature and viscosity limits are observed for the respective components. This usually requires either cooling or heating, or both.

Fig. 1: Examples V-T diagrams for water-free, fire-resistant hydraulic fluids in comparison to HLP and HFC (reference values, double-logarithmic representation)

Typical viscosity data [mm ² /s]				
at temperature	0 °C	40 °C	100 °C	
HFDR	2500	43	5,3	
HFDU (ester base)	330	46	9,2	
HFDU (glycol base)	350	46	8,7	
For comparison HLP (see RE 90220)	610	46	7	
For comparison HFC (see RE 90223)	280	46		

Detailed V-T diagrams may be obtained from your lubricant manufacturer for their specific products. Descriptions of the individual classifications can be found in chapter 3.2 and in Table 4.

3.1.2 Viscosity-temperature behavior

For hydraulic fluids, the viscosity temperature behavior (V-T behavior) is of particular importance. Viscosity is characterized in that it drops when the temperature increases and rises when the temperature drops. The interrelation between viscosity and temperature is described by the viscosity index (VI).

For cold testing over a period of several days, the viscosity of ester-based HFDU can increase greatly. After heating, the characteristic values as specified on the data sheet are restored. Please ask your lubricant manufacturer for the "Flow capacity after seven days at low temperature" (ASTM D 2532) for the fluid classification ester-based HFDU.

HFDU fluid based on ester and glycol have better viscosity/ temperature characteristics than mineral oil HLP (see Fig. 1). This should be taken into consideration when selecting hydraulic fluid for the required temperature range. The viscosity and temperature limits required in the product data sheets are to be observed in all operating conditions.

Note

For ambient temperatures below 0 °C, fire-resistant, **watercontaining** hydraulic fluids of classification HFC are to be preferred because they observe the component-related viscosity ranges and because the have better pour points (see RE 90223).

3.1.3 Wear protection capability

Wear protection capability describes the property of hydraulic fluids to prevent or minimize wear within the components. The wear protection capability is described in ISO 12922 via test procedures"FZG gear test rig" (ISO 14635-1) and "Mechanical test in the vane pump" (ISO 20763). The wear protection capability of water-free, fire-resistant hydraulic fluids in relation to the two test procedures is comparable to that of mineral oil HLP/HVLP.

3.1.4 Material compatibility

The hydraulic fluid must not negatively affect the materials used in the components. Compatibility with coatings, seals, hoses, metals and plastics is to be observed in particular. The fluid classifications specified in the respective component data sheets are tested by the manufacturer with regard to material compatibility. Parts and components not supplied by us are to be checked by the user.

Table 2: Known material incompatibilities

Classification	Incompatible with:
HFD in general	Seals, plastics and coatings of control cabi- nets, outer coatings of hydraulic components and accessory components (connectors, wiring harnesses, control cabinets) are to be tested for stability.
	Note: hydraulic fluid vapors can also lead to incompatibility!
HFDR	Individual component color coating, lead, gal- vanic zinc-plating, in part non-ferrous metals with zinc, tin and aluminum in a tribological system. Sealing elements made of NBR. In some cases, the latter show major increases in volume when impermissibly aged hydraulic fluids come into contact with the material. Do not use any hydrolysis/susceptible polyure- thane qualities.
HFDU based on ester	Single-component color coatings, lead, galvanized zinc coatings, in part non-ferrous metals with zinc, tin, seals made of NBR. In some cases, the latter show major increases in volume when impermissibly aged hydraulic fluids come into contact with the material. Do not use any hydrolysis/susceptible polyure- thane qualities.
HFDU based on glycol	Single-component color coatings, steel/alu- minum tribocontacts, paper filters, polymeth- ylmethacrylate (PMMA). The compatibility of NBR is to be examined for individual case.

The material incompatibilities mentioned here do not automatically result in function problems. However the elements of the materials are found in the hydraulic fluids after use. The material incompatibilities described here may lead to accelerated aging of the hydraulic fluid and to reduced fire resistance.

3.1.5 Aging resistance

The way a water-free, fire-resistant hydraulic fluid ages depends on the thermal, chemical and mechanical stress to which it is subjected. The influence of water, air, temperature and contamination may be significantly greater than for mineral oils HLP/HVLP. Aging resistance can be greatly influenced by the chemical composition of the hydraulic fluids.

High fluid temperatures (e.g. over 80 °C) result in a approximate halving of the fluid service life for every 10 °C temperature increase and should therefore by avoided. The halving of the fluid service life results from the application of the Arrhenius equation (see Glossary).

Table 3: Reference values for temperature-dependent	
aging of the hydraulic fluid	

Reservoir temperature	Fluid life cycle
80 °C	100 %
90 °C	50 %
100 °C	25 %

A modified aging test (ISO 4263-3 or ASTM D943 – without the addition of water) is specified for fluid classification HFDU. Fluid classification HFDR is described with a special procedure with respect to oxidation stability (EN 14832) and oxidation service life (ISO 4263-3). The calculated fluid service life is derived from the results of tests in which the long-term characteristics are simulated in a short period of time by applying more arduous conditions (condensed testing). This calculated fluid service life is not to be equated to the fluid service life in real-life applications.

Table 3 is a practical indicator for hydraulic fluids with water content < 0.1%, cf. chapter 4.10. "Water".

3.1.6 Environmentally acceptable

HFDU fluids based on ester and glycol are hydraulic fluids which may also be classified as environmentally acceptable. The main criteria for fire-resistant, water-free hydraulic fluids are the leak-free, technically problem-free use and the necessary fire resistance. Environmentally acceptable is merely a supplementary criterion. Notes on environmentally compatible hydraulic fluids can be found in RE 90221.

3.1.7 Air separation ability (ASA)

The air separation ability (ASA) describes the property of a hydraulic fluid to separate undissolved air. Hydraulic fluids always contain dissolved air. During operation, dissolved air may be transformed into undissolved air, leading to cavitation damages. Fluid classification, fluid product, reservoir size and design must be coordinated to take into account the dwell time and ASA value of the hydraulic fluid. The air separation capacity depends on the viscosity, temperature, basic fluid and aging. It cannot be improved by additives.

According to ISO 12922 for instance, an ASA value \leq 15 minutes is required for viscosity class ISO VG 46, practical values on delivery are < 10 minutes, lower values are preferable.

3.1.8 Demulsifying ability and water solubility

The capacity of a hydraulic fluid to separate water at a defined temperature is known as the demulsifying ability. ISO 6614 defines the demulsifying properties of hydraulic fluids.

The fluid classifications HFDU based on ester and HFDR separate water, but HFD hydraulic fluids have a different water separation ability to mineral oil HLP/HVLP. At 20 °C, in comparison to mineral oil HLP/HVLP, a multiple (> factor 3) of water can separate in the hydraulic fluid. Water solubility is also more temperature-dependent than for mineral oils. The fluid classification HFDU based on glycol usually dissolves water completely, see chapter "4.10 Water".

3.1.9 Filterability

Filterability describes the ability of a hydraulic fluid to pass through a filter, removing solid contaminants. The hydraulic fluids used require a good filterability, not just when new, but also during the whole of their service life. This can differ greatly depending on the different basic fluids (glycols, esters) and additives (VI enhancers, anti-fogging additives).

The filterability is a basic prerequisite for cleanliness, servicing and filtration of hydraulic fluids. Rexroth therefore requires the same degree of filterability of water-free, fire-resistant hydraulic fluids as for mineral oils HLP/HVLP to DIN 51524. As ISO 12922 does not comment on the filterability of hydraulic fluids, filterability comparable to that of mineral oils HLP/ HVLP must be requested of lubricant manufacturers.

Filterability is tested with the new hydraulic fluid and after the addition of 0.2 % water. The underlying standard (ISO 13357-1/-2) stipulates that filterability must have no negative effects on the filters or the hydraulic fluid, see chapter 4 "Hydraulic fluids in operation".

3.1.10 Corrosion protection

Hydraulic fluids should not just prevent corrosion formation on steel components, they must also be compatible with non-ferrous metals and alloys. Corrosion protection tests on different metals and metal alloys are described in ISO 12922.

Rexroth components are usually tested with HLP hydraulic fluids or corrosion protection oils based on mineral oils before they are delivered.

3.1.11 Additivation

The properties described above can be modified with the help of suitable additives.

Bosch Rexroth does not prescribe any specific additive system.

3.2 Classification and fields of application

Table 4: Classification and fields of application

Classification	Features	Typical field of application	Notes
HFDU (glycol-based) according to ISO 12922	Base fluid: Glycols	Mobile systems with high thermal loading	For information on approved components, please refer to the respective product data sheet. For components which have not been approved according to the product data sheet, please consult your Bosch Rexroth sales partner.
Density at 15 °C: typically			 Very good viscosity/temperature characteristics, shear stability
> 0.97 kg/dm ³			- Resistant to aging
VI: typical > 170			- Can be water-soluble
The sheet for the			 Can be mixed with water
The classification "HFDU" is no longer			 Very good wear protection properties
listed in the current standard sheet			 A higher implementation temperature with the same viscos- ity in comparison to mineral oil is to be expected
VDMA 24317.			 Due to the higher density in comparison to HLP, lower suction pressures are to be anticipated for pumps. Reduce the maximum speed as required and optimize suction conditions.
			 Prior to commissioning, contact the lubricant manufacturer, as the components are tested with mineral oil HLP/corro- sion protection oil.
			 Incompatible with mineral oil (exceptions must be con- firmed by the lubricant manufacturer).
HFDU (ester-based) according to ISO 12922 Density at 15 °C:	Base fluid: Ester based on regenerative raw materials, synthetic	Suitable for most fields of application and components.	For information on approved components, please refer to the respective product data sheet. For components which have not been approved according to the product data sheet, please consult your Bosch Rexroth sales partner.
typically 0.90-0.93 kg/dm ³	ester and mixtures of different esters		 Preferred use of FKM seals. Please enquire about shaft seal rings and implementation temperatures under -15 °C.
VI: typical > 160 lodine count < 90	Because of the fire resistance, HFDU hydraulic fluids		 Note shear stability (see chapter 4.11 "Fluid servicing, fluid analysis and filtration" and chapter 6 "Glossary")
	based on ester are		- Fire resistance is not stable over time
The classification "HFDU" is no longer listed in the current standard sheet	longer ırrent		 In operation, a higher temperature in comparison to mineral oil HLP/HVLP is to be expected given identical design and viscosity. Please check ATEX approvals for hydraulic components.
VDMA 24317.			 Limit the lower (see chapter 3.1.2) and upper implementa- tion temperatures (see chapter 3.1.5)
			- Good viscosity-temperature behavior
			 Usually classified as insignificantly water-endangering (water hazard class WGK 1)
			 High dirt dissolving capacity on fluid changeovers
			 In unfavorable operating conditions (high water content, high temperature), HFDU on ester basis have a tendency to hydrolysis. The acidic organic decomposition products can chemically attack materials and components.

Classification	Features	Typical field of application	Notes
HFDR according to ISO 12922 Density at 15 °C:	Base fluid: phos- phoric acid ester	Turbine control systems	For information on approved components, please refer to the respective product data sheet. For components which have not been approved according to the product data sheet, please consult your Bosch Rexroth sales partner.
typically 1.1 kg/dm ³			 Classified as hazardous materials (for transportation and storage)
VI : typical 140-160			 Hazardous working material
			– Water-endangering (Water hazard class 2 – WGK2)
			- Develops toxic vapors in case of fire
			 Preferred use of FKM, and possibly PTFE seals. Please enquire for shaft seal rings and implementation tempera- tures under -15 °C.
			 In operation, a higher temperature in comparison to mineral oil HLP/HVLP is to be expected given identical design and viscosity
			 Phosphoric acid esters display a tendency to hydrolysis when they come into contact with moisture. Under the influence of water/moisture, they become unstable or form highly aggressive, acidic components which could damage the hydraulic fluid and component beyond repair.
			- Poor viscosity/temperature characteristics
			 Due to the higher density in comparison to HLP, lower suction pressures are to be anticipated for pumps. Reduce the maximum speed as required and optimize suction conditions.
			 In unfavorable operating conditions (high water content, high temperature), HFDR have a tendency to hydrolysis. The acidic inorganic decomposition products chemically attack materials and components.
HFDU (continued)	Based on triglycer- ides, mineral oils or related hydrocarbons	Not recommended for Rexroth compo- nents!	Hydraulic fluids based on polyalphaolefines are not recom- mended on account of their poor fire resistance. This clas- sification can usually be identified from: density < 0.89; VI < 140 to 160
			Hydraulic fluids based on triglycerides are not recommended on account of their aging resistance. This classification can usually be identified from: density > 0.92 ; VI > 190 ; iodine count > 90
			Consult your lubricant manufacturer or your Bosch Rexroth sales partner if the classification of a hydraulic fluid is not clear.
HFDS HFDT	Based on haloge- nated hydrocarbons or mixtures with halogenated hydrocarbons	Not approved for Rexroth compo- nents!	HFDS and HFDT have not been permitted to be manufac- tured or used since 1989 for environmental reasons.

4 Hydraulic fluids in operation

4.1 General

The properties of hydraulic fluids can change continually during storage and operation.

Please note that the fluid standard ISO 12922 merely describes minimum requirements for hydraulic fluids in new condition at the time of filling into the bins. The operator of a hydraulic system must ensure that the hydraulic fluid remains in a utilizable condition throughout its entire period of use.

Deviations from the characteristic values are to be clarified with the lubricant manufacturer, the test labs or Bosch Rexroth.

Bosch Rexroth will accept no liability for damage to its components within the framework of the applicable liability legislation insofar as the latter is due to non-observance of the following instructions.

Please note the following aspects in operation.

4.2 Storage and handling

Hydraulic fluids must be stored correctly in accordance with the instructions of the lubricant manufacturer. Avoid exposing the containers to lengthy periods of direct heat. Containers are to be stored in such a way that the risk of any foreign liquid or solid matter (e.g. water, foreign fluids or dust) ingression into the inside of the container can be ruled out. After taking hydraulic fluids from the containers, these are immediately to be properly resealed.

Recommendation:

- Store containers in a dry, roofed place
- Store barrels on their sides
- Clean reservoir systems and machine reservoirs regularly

4.3 Filling of new systems

Usually, the cleanliness levels of the hydraulic fluids as delivered do not meet the requirements of our components. Hydraulic fluids must be filtered using an appropriate filter system to minimize solid particle contamination and water in the system.

As early as possible during test operation, new systems should be filled with the selected hydraulic fluid so as to reduce the risk of accidentally mixing fluids (see chapter 4.5 "Mixing and compatibility of different hydraulic fluids"). Changing the hydraulic medium at a later point represents significant additional costs (see following chapter).

4.4 Hydraulic fluid changeover

Problems may be encountered in particular when changing over from water-containing, fire-resistant hydraulic fluid or mineral oils to water-free, fire-resistant hydraulic fluids (e.g. incompatibilities in the form of gelling, silting, stable foam, reduced filterability or filter blockage). This may also happen when changing products within the same classification.

In the case of changeovers of the fluid in hydraulic systems, it is important to ensure compatibility of the new hydraulic fluid with the remains of the previous hydraulic fluid. Bosch Rexroth recommends obtaining verification of compatibility from the manufacturer or supplier of the new hydraulic fluid. The quantity of old fluid remaining should be minimized. Mixing hydraulic fluids should be avoided, see following chapter.

Information about changing to a hydraulic fluid of a different classification can be found, for example, in VDMA 24314 and in ISO 7745. In addition, the information given in chapter 3.1.4 "Material compatibility" is also to be observed.

Bosch Rexroth will not accept liability for any damage to its components resulting from inadequate hydraulic fluid changeovers!

4.5 Mixing and compatibility of different hydraulic fluids

If hydraulic fluids from different manufacturers or different types from the same manufacturer are mixed, gelling, silting and deposits may occur. These, in turn, may cause foaming, impaired air separation ability, malfunctions and damage to the hydraulic system.

If the fluid contains more than 2 % of another fluid then it is considered to be a mixture. Exceptions apply for water, see chapter 4.10 "Water".

Mixing with other hydraulic fluids is not generally permitted. This includes hydraulic fluids with the same classification. If individual lubricant manufacturers advertise miscibility and/or compatibility, this is entirely the responsibility of the lubricant manufacturer.

Bosch Rexroth customarily tests all components with mineral oil HLP before they are delivered.

Note: With connectible accessory units and mobile filtering systems, there is a considerable risk of non-permitted mixing of the hydraulic fluids!

Rexroth will not accept liability for any damage to its components resulting from mixing hydraulic fluids!

4.6 Re-additivation

Additives added at a later point in time such as colors, wear reducers, VI enhancers or anti-foam additives, may negatively affect the performance properties of the hydraulic fluid and the compatibility with our components and therefore are not permissible.

Rexroth will not accept liability for any damage to its components resulting from re-additivation!

4.7 Foaming behavior

Foam is created by rising air bubbles at the surface of hydraulic fluids in the reservoir. Foam that develops should collapse as quickly as possible.

Common hydraulic fluids in accordance with ISO 12922 are sufficiently inhibited against foam formation in new condition. On account of aging and adsorption onto surfaces, the defoamer concentration may decrease over time, leading to a stable foam.

Defoamers may be re-dosed only after consultation with the lubricant manufacturer and with his written approval.

Defoamers may affect the air separation ability.

4.8 Corrosion

The hydraulic fluid is to guarantee sufficient corrosion protection of components under all operating conditions, even in the event of impermissible water contamination.

Water-free, fire-resistant hydraulic fluids are tested for corrosion protection in the same way as mineral oil HLP/HVLP. When used in practice other corrosion mechanisms are revealed in detail and in individual cases, for the most part in contact with non-ferrous and white alloys.

4.9 Air

Under atmospheric conditions the hydraulic fluid contains dissolved air. In the negative pressure range, for instance in the suction pipe of the pump or downstream of control edges, this dissolved air may transform into undissolved air. The undissolved air content represents a risk of cavitation and of the diesel effect. This results in material erosion of components and increased hydraulic fluid aging.

With the correct measures, such as suction pipe and reservoir design, and an appropriate hydraulic fluid, air intake and separation can be positively influenced.

See also chapter 3.1.7 "Air separation ability (ASA)".

4.10 Water

Water contamination in hydraulic fluids can result from direct ingress or indirectly through condensation of water from the air due to temperature variations.

HFDU hydraulic fluids on glycol basis are water-soluble or can be mixed with water. This means that any water that has ingressed into the system cannot be drained off in the sump of the reservoir.

In the case of HDFU hydraulic fluids on ester basis, undissolved water can be drained off from the reservoir sump, the remaining water content is however too high to ensure that the maximum permissible water limit values are observed in the long term.

With the fluid classification HFDR, the greater density of the ester means that the any water that has ingressed will be on the surface of the hydraulic fluid. This means that any water that has ingressed into the system cannot be drained off in the sump of the reservoir.

Water in the hydraulic fluid can result in wear or direct failure of hydraulic components. Furthermore, a high water content in the hydraulic fluid negatively affects aging and filterability and increases susceptibility to cavitation. During operation, the water content in all hydraulic fluids, determined according to the "Karl Fischer method" (see chapter 6 "Glossary") for all water-free, fire-resistant hydraulic fluids must constantly be kept below 0.1% (1000 ppm). To ensure a long service life of both hydraulic fluids and components, Bosch Rexroth recommends that values below 0.05% (500 ppm) are permanently maintained.

Due to the higher water solubility in comparison to mineral oil HLP/HVLP it is urgently advised that precautions be taken when using water-free, fire-resistant hydraulic fluids, such as a dehumidifier on the reservoir ventilation.

Water content has an affect particularly in the case of HEDU hydraulic fluid on ester basis and HFDR in that it accelerates aging (hydrolysis) of the hydraulic fluid and biological degradation, see chapter 4.11 "Fluid servicing, fluid analysis and filtration".

4.11 Fluid servicing, fluid analysis and filtration

Air, water, operating temperature influences and solid matter contamination will change the performance characteristics of hydraulic fluids and cause them to age.

To preserve the usage properties and ensure a long service life for hydraulic fluid and components, the monitoring of the fluid condition and a filtration adapted to the application requirements (draining and degassing if required) are indispensable.

The effort is higher in the case of unfavorable usage conditions, increased stress for the hydraulic system or high expectations as to availability and service life, see chapter 2 "Solid particle contamination and cleanliness levels".

When commissioning a system, please note that the required minimum cleanliness level can frequently be attained only by flushing the system. Due to severe start-up contamination, it may be possible that a fluid and/or filter replacement becomes necessary after a short operating period (< 50 operating hours).

The hydraulic fluid must be replaced at regular intervals and tested by the lubricant manufacturer or recognized accredited test labs. We recommend a reference analysis after commissioning.

The minimum data to be tested for analyses are:

- Viscosity at 40 °C and 100 °C
- Neutralization number NN (acid number AN)
- Water content (Karl-Fischer method)
- Particle measurement with evaluation according to ISO 4406 or mass of solid foreign substances with evaluation to EN 12662
- Element analysis (RFA (EDX) / ICP, specify test method)
- Comparison with new product or available trend analyses
- Assessment / evaluation for further use
- Also recommended: IR spectrum

No differences are needed in the maintenance and care of water-free, fire-resistant hydraulic fluids with the appropriate suitability parameters compared to HLP/HVLP mineral oils. Attention is however drawn to the note in chapter 1.3.

After changing over hydraulic fluids it is recommended that the filters be replaced again after 50 operating hours as fluid aging products may have detached themselves ("self-cleaning effect").

Compared to the pure unused hydraulic fluid the changed neutralization number NN (acid number AN) indicates how many aging products are contained in the hydraulic fluid. This difference must be kept as small as possible. The lubricant manufacturer should be contacted as soon as the trend analysis notes a significant increase in values. A higher viscosity than that of new materials indicates that the hydraulic fluid has aged. Evaluation by the test lab or lubricant manufacturers is however authoritative, whose recommendation should be urgently observed.

On systems where the possibility of water contamination cannot be completely ruled out (also condensation), it should be ensured via the hydraulic system circuit that fluid aging products are not accumulating in individual areas of the hydraulic system, but are being removed from the system in a controlled manner via the filtration system. This should be ensured via suitable hydraulic circuits (e.g. flushing circuit) or system manufacturer's operating instructions/specifications.

In case of warranty, liability or guarantee claims to Bosch Rexroth, service verification and/or the results of fluid analyses are to be provided.

5 Disposal and environmental protection

All water-free, fire-resistant hydraulic fluids, are, like mineral oilbased hydraulic fluids, subject to special disposal obligations.

The respective lubricant manufacturers provide specifications on environmentally acceptable handling and storage. Please ensure that spilt or splashed fluids are absorbed with appropriate adsorbents or by a technique that prevents it contaminating water courses, the ground or sewerage systems.

It is also not permitted to mix fluids when disposing of hydraulic fluids. Regulations governing the handing of used oils stipulate that used oils are not to mixed with other products, e.g. substances containing halogen. Non-compliance will increase disposal costs. Comply with the national legal provisions concerning the disposal of the corresponding hydraulic fluid. Comply with the local safety data sheet of the lubricant manufacturer for the country concerned.

6 Glossary

Additivation

Additives are chemical substances added to the basic fluids to achieve or improve specific properties.

Aging

Hydraulic fluids age due to oxidation (see chapter 3.1.5 "Aging resistance"). Liquid and solid contamination acts as a catalyzer for aging, meaning that it needs to be minimized as far as possible by careful filtration. Please refer to Hydrolysis.

Arrhenius equation

The quantitative relation between reaction rate and temperature is described by an exponential function, the Arrhenius equation. This function is usually visualized within the typical temperature range of the hydraulic system. For a practical example, see chapter 31.5 "Aging resistance".

Basic fluids

In general, a hydraulic fluid is made up of a basic fluid, or base oil, and chemical substances, the so-called additives. The proportion of basic fluid is generally greater than 90%.

Diesel effect

If hydraulic fluid that contains air bubbles is compressed quickly, the bubbles are heated to such a degree that a selfignition of the air-gas mix may occur. The resultant temperature increase may lead to seal damage and increased aging of the hydraulic fluid.

Partially saturated esters

In contrast to saturated esters, partially saturated esters have double/multiple bonds between C atoms. Rexroth defines partially saturated esters as unsaturated bonds and mixtures of esters with unsaturated and saturated bonds. Esters with unsaturated bonds are produced on the basis of renewable raw materials.

Depending on their number and position, these unsaturated bonds between the C atoms are instable. These bonds can detach themselves and form new bonds, thus changing the properties of those liquids (an aging mechanism). Attention is however drawn to the note in chapter 1.3.

Hydrolysis

Hydrolysis is the splitting of a chemical bond through the reaction with water under the influence of temperature.

ICP (atomic emission spectroscopy)

The ICP procedure can be used to determine various wear metals, contamination types and additives. Practically all elements in the periodic system can be detected with this method.

lodine count

The iodine count is a yardstick for the quantity of single and multiple unsaturated bonds between C atoms in the basic fluid. A low iodine count indicates that the hydraulic fluid contains few unsaturated bonds and is thus considerably more resistant to aging than a hydraulic fluid with a high iodine count. A statement about the position at which these multiple bonds are located and about how "stable" they are against influencing factors cannot be derived simply by stating the iodine count.

Karl Fischer method

Method to determine the water content in fluids. Indirect coulometric determination procedure in accordance with DIN EN ISO 12937 in connection with DIN 51777-2. Only the combination of both standards will assure adequately accurate measured values. For hydraulic fluids based on glycol, DIN EN ISO 12937 is to be applied in conjunction with DIN 51777-1.

Cavitation

Cavitation is the creation of cavities in fluids due to pressure reduction below the saturated vapour pressure and subsequent implosion when the pressure increases. When the cavities implode, extremely high acceleration, temperatures and pressure may occur temporarily, which may damage the component surfaces.

Neutralization number (NN)

The neutralization number (NN) or acid number (AN) specifies the amount of caustic potash required to neutralize the acid contained in one gram of fluid.

Pour point

The lowest temperature at which the fluid still just flows when cooled down under set conditions. The pour point is specified in the lubricant manufacturers' technical data sheets as a reference value for achieving this flow limit.

RFA (wavelength dispersive x-ray fluorescence analysis)

Is a procedure to determine nearly all elements in liquid and solid samples with nearly any composition. This analysis method is suitable for examining additives and contamination, delivering fast results.

Shearing/shear loss

Shearing of molecule chains during operation can change the viscosity of hydraulic fluids with long chain VI enhancers and anti-fogging additives. The initially high viscosity index drops. This needs to be taken into account when selecting the hydraulic fluid.

The only value at present that can be used to assess viscosity changes in operation is the result of the test in accordance with DIN 51350 part -6. Please note that there are practical applications that create a much higher shear load on such hydraulic fluids than can be achieved by this test.

Viscosity

Viscosity is the measure of the internal friction of a fluid to flow. It is defined as the property of a substance to flow under tension. Viscosity is the most important characteristic for describing the load-bearing capacity of a hydraulic fluid.

Kinematic viscosity is the ratio of the dynamic viscosity and the density of the fluid; the unit is mm²/s. Hydraulic fluids are classified by their kinematic viscosity into ISO viscosity classes. The reference temperature for this is 40 °C.

Viscosity index (VI)

Refers to the viscosity temperature behavior of a fluid. The lower the change of viscosity in relation the temperature, the higher the VI.

 Bosch Rexroth AG

 Hydraulics

 Zum Eisengießer 1

 97816 Lohr am Main, Germany

 Phone
 +49 (0) 93 52 / 18-0

 Fax
 +49 (0) 93 52 / 18-23 58

 documentation@boschrexroth.de
 www.boschrexroth.de

© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification.

It must be remembered that our products are subject to a natural process of wear and aging.

Subject to change.

Cylinders

		Piston-Ø		Nominal pressure		
Designation	Туре	in mm	Series	in bar	Data sheet	Page
Mill type cylinders						
Hydraulic cylinders for potentially explosive	CDH2X. /	40 320	1X	250	17334-X	137
atmospheres	CGH2X					

Electric Drives and Controls

Hydraulics

Pneumatics

Service

Rexroth Bosch Group

Hydraulic cylinders for potentially explosive atmospheres

Series CDH2...X. / CGH2...X.

Component series 1X Nominal pressure 250 bar (25 MPa)

Overview of contents

Contents		Page	Contents		Page		
Features			Flange connection	18, 19			
ATEX-components for potentially explosive atmospheres			Position measuring	Position measuring system			
Technical data			Name plate		24		
Diameter, weights			Equipotential bond	Equipotential bonding			
Areas, forces, flows			Screwed coupling	Screwed coupling			
Telerances			Self-aligning clevis	27			
Mounting style overview		4	Fork clevis	CCKB	28		
Ordering details		4, 5	Mounting block	CLTB/CLCA/CLCD	29 31		
Plain clevis at base MP3		6, 7	Buckling, Permissible stroke lengths		32 34		
Self-aligning clevis at base	MP5	8, 9	End position cushi	oning	35 37		
Round flange at head MF3			Spare parts	38, 39			
Round flange at base MF4		12, 13	Tightening torques	40			
Trunnions	MT4	14, 15	Seal kits		41 44		
Foot mounting MS2			EC – Declaration of	44			

Features

- Standards: DIN 24333, ISO 6022

- 6 mounting styles

- Piston Ø: 40 to 320 mm

- Piston rod Ø: 25 to 220 mm

- Stroke lengths up to 6 m

1/44

RE 17334-X/07.12

Replaces: 10.07

ATEX-components for potentially explosive atmospheres

What you have to know about the documentation for ATEX-Components.

The documentation for ATEX-Components are valid for Bosch Rexroth hydraulic cylinders in an explosion protected version and comprises of the following two parts to Material No. R901030440:

- Operating instructions 07100-B/03.11 for Hydraulic
- cylinders, Tie rod / mill type, Mill type for explosive areas - Technical data sheet 17334-X

Further information concerning the correct use of hydraulic cylinders can be found in our publication "General product

information for hydraulic products" 07008.

Details regarding the explosion protection:

- Cylinders without position measuring system
 - Identification to RL 94/9/EG II 2G c T4
 - Identification to RL 94/9/EG II 2D c T135°C
 - Ambient temperature –20 °C < Ta < +80 °C
- Cylinders with position measuring system Identification to RL 94/9/EG II 3G Ex e T4
- Identification to RL 94/9/EG II 3D Ex tc T135°C
- Ambient temperature –20 °C ≤ Ta ≤ +40 °C

Technical data (for applications outside these parameters, please consult us!)

Standards

The installation dimensions of the cylinders and mounting styles meet the requirements of DIN 24333 and ISO 6022.

Nominal pressure: 250 bar

Static proof pressure: 375 bar

Higher operating pressures on request.

The specified operating pressures are only valid for applications with shock-free operation. If extreme loads occur, e.g. as happens in high sequence cycles, the fixings and piston rod thread connections need to be designed for durability (fatigue strength).

Installation: Optional

Pressure fluid / pressure fluid temperature range:

HL, HLP, HFD-R: -20 °C to +80 °C HFA: +5 °C to +55 °C Water glycole HFC on request

Viscosity range: 2.8 to 380 mm²/s

ISO cleanliness class

Maximum permissible degree of pressure fluid contamination is to ISO 4406 (c) class 20/18/15.

Stroke velocity: Up to 0.5 m/s (depending on the connection

Diameter, weights

ports), higher stroke velocities on request

Bleed screw as standard: Secured against unscrewing

Undercoat: The hydraulic cylinders are, as standard, painted (colour tone gentian blue RAL 5010) with a max. thickness of 80 um. Other colour tones on request.

Acceptance:

138

Each cylinder is tested to Bosch Rexroth standards and in agreement with ISO10100: 2001.

Safety notes:

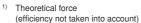
For assembly, commissioning and maintenance cylinders, please take the operating guidelines stated in 07100-B into account

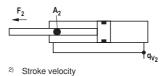
Service and repair work may only be carried out by Bosch Rexroth AG and specifically trained personnel. No warranty claims will be accepted for damage resulting from assembly, maintenance and repair work not carried out by Bosch Rexroth AG.

Checklists for hydraulic cylinders:

Cylinders, the technical and/or operating data of which differ from the paramters given in the data sheet, can only be offered as special variants on request. For the preparation of offers, deviations of technical data and/or operating data must be described in the checklists for hydraulic cylinders (07200).

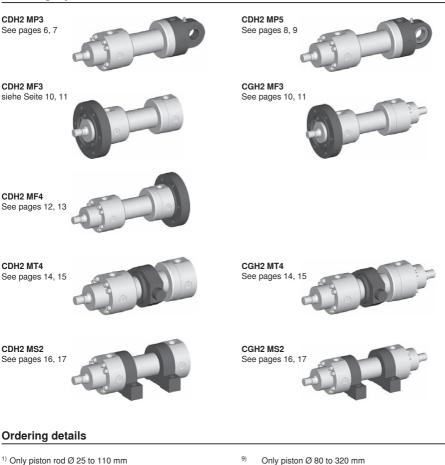
Piston	Piston rod	CD cylinder at 0 mm stroke length r						(at 0 n	Per 100 mm stroke length		
AL	ММ	MP3 1)	MP3 ²⁾	MF3	MT4	MS2		MF3	MT4	MS2	
Ø	Ø	MP5 ¹⁾	MP5 ²⁾	MF4							
mm	mm	kg	kg	kg	kg	kg	kg	kg	kg	kg	kg
40	25/28	7	12	9	9	9	0,9/1,0	10	10	10	1,3/1,5
50	32/36	12	19,5	14	13	13/14	1,3/1,5	16	16	16	1,9/2,3
63	40/45	20	29,5	21	21	21	2,3/2,6	25	25	25	3,3/3,8
80	50/56	32	42,5	35	34	35/36	3,2/3,6	41	40	41/42	4,7/5,5
100	63/70	51	64,5	54/55	54	55/56	5,2/5,7	63/64	63/64	64/65	7,6/8,8
125	80/90	95/96	114/115	96/97	99/100	98/99	8,2/9,2	113/115	115/117	114/116	12,1/14,2
140	90/100	131/132	157/158	132/133	136/137	137/138	10,7/11,9	155/156	158/160	159/161	15,7/18,1
160	100/110	185/186	220/221	184/186	197/199	206/207	12,6/13,9	217/220	231/233	239/242	18,8/21,4
180	110/125	255/258	303/304	253/256	264/267	274/277	14,7/16,8	294/300	305/311	314/320	22,1/26,5
200	125/140	349/352	405/406	332/335	350/353	363/366	19,0/21,5	359/365	377/383	389/396	28,6/33,5
220	140/160	527	625	512	546	518	27,1/30,9	604	638	610	39,1/46,7
250	160/180	673	795	640	677	650	32,7/36,9	761	798	772	48,5/56,9
280	180/200	976	1192	966	1020	918	44,2/48,8	1130	1183	1081	64,2/73,4
320	200/220	1251	1512	1172	1223	1174	55,2/60,4	1354	1405	1356	79,8/90,2


1) Weight without position measuring system


2) Weight with position measuring system

Piston	Piston	Area		Areas			e at 250 b		Flow at 0,1 m/s ²⁾		
	rod	ratio	Piston	Rod	Annulus	Pressure	Diff.	Pulling	Out	Diff.	In
AL Ø mm	MM Ø mm	φ Α ₁ /Α ₃	A ₁ cm ²	A₂ cm ²	A ₃ cm ²	F ₁ kN	F2 kN	F ₃ kN	q_{v1} I/min	q_{v2} I/min	q_{v3} I/min
40	25 28	1,64 1,96	12,56	4,90 6,16	7,65 6,40	31,40	12,25 15,40	19,12 16,00	7,5	2,9 3,7	4,6 3,8
50	32 36	1,69 2,08	19,63	8,04 10,18	11,59 9,45	49,10	20,12 25,45	28,98 23,65	11,8	4,8 6,1	7,0 5,7
63	40 45	1,67 2,04	31,17	12,56 15,90	18,61 15,27	77,90	31,38 39,75	46,52 38,15	18,7	7,5 9,5	11,2 9,2
80	50 56	1,66 1,96	50,26	19,63 24,63	30,63 25,63	125,65	49,07 61,55	76,58 64,10	30,2	11,8 14,8	18,4 15,4
100	63 70	1,66 1,96	78,54	31,16 38,48	47,38 40,06	196,35	77,93 96,20	118,42 100,15	47,1	18,7 23,1	28,4 24,0
125	80 90	1,69 2,08	122,72	50,24 63,62	72,48 59,10	306,75	125,62 159,05	181,13 147,70	73,6	30,14 38,2	43,46 35,4
140	90 100	1,70 2,04	153,94	63,62 78,54	90,32 75,40	384,75	159,05 196,35	225,70 188,40	92,4	38,2 47,1	54,2 45,3
160	100 110	1,64 1,90	201,06	78,54 95,06	122,50 106,00	502,50	196,35 237,65	306,15 264,85	120,6	47,1 57,0	73,5 63,6
180	110 125	1,60 1,93	254,47	95,06 122,72	159,43 131,75	636,17	237,65 306,80	398,52 329,37	152,7	57,0 73,6	95,7 79,1
200	125 140	1,64 1,96	314,16	122,72 153,96	191,44 160,20	785,25	306,80 384,90	478,45 400,35	188,5	73,6 92,4	114,9 96,1
220	140 160	1,68 2,12	380,1	153,96 201,0	226,2 179,1	950,3	384,9 502,6	565,5 447,7	228,1	92,4 120,7	135,7 107,4
250	160 180	1,69 2,08	490,8	201,0 254,4	289,8 236,4	1227,2	502,6 636,2	724,5 590,0	294,5	120,7 152,7	173,8 141,8
280	180 200	1,70 2,04	615,7	254,4 314,1	361,3 301,6	1539,4	636,2 785,4	903,2 753,9	369,4	152,7 188,5	216,7 180,9
320	200 220	1,64 1,90	804,2	314,1 380,1	490,1 424,2	2010,6	785,4 950,3	1225,2 1060,3	482,5	188,5 228,1	294,0 254,4

Areas, forces, flows


Tolerances to ISO 6020-1

Installation dimensions	Y	PJ	WC	XC 2)	XO ²⁾	XS 1), 2)	SS	XV ²⁾	ZP 2)	Stroke	
Mounting style	all	all	MF3	MP3	MP5	MS2	MS2	MT4	MF4	tolerances	
Stroke length		Tolerances									
≤ 1250	± 2	± 1,5	± 2	± 1,5	± 1,5	± 2	± 1,5	± 2	± 1,5	+ 2	
> 1250 - ≤ 3150	± 4	± 3	± 4	± 3	± 3	± 4	± 3	± 4	± 3	+ 5	
> 3150 - ≤ 8000	± 8	± 5	± 8	± 5	± 5	± 8	± 5	± 8	± 5	+ 8	

1) Not standardised

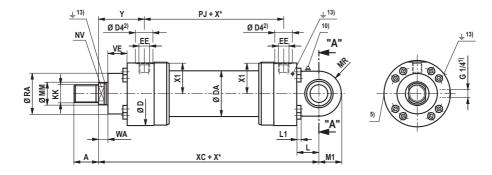
²⁾ Including the stroke length

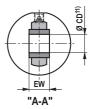
Mounting style overview

- 2) Only piston rod Ø 25 to 140 mm
- 3) The trunnion can be located as required. Dim. "XV" must always be stated in clear text in mm in case of an order.
- 4) Only piston Ø 40 to 200 mm
- 5) Only possible in conjuction with position measuring system "T"
- 6) Only piston Ø 63 to 200 mm
- 7) Only MF3; MT4; MS2; not standardised
- 8) Seal versions A, B is not possible Piston rod version "H" is not possible End position damping possible from piston rod Ø 45 mm CG version is not possible Piston rod Ø 25 mm is not possible Take the max. stroke lengths on page 21 into account

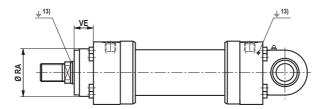
- 10) Not possible for version MF4
- 11) Standard for seal versions M, T, S and piston Ø 220 to 320 mm
 - Not possible for seal versions A. B
- 12) For the CG version only one self-aligning clevis is fitted
- 13) For the CG version only one one rod end
- 14) Not standardised
- 15) Take the permissible stroke lengths on pages 32 to 34 into account
- 16) On request for cylinders with poisiton measuring system

Ordering details


H2	1 1 1	1X/				
Differential cylinder = CD Double rod cylinder ⁷ = CG						Option 2 B = Flange grease nipple C = ⁵) Analogue out-
Series = H2						put 4-20 mA $\mathbf{F} = 5^{(5), 16)}$ Analogue out-
Mounting styles Plain clevis at base 16) = MP3 Self-aligning clevis at base 16) = MP3 Round flange at head = MF3 Round flange at base = MF3 Trunnions 3) = MT4 Foot mounting 14) = MS2 Piston Ø (40 to 320 mm)						Y = 100 Y Analogue output put 0 - 10 V Y = 13) Enter piston rod extention LY in clear text in mm W = Without option Option 1 X = Screwed coupling.
See page 2						both sides
Piston rod Ø (25 to 220 mm) See page 2						= ¹¹⁾ Guide rings = ⁸⁾ Position measuring system (magnetostrictive)
Stroke length in mm 15)						without plug-in connector
Protection type for the ATEX ver Design safety (for cylinders without position measured)	= X0 suring system)				v	Plug-in connector – separate order, see page 23 V = Without option
Increased safety (for cylinders with position measuri	= XI	E				Seal version
Component series	ng system)					Suitable for mineral oil HL, HLP and HFA
10 to 19 unchanged installation and c	onnection dimensior	ns=1X			M =	Standard seal system
Connection ports/version to ISO 1179-1 (Pipe thread 228/1)		= B			T = A =	Servo quality/reduced friction Chevron seal kits
to ISO 9974-1 (Metric thread ISO 2		= M			5	Suitable for phosphate ester HFD-R
Flange porting pattern to ISO 6162-1 (≜ SAE 3000 PSI) Flange porting pattern to ISO 6162-2		^{6), 10)} = F ^{9), 10)} = D			S = B =	Servo quality/reduced friction Chevron seal kits
(≜ SAE 6000 PSI)						End position cushioning
Flange porting pattern to ISO 6164 T Flange porting pattern to ISO 6164 T	ab.2	$^{(4), (10)} = K$ $^{(10)} = H$		U = D = E =	= ⁴⁾ E	Without Both sides, self-aligning clevis Both sides, adjustable
Connection port/position at head	d and base		= 1 = 2		·	Piston rod end
$4 - \bigcirc_{1}^{1} - 2$ Viewed on the pi	ston rod		= 2 = 3 = 4	H = F = ¹²⁾		for self-aligning clevis CGKD h mounted self-aligning clevis CGKD
3						
Piston rod version						
Hard chromium platod			- 0			
Hard chromium plated Hardened and hard chromium plate	ed		= C ¹⁾ = H			


Ordering examples: CDH2 MT4/63/45/350XC1X/B1CHDMWW, XV = 300 mm CDH2 MP5/80/56/500XC1X/B1CHDMWW

CGH2 MF3/100/70/500XC1X/B1CHUMWW

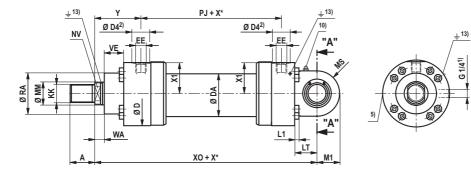

Plain clevis at base MP3

CDH2 MP3

CDH2 MP3: for seal versions "A", "B" and AL-Ø 160-320 mm

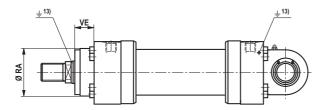
Dimensions MP3	(dimensions in mm)

AL Ø	MM	КК	Α	NV	D	DA	D4	EE 4)	EE 4)		Y	PJ	X1	WA	XC
	Ø	1400 4 5		10/00		50			· ·	-		100	44	10	000
40 ⁶⁾	25/28	M20x1,5	28	19/22	88	52	34	G1/2	M22x1	·	83	120	41	18	282
50	32/36	M27x2	36	27/30	102	62	34	G1/2	M22x1	·	98	120	48,5	18	305
63	40/45	M33x2	45	32/36	120	78	42	G3/4	M27x	-	112	133	56,5	21	348
80	50/56	M42x2	56	41/46	145	95	42	G3/4	M27x2		120	155	69,5	24	395
100	63/70	M48x2	63	50/60	170	125	47	G1	M33x2	2	134	171	82	27	442
125	80/90	M64x3	85	65/75	206	150	47	G1	M33x2	_	153	205	100,5	31	520
140	90/100	M72x3	90	75/85	226	170	58	G1 1/4	M42x2	2	166	219	109,5	31	580
160	100/110	M80x3	95	85/95	265	190	58	G1 1/4	M42x2	2	185	235	129,5	35	617
180	110/125	M90x3	105	95/110	292	210	58	G1 1/4	M42x2	2	194	264	143,5	40	690
200	125/140	M100x3	112	110/120	306	235	58	G1 1/4	M42x2	2	220	278	150,5	40	756
220 ⁶⁾	140/160	M125x4	125	120/140	355	270	65	G1 1/2	M48x2	3)	244	326	174	42	890
250	160/180	M125x4	125	140/160	395	305	65	G1 1/2	M48x2	3)	257	326	194	42	903
280 ⁶⁾	180/200	M160x4	160	160/180	445	343	65	G1 1/2	M48x2	3)	290	375	220,5	48	1072
320	200/220	M160x4	160	180/200	490	394	65	G1 1/2	M48x2	3)	282	391	243	48	1080
AL	ММ	L	L1	M	R	M1	6	D	EW		A 7)			a)	VE 8)
Ø	Ø					141.1	1 4			K/	A''	VE 7)	RA	8)	VE
40 ⁶⁾	25/28					IVIII		-19	h12	R/	A ''	VE /)	RA	8)	VE ³
= 0	25/20	53	8	32	2	32	ŀ				A '' 52	29	88		-
50	32/36	53 61	8	32			ł	-19	h12	5					
50 63)	32	 2 3	19 25	h12 25	5	52	29	88	2	
	32/36	61	8	40)	32 40		19 25 32	h12 25 32	5 6 7	52 53	29 29	88	2	-
63	32/36 40/45	61 74	8	40 50 63)) 3	32 40 50		19 25 32 40	h12 25 32 40	5 6 7 9	52 53 75	29 29 32	88 102 120	2 2 0 5	- - -
63 80	32/36 40/45 50/56	61 74 90	8 8 10	40 50 63 71)) }	32 40 50 63		19 25 32 40 50	h12 25 32 40 50	5 6 7 9	52 53 75 90	29 29 32 36	88 102 120 145	2 2 0 5 0	- - - -
63 80 100	32/36 40/45 50/56 63/70	61 74 90 102	8 8 10 12	40 50 63 71 90))]]	32 40 50 63 71		19 25 32 40 50 63	h12 25 32 40 50 63	5 6 7 9 1 1	52 53 75 90 10	29 29 32 36 41	88 10: 12: 14: 17:	2 2 5 5 0 6	- - - -
63 80 100 125	32/36 40/45 50/56 63/70 80/90	61 74 90 102 124	8 8 10 12 16	40 50 63 71 90 10)) 3) 0	32 40 50 63 71 90		19 25 32 40 50 63 30	h12 25 32 40 50 63 80	5 6 7 9 1 1 1 1	52 53 75 90 10 32	29 29 32 36 41 45	88 102 120 143 170 200	2 2 5 5 0 5 6 6	- - - - - -
63 80 100 125 140	32/36 40/45 50/56 63/70 80/90 90/100	61 74 90 102 124 149	8 8 10 12 16 16	40 50 63 71 90 10 11)) 3 1) 0 2	32 40 50 63 71 90 100	+ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	19 25 32 40 50 63 30 90	h12 25 32 40 50 63 80 90	5 6 7 9 1 1 1 1 1 1	52 53 75 90 10 32 45	29 29 32 36 41 45 45	88 102 120 143 170 200 220	2 2 5 5 0 6 6 0	- - - - - - - -
63 80 100 125 140 160	32/36 40/45 50/56 63/70 80/90 90/100 100/110	61 74 90 102 124 149 150	8 8 10 12 16 16 16	40 50 63 71 90 10 11 11)) 3 1) 0 2 9	32 40 50 63 71 90 100 112	H 2	19 25 32 40 50 53 30 90 00	h12 25 32 40 50 63 80 90 100	5 6 7 7 5 5 5 1 1 1 1 1 1 1 1 1 1	52 53 75 90 10 32 45 60	29 29 32 36 41 45 45 50	88 102 120 143 170 200 220 200	22 25 55 50 63 50 00 00 00 00 00 00 00 00 00	- - - - - - 50
63 80 100 125 140 160 180	32/36 40/45 50/56 63/70 80/90 90/100 100/110 110/125	61 74 90 102 124 149 150 180	8 8 10 12 16 16 16 20	40 50 63 71 90 10 11 11 12 14))]]]]]]]]]]]]]]]]]]	32 40 50 63 71 90 100 112 129	H 2	H9 25 32 32 40 50 53 33 30 90 00 10	h12 25 32 40 50 63 80 90 100 110	5 6 6 7 7 7 5 9 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	52 53 75 90 10 32 45 60 85	29 29 32 36 41 45 45 50 55	888 102 124 142 174 200 220 200 220	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	- - - - - - 50 55
63 80 100 125 140 160 180 200	32/36 40/45 50/56 63/70 80/90 90/100 100/110 110/125 125/140	61 74 90 102 124 149 150 180 206	8 8 10 12 16 16 16 20 20	40 50 63 71 90 10 10 11 12 14 179)) 3 1) 0 2 9 5 12)	32 40 50 63 71 90 100 112 129 145	H 2 3 4 6 8 9 1 1 1	19	h12 25 32 40 50 63 80 90 100 110 125	5 6 7 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2	52 53 75 90 10 32 45 60 85 00	29 29 32 36 41 45 45 50 55 61	888 100 120 144 170 200 220 200 220 200 220 23	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	- - - - - - 50 55 61
63 80 100 125 140 160 180 200 220 ⁶)	32/36 40/45 50/56 63/70 80/90 90/100 100/110 110/125 125/140 140/160	61 74 90 102 124 149 150 180 206 253	8 8 10 12 16 16 16 20 20 20 20	40 50 63 71 90 10 11 11 12 14 179 179)) 3 1) 0 2 9 9 5 12) 12)	32 40 50 63 71 90 100 112 129 145 187 ¹²⁾	H 2 3 2 4 6 6 6 6 7 1 1 1 1	19 25 225 2 32 32 40 50 50 33 33 33 300 20 100 25 600 25	h12 25 32 40 50 63 80 90 100 110 125 160	55 66 77 11 11 14 14 14 14 14 14 22 22	52 53 75 90 10 32 45 60 85 00 35	29 29 32 36 41 45 45 50 55 61 71	88 10: 12: 14: 14: 20: 22: 20: 22: 20: 22: 20: 22: 20: 22: 20: 22: 20: 22: 20: 22: 20: 22: 20: 22: 20: 22: 20: 22: 20: 22: 20: 22: 20: 22: 20: 20	22 1 2 1 5 1 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2	- - - - - 50 55 61 71


AL = Piston Ø


- MM = Piston rod Ø
- X* = Stroke length
- ¹⁾ Bleeding: When viewed on the piston rod, the orientation is always offset by 90° to the pipe connection (in a clockwise direction)
- ²⁾ Ø D4 max. 0.5 mm deep
- 3) M50 x 2 available on request
- ⁴⁾ For flange connections see separate table on pages 18 and 19
- ⁵⁾ Throttle valve only with end position damping "E" (180° to the bleed point)
- 6) Piston Ø not standardised

- 7) Dimensions for cylinder with seal versions M, T and S
- 8) Dimensions for cylinder with seal versions A and B
- ¹⁰⁾ Grease nipple; cone head form A to DIN 71412
- 11) Associated pin Ø f8
- ¹²⁾ The specified dimensions are maximum values, tolerance classes 342 according to ISO 9013 Thermal cutting
- ¹³⁾ For equipotential bonding, see page 25

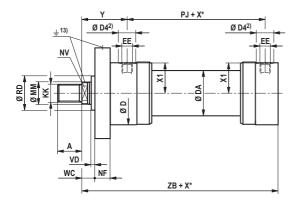

Self-aligning at base MP5

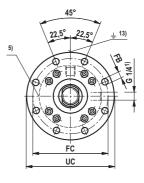
CDH2 MP5

CDH2 MP5: for seal versions "A", "B" and AL-Ø 160-320 mm

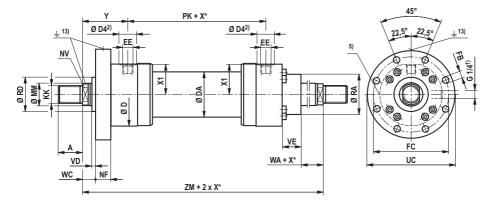
Dimensions MP5 (dimensions in mm)

AL Ø	MM Ø	КК	Α	NV	D	DA	D4	EE 4)	EE 4)	Y	PJ	X1	WA	хо
40 ⁶⁾	25/28	M20x1,5	28	19/22	88	52	34	G1/2	M22x1,5	83	120	41	18	282
50	32/36	M27x2	36	27/30	102	62	34	G1/2	M22x1,5	98	120	48,5		305
63	40/45	M33x2	45	32/36	120	78	42	G3/4	M27x2	112	133	56,5	_	348
80	50/56	M42x2	56	41/46	145	95	42	G3/4	M27x2	120	155	69,5		395
100	63/70	M48x2	63	50/60	170	125	47	G1	M33x2	134	171	82	27	442
125	80/90	M64x3	85	65/75	206	150	47	G1	M33x2	153	205	100,		520
140	90/100	M72x3	90	75/85	226	170	58	G1 1/4	M42x2	166	219	109,	_	580
160	100/110	M80x3	95	85/95	265	190	58	G1 1/4	M42x2	185	235	129,	_	617
180	110/125	M90x3	105	95/110	292	210	58	G1 1/4	M42x2	194	264	143,	_	690
200	125/140	M100x3	112	110/120	306	235	58	G1 1/4	M42x2	220	278	150,	_	756
220 ⁶⁾	140/160	M125x4	125	120/140	355	270	65	G1 1/2	M48x2 ³⁾	244	326	174	_	890
250	160/180	M125x4	125	140/160	395	305	65	G1 1/2	M48x2 ³⁾	257	326	194	_	903
280 ⁶⁾	180/200	M160x4	160	160/180	445	343	65	G1 1/2	M48x2 ³⁾	290	375	220,	_	1072
320	200/220	M160x4	160	180/200	490	394	65	G1 1/2	M48x2 ³⁾	282	391	243	48	1080
	•	•												
AL	ММ													
	IVIIVI	LT	L1	MS	M1	CX 11)	EP	EX	RA 7)	VE 2	⁷⁾ R	A 8)	VE 8)	Z
Ø	IVIIVI	LT	L1	MS	M1	CX ¹¹⁾ H7	EP	EX h12		VE	⁷⁾ R	A ⁸⁾	VE ⁸⁾	Z
Ø 40 ⁶⁾	25/28	LT 53	L1 8	MS 32	M1 32		EP 22			29		A ⁸⁾ 38	VE ⁸⁾	Z 2°
						H7		h12			8			
40 ⁶⁾	25/28	53	8	32	32	H7 25	22	h12 25	52	29	٤ ۱	38	-	2°
40 ⁶⁾ 50	25/28 32/36	53 61	8	32 40	32 40	H7 25 32	22 27	h12 25 32	52 63	29 29	۲ ۲ ۲	38 02	-	2° 4°
40 ⁶⁾ 50 63	25/28 32/36 40/45	53 61 74	8 8 8	32 40 50	32 40 50	H7 25 32 40	22 27 32	h12 25 32 40	52 63 75	29 29 32	1 1 1	38 02 20		2° 4° 4°
40 ⁶⁾ 50 63 80	25/28 32/36 40/45 50/56	53 61 74 90	8 8 8 10	32 40 50 63	32 40 50 63	H7 25 32 40 50	22 27 32 40	h12 25 32 40 50	52 63 75 90	29 29 32 36	٤ 1 1 1 1	38 02 20 45		2° 4° 4° 4°
40 ⁶⁾ 50 63 80 100	25/28 32/36 40/45 50/56 63/70	53 61 74 90 102	8 8 8 10 12	32 40 50 63 71	32 40 50 63 71	H7 25 32 40 50 63	22 27 32 40 52	h12 25 32 40 50 63	52 63 75 90 110	29 29 32 36 41	1 1 1 1 1 2	38 02 20 45 70	- - - -	2° 4° 4° 4° 4°
40 ⁶⁾ 50 63 80 100 125	25/28 32/36 40/45 50/56 63/70 80/90	53 61 74 90 102 124	8 8 10 12 16	32 40 50 63 71 90	32 40 50 63 71 90	H7 25 32 40 50 63 80	22 27 32 40 52 66	h12 25 32 40 50 63 80	52 63 75 90 110 132 145	29 29 32 36 41 45	1 1 1 1 1 2 2	38 02 20 45 70 06	- - - - -	2° 4° 4° 4° 4° 4°
40 ⁶⁾ 50 63 80 100 125 140	25/28 32/36 40/45 50/56 63/70 80/90 90/100	53 61 74 90 102 124 149	8 8 10 12 16 16	32 40 50 63 71 90 100	32 40 50 63 71 90 100	H7 25 32 40 50 63 80 90	22 27 32 40 52 66 72	h12 25 32 40 50 63 80 90	52 63 75 90 110 132 145 160	29 29 32 36 41 45 45	ε 1 1 1 1 2 2 2 2	38 02 20 45 70 06 26	- - - - - - - - -	2° 4° 4° 4° 4° 4° 4°
40 ⁶⁾ 50 63 80 100 125 140 160	25/28 32/36 40/45 50/56 63/70 80/90 90/100 100/110	53 61 74 90 102 124 149 150	8 8 10 12 16 16 16	32 40 50 63 71 90 100 112	32 40 50 63 71 90 100 112	H7 25 32 40 50 63 80 90 100	22 27 32 40 52 66 72 84	h12 25 32 40 50 63 80 90 100 110	52 63 75 90 110 132 145 160	29 29 32 36 41 45 45 50	ε 1 1 1 2 2 2 2 2 2 2 2 2 2	38 02 20 45 70 06 26 00	- - - - - - - - - 50	2° 4° 4° 4° 4° 4° 4° 4°
40 ⁶⁾ 50 63 80 100 125 140 160 180	25/28 32/36 40/45 50/56 63/70 80/90 90/100 100/110 110/125	53 61 74 90 102 124 149 150 180	8 8 10 12 16 16 16 20	32 40 50 63 71 90 100 112 129	32 40 50 63 71 90 100 112 129	H7 25 32 40 50 63 80 90 100 110	22 27 32 40 52 66 72 84 88	h12 25 32 40 50 63 80 90 100 110 125	52 63 75 90 110 132 145 160 185 200	29 29 32 36 41 45 45 50 55	ε 1 1 1 2	38 02 20 45 70 06 26 00 20	- - - - - - - 50 55	2° 4° 4° 4° 4° 4° 4° 4° 4° 4°
40 ⁶⁾ 50 63 80 100 125 140 160 180 200 220 ⁶⁾ 250	25/28 32/36 40/45 50/56 63/70 80/90 90/100 100/110 110/125 125/140	53 61 74 90 102 124 149 150 180 206	8 8 8 10 12 16 16 16 20 20	32 40 50 63 71 90 100 112 129 145	32 40 50 63 71 90 100 112 129 145	H7 25 32 40 50 63 80 90 100 110 125	22 27 32 40 52 66 72 84 88 102	h12 25 32 40 50 63 80 90 100 110 125 160	52 63 75 90 110 132 145 160 185 200 235	29 29 32 36 41 45 45 50 55 61	ε 1 1 1 2	38 02 20 45 70 06 26 00 20 335	- - - - - - - 50 55 61	2° 4° 4° 4° 4° 4° 4° 4° 4° 4° 4°
40 ⁶⁾ 50 63 80 100 125 140 160 180 200 220 ⁶⁾	25/28 32/36 40/45 50/56 63/70 80/90 90/100 100/110 110/125 125/140 140/160	53 61 74 90 102 124 149 150 180 206 253	8 8 8 10 12 16 16 16 16 20 20 20	32 40 50 63 71 90 100 112 129 145 179 ¹²	32 40 50 63 71 90 100 112 129 145 187 ¹²	H7 25 32 40 50 63 80 90 100 110 125 160	22 27 32 40 52 66 72 84 88 102 130	h12 25 32 40 50 63 80 90 100 110 125 160 160	52 63 75 90 110 132 145 160 185 200 235 250	29 29 32 36 41 45 45 50 55 61 71	ε 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 3	38 02 20 45 70 06 26 00 20 35 70	- - - - - 50 55 61 71	2° 4° 4° 4° 4° 4° 4° 4° 4° 4° 4° 4°

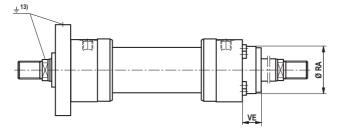

AL = Piston Ø


- MM = Piston rod Ø
- X* = Stroke length
- ¹⁾ Bleeding: When viewed on the piston rod, the orientation is always offset by 90° to the pipe connection (in a clockwise direction)
- ²⁾ Ø D4 max. 0.5 mm deep
- 3) M50 x 2 available on request
- ⁴⁾ For flange connections see separate table on pages 18 and 19
- ⁵⁾ Throttle valve only with end position damping "E" (180° to the bleed point)

- 6) Piston Ø not standardised
- 7) Dimensions for cylinder with seal versions M, T and S
- 8) Dimensions for cylinder with seal versions A and B
- ¹⁰⁾ Grease nipple; cone head form A to DIN 71412
- 11) Associated pin Ø m6
- ¹²⁾ The specified dimensions are maximum values, tolerance classes 342 according to ISO 9013 Thermal cutting
- ¹³⁾ For equipotential bonding, see page 25


Round flange at head MF3

CDH2 MF3



CGH2 MF3 ¹⁰⁾

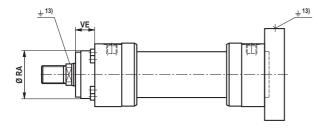
CGH2 MF3 ¹⁰⁾: for seal versions "A", "B" and AL-Ø 160 - 320 mm

Dimensions MF3 (dimensions in mm)

AL Ø	MM Ø	KK	Α	NV	D	DA	D4 2)	EE 4)	EE 4)	Y	PJ	X1	WA
								,					
40 ⁶⁾	25/28	M20x1,5	28	19/22	88	52	34	G1/2	M22x1,5	83	120	41	18
50	32/36	M27x2	36	27/30	102	62	34	G1/2	M22x1,5	98	120	48,5	18
63	40/45	M33x2	45	32/36	120	78	42	G3/4	M27x2	112	133	56,5	21
80	50/56	M42x2	56	41/46	145	95	42	G3/4	M27x2	120	155	69,5	24
100	63/70	M48x2	63	50/60	170	125	47	G1	M33x2	134	171	82	27
125	80/90	M64x3	85	65/75	206	150	47	G1	M33x2	153	205	100,5	31
140	90/100	M72x3	90	75/85	226	170	58	G1 1/4	M42x2	166	219	109,5	31
160	100/110	M80x3	95	85/95	265	190	58	G1 1/4	M42x2	185	235	129,5	35
180	110/125	M90x3	105	95/110	292	210	58	G1 1/4	M42x2	194	264	143,5	40
200	125/140	M100x3	112	110/120	306	235	58	G1 1/4	M42x2	220	278	150,5	40
220 ⁶⁾	140/160	M125x4	125	120/140	355	270	65	G1 1/2	M48x2 ³⁾	244	326	174	42
250	160/180	M125x4	125	140/160	395	305	65	G1 1/2	M48x2 ³⁾	257	326	194	42
280 ⁶⁾	180/200	M160x4	160	160/180	445	343	65	G1 1/2	M48x2 ³⁾	290	375	220,5	48
320	200/220	M160x4	160	180/200	490	394	65	G1 1/2	M48x2 ³⁾	282	391	243	48

AL Ø	MM Ø	RD f8	WC	VD	NF js13	PK	ZB max.	ZM	FB H13	FC js13	UC Ø-1	RA 7)	VE 7)	RA ⁸⁾	VE 8)
40 ⁶⁾	25/28	52	22	4	25	120	230	286	11	115	138	52	29	88	-
50	32/36	63	22	4	25	120	244	316	13,5	132	155	63	29	102	-
63	40/45	75	25	4	28	133	274	357	13,5	150	175	75	32	120	-
80	50/56	90	28	4	32	155	305	395	17,5	180	210	90	36	145	-
100	63/70	110	32	5	36	171	340	439	22	212	250	110	41	170	-
125	80/90	132	36	5	40	205	396	511	22	250	290	132	45	206	-
140	90/100	145	36	5	40	219	430	551	26	285	330	145	45	226	-
160	100/110	160	40	5	45	235	467	605	26	315	360	160	50	200	50
180	110/125	185	45	5	50	264	510	652	33	355	410	185	55	220	55
200	125/140	200	45	5	56	278	550	718	33	385	440	200	61	235	61
220 ⁶⁾	140/160	235	50	8	63	326	637	814	39	435	500	235	71	270	71
250	160/180	250	50	8	63	326	650	840	39	475	540	250	71	300	71
280 ⁶⁾	180/200	295	56	8	80	375	752	955	45	555	630	295	88	325	88
320	200/220	320	56	8	80	391	760	955	45	600	675	320	88	365	88

- AL = Piston Ø
- MM = Piston rod Ø
- X* = Stroke length
- ¹⁾ Bleeding: When viewed on the piston rod, the orientation is always offset by 90° to the pipe connection (in a clockwise direction)
- ²⁾ Ø D4 max. 0.5 mm deep
- 3) M50 x 2 available on request
- ⁴⁾ For flange connections see separate table on pages 18 and 19
- ⁵⁾ Throttle valve only with end position damping "E" (180° to the bleed point)


- 6) Piston Ø not standardised
- 7) Dimensions for cylinder with seal versions M, T and S
- 8) Dimensions for cylinder with seal versions A and B
- ¹⁰⁾ Grease nipple; cone head form A to DIN 71412
- ¹³⁾ For equipotential bonding, see page 25

Round flange at base MF4

CDH2 MF4

CDH2 MF4: for seal versions "A", "B" and AL-Ø 160 - 320 mm

Dimensions MF4 (dimensions in mm)

AL Ø	MM Ø	КК	A	NV	D	DA	D4 2)	EE 4)	E	EE 4)	Y	PJ	X1	WA
40 ⁶⁾	25/28	M20x1,5	28	19/22	88	52	34	G1/2	M2	2x1,5	83	120	41	18
50	32/36	M27x2	36	27/30	102	62	34	G1/2	-	2x1,5	98	120	48,5	18
63	40/45	M33x2	45	32/36	120	78	42	G3/4		27x2	112	133	56,5	21
80	50/56	M42x2	56	41/46	145	95	42	G3/4		27x2	120	155	69,5	24
100	63/70	M48x2	63	50/60	170	125	47	G1		33x2	134	171	82	27
125	80/90	M64x3	85	65/75	206	150	47	G1		33x2	153	205	100,5	31
140	90/100	M72x3	90	75/85	226	170	58	G1 1/4		12x2	166	219	109,5	31
160	100/110	M80x3	95	85/95	265	190	58	G1 1/4	-	12x2	185	235	129,5	35
180	110/125	M90x3	105	95/110	292	210	58	G1 1/4		12x2	194	264	143,5	40
200	125/140	M100x3	112	110/120	306	235	58	G1 1/4	-	2x2	220	278	150,5	40
220 ⁶⁾	140/160	M125x4	125	120/140	355	270	65	G1 1/2		3x2 ³⁾	244	326	174	42
250	160/180	M125x4	125	140/160	395	305	65	G1 1/2		3x2 ³⁾	257	326	194	42
280 ⁶⁾	180/200	M160x4	160	160/180	445	343	65	G1 1/2		3x2 ³⁾	290	375	220,5	48
320	200/220	M160x4	160	180/200	490	394	65	G1 1/2		3x2 ³⁾	282	391	243	48
		million	1.00	100/200				011.02	1		202			
AL Ø	MM Ø	ZP	NF js13	VA	BA H8	FB H13		-	JC ð-1	RA 7		7)	RA ⁸⁾	VE ⁸⁾
40 ⁶⁾	25/28	250	25	5	52	11	1		38	52		9	88	_
50	32/36	265	25	4	63	13,5	_				_	.9	00	
63	40/45	203	23			10,5				63	1 2		102	
80		230			75	135	16		55 75	63 75	_	9	102	-
		332		4	75 90	13,5	_	50 1	75	75	3	2	120	-
	50/56 63/70	332	32	5	90	17,5	18	50 1 30 2	75 10	75 90	3	6	120 145	-
100	63/70	371	32 36	5 5	90 110	17,5 22	21	50 1 30 2 12 2	75 10 50	75 90 110	3 3 4	2 6 1	120 145 170	- - -
125	63/70 80/90	371 430	32 36 40	5 5 6	90 110 132	17,5 22 22	18 21 25	50 1 30 2 12 2 50 2	75 10 50	75 90 110 132	3 3 4 4	2 6 1 5	120 145 170 206	-
125 140	63/70 80/90 90/100	371 430 465	32 36 40 40	5 5 6 5	90 110 132 145	17,5 22 22 26	18 2* 28 28	50 1 30 2 12 2 50 2 35 3	75 10 50 90 30	75 90 110 132 145	3 3 4 4 4	2 6 1 5 5	120 145 170 206 226	- - - - -
125 140 160	63/70 80/90 90/100 100/110	371 430 465 505	32 36 40 40 45	5 5 6 5 7	90 110 132 145 160	17,5 22 22 26 26	5 18 2 ⁻ 28 28 3 ⁻	50 1 30 2 12 2 50 2 35 3 15 3	75 10 50 90 30 60	75 90 110 132 145 160	3 3 4 4 4 4 5	2 6 1 .5 .5 60	120 145 170 206 226 200	- - - - 50
125 140 160 180	63/70 80/90 90/100 100/110 110/125	371 430 465 505 550	32 36 40 40 45 50	5 5 6 5 7 10	90 110 132 145 160 185	17,5 22 22 26 26 33	18 2° 28 28 3° 3°	50 1 30 2 12 2 50 2 35 3 15 3 55 4	75 10 50 90 30 60 10	75 90 110 132 145 160 185	3 3 4 4 4 4 5 5 5	2 6 1 5 5 60 55	120 145 170 206 226 200 220	- - - 50 55
125 140 160 180 200	63/70 80/90 90/100 100/110 110/125 125/140	371 430 465 505 550 596	32 36 40 40 45 50 56	5 5 6 5 7 10 10	90 110 132 145 160 185 200	17,5 22 22 26 26 33 33 33	18 2° 28 28 3° 38 38	50 1 30 2 12 2 50 2 35 3 15 3 55 4 35 4	75 10 50 90 30 60 10 40	75 90 110 132 145 160 185 200	33 34 44 44 55 55 66	2 6 1 5 5 5 60 55 1	120 145 170 206 226 200 220 220 235	- - - 50 55 61
125 140 160 180 200 220 ⁶⁾	63/70 80/90 90/100 100/110 110/125 125/140 140/160	371 430 465 505 550 596 690	32 36 40 40 45 50 56 63	5 5 6 5 7 10 10 10	90 110 132 145 160 185 200 235	17,5 22 22 26 26 26 33 33 33 39	5 18 2 2 28 3 3 38 38 38 43	50 1 30 2 12 2 50 2 35 3 15 3 55 4 35 5 35 5	75 10 50 90 30 60 10 40 60	75 90 110 132 145 160 185 200 235	3 3 4 4 4 4 5 5 5 6 6 7	2 6 1 5 5 5 60 55 61 7 1	120 145 170 206 226 200 220 235 270	- - - 50 55 61 71
125 140 160 180 200	63/70 80/90 90/100 100/110 110/125 125/140	371 430 465 505 550 596	32 36 40 40 45 50 56	5 5 6 5 7 10 10	90 110 132 145 160 185 200	17,5 22 22 26 26 33 33 33	18 2° 28 28 3° 38 38	50 1 30 2 12 2 50 2 335 3 55 4 35 2 35 2 35 5 435 5 55 4 35 5 55 5	75 10 50 90 30 60 10 40	75 90 110 132 145 160 185 200	3 3 4 4 4 5 5 5 5 6 6 7 7 7	2 6 1 5 5 5 60 55 1	120 145 170 206 226 200 220 220 235	- - - 50 55 61

AL = Piston Ø

320

- MM = Piston rod Ø
- X* = Stroke length
- ¹⁾ Bleeding: When viewed on the piston rod, the orientation is always offset by 90° to the pipe connection (in a clockwise direction)

830

80

10

320

45

²⁾ Ø D4 max. 0.5 mm deep

200/220

- 3) M50 x 2 available on request
- ⁴⁾ For flange connections see separate table on pages 18 and 19
- ⁵⁾ Throttle valve only with end position damping "E" (180° to the bleed point)

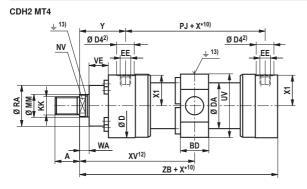
6) Piston Ø not standardised

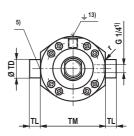
675

600

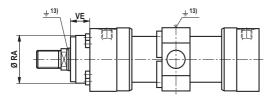
- 7) Dimensions for cylinder with seal versions M, T and S
- 8) Dimensions for cylinder with seal versions A and B

320

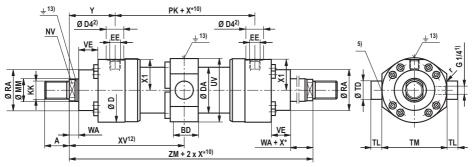

88

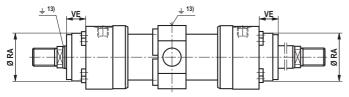

365

88


¹³⁾ For equipotential bonding, see page 25

Trunnions MT4

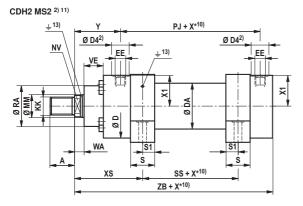


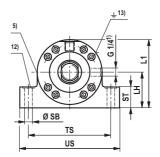

CDH2 MT4: for seal versions "A", "B" and AL-Ø 160-320 mm

CGH2 MT4 11)

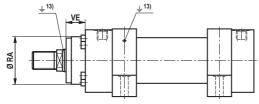
CGH2 MT4 ¹¹): for seal versions "A", "B" and AL-Ø 160-320 mm

Dimensions MT4 (dimensions in mm)

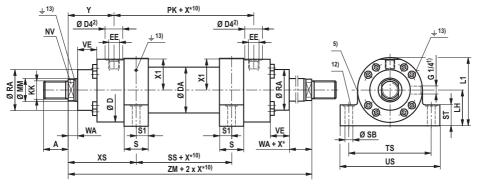

AL Ø	MM Ø	КК	Α	NV	D	DA	D4 2)	EE 4)	EE 4)	Y	PJ	X1	WA
40 ⁶⁾	25/28	M20x1,5	28	19/22	88	52	34	G1/2	M22x1,5	83	120	41	18
50	32/36	M27x2	36	27/30	102	62	34	G1/2	M22x1,5	98	120	48,5	18
63	40/45	M33x2	45	32/36	120	78	42	G3/4	M27x2	112	133	56,5	21
80	50/56	M42x2	56	41/46	145	95	42	G3/4	M27x2	120	155	69,5	24
100	63/70	M48x2	63	50/60	170	125	47	G1	M33x2	134	171	82	27
125	80/90	M64x3	85	65/75	206	150	47	G1	M33x2	153	205	100,5	31
140	90/100	M72x3	90	75/85	226	170	58	G1 1/4	M42x2	166	219	109,5	31
160	100/110	M80x3	95	85/95	265	190	58	G1 1/4	M42x2	185	235	129,5	35
180	110/125	M90x3	105	95/110	292	210	58	G1 1/4	M42x2	194	264	143,5	40
200	125/140	M100x3	112	110/120	306	235	58	G1 1/4	M42x2	220	278	150,5	40
220 ⁶⁾	140/160	M125x4	125	120/140	355	273	65	G1 1/2	M48x2 3)	244	326	174	42
250	160/180	M125x4	125	140/160	395	305	65	G1 1/2	M48x2 3)	257	326	194	42
280 ⁶⁾	180/200	M160x4	160	160/180	445	343	65	G1 1/2	M48x2 3)	290	375	220,5	48
320	200/220	M160x4	160	180/200	490	394	65	G1 1/2	M48x2 3)	282	391	243	48
	•	•											
Δ1	MM	PK 7B	ZM	(* XV	14)	(V 12)	XV 12)	BD IIV	TD TI	TMr	BA 7)	/F 7) BA	

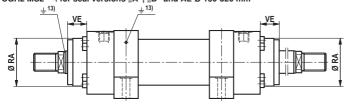

AL	MM	PK	ZB	ZM	X*	XV 14)	XV 12)	XV 12)	BD	UV	TD	TL	TM	r	RA 7)	VE 7)	RA ⁸⁾	VE 8)
Ø	Ø		max.		min.	mitt	min.	max.		15)	f8	js16	h12					
40 ⁶⁾	25/28	120	230	286	22	143+X*/2	154	140+X*	38	97	25	20	95	0,8	52	29	88	-
50	32/36	120	244	316	32	158+X*/2	174	151+X*	38	111	32	25	112	0,8	63	29	102	-
63	40/45	133	274	357	47	178,5+X*/2	202	167+X*	48	129	40	32	125	1	75	32	120	-
80	50/56	155	305	395	58	197,5+X*/2	226,5	180,5+X*	58	163	50	40	150	1	90	36	145	-
100	63/70	171	340	439	79	219,5+X*/2	259	195+X*	78	188	63	50	180	1,2	110	41	170	-
125	80/90	205	396	511	91	255,5+X*/2	301	225+X*	98	234	80	63	224	1,2	132	45	206	-
140	90/100	219	430	551	121	275,5+X*/2	336	230+X*	118	257	90	70	265	1,5	145	45	226	-
160	100/110	235	467	605	142	302,5+X*/2	373,5	251,5+X*	128	287	100	80	280	1,5	160	50	200	50
180	110/125	264	510	652	158	326+X*/2	405	267+X*	138	328	110	90	320	1,5	185	55	220	55
200	125/140	278	550	718	204	359+X*/2	461	277+X*	178	343	125	100	335	1,5	200	61	235	61
220 ⁶⁾	140/160	326	637	814	200	407+X*/2	507	307+X*	180	393	160	125	385	1,5	235	71	270	71
250	160/180	326	650	840	210	420+X*/2	525	315+X*	180	433	160	125	425	1,5	250	71	300	71
280 ⁶⁾	180/200	375	752	955	241	477,5+X*/2	598	357+X*	220	486	200	160	480	2	295	88	325	88
320	200/220	391	760	955	245	477,5+X*/2	600	355+X*	220	536	200	160	530	2	320	88	365	88

- AL = Piston Ø
- MM = Piston rod Ø
- X* = Stroke length
- ¹⁾ Bleeding: When viewed on the piston rod, the orientation is always offset by 90° to the pipe connection (in a clockwise direction)
- ²⁾ Ø D4 max. 0.5 mm deep
- 3) M50 x 2 available on request
- ⁴⁾ For flange connections see separate table on pages 18 and 19
- ⁵⁾ Throttle valve only with end position damping "E" (180° to the bleed point)
- 6) Piston Ø not standardised
- 7) Dimensions for cylinder with seal versions M, T and S


- ⁸⁾ Dimensions for cylinder with seal versions A and B
- ¹⁰⁾ Take the minimum stroke length "X*min." into account
- ¹¹⁾ Double roded cylinders are not standardised
- ¹²⁾ The trunnions can be located as required. Dim. "XV" must always be stated in clear text, in the case of an order, in mm. Take "XVmin." and "XVmax." into account.
- ¹³⁾ For equipotential bonding, see page 25
- XVmid. recommendation: The trunnions are located in the middle of the cylinder
 The specified dimensions are maximum values
- ¹⁵⁾ The specified dimensions are maximum values, tolerance classes 342 according to ISO 9013 Thermal cutting

Foot mounting MS2




CDH2 MS2 $^{11)}\!\!:$ for seal versions "A", "B" and AL-Ø 160-320 mm

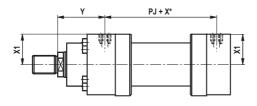
CGH2 MS2 11)

CGH2 MS2 ¹¹): for seal versions "A", "B" and AL-Ø 160-320 mm

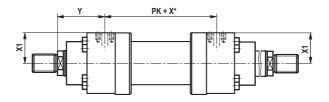
2

Dimensions MS2 (dimensions in mm)

AL Ø	MM Ø	К	ĸ	A	N	v	D	C	A	D4 2)	E 4		E 4		Y	PJ		X1	WA
40 ⁶⁾	25/28	M20	x1,5	28	19/	22	88	5	52	34	G1	/2	M22	x1,5	83	120)	41	18
50	32/36	M2	7x2	36	27/	/30	102	2 6	62	34	G1	/2	M22	x1,5	98	120) 4	48,5	18
63	40/45	MЗ	3x2	45	32/	/36	120) 7	78	42	G3	8/4	M2	7x2	112	133	3 !	56,5	21
80	50/56	M4	2x2	56	41/	46	145	; 9	95	42	G3	3/4	M2	7x2	120	15	5 6	69,5	24
100	63/70	M4	8x2	63	50/	60	170) 1	25	47	G	1	M3	3x2	134	17	1	82	27
125	80/90	M6	4x3	85	65/	75	206	5 1	50	47	G	1	M3	3x2	153	205	5 1	00,5	31
140	90/100	M7	2x3	90	75/	/85	226	5 1	70	58	G1	1/4	M4	2x2	166	219	9 1	09,5	31
160	100/110	M8	0x3	95	85/	95	265	5 1	90	58	G1	1/4	M43	2x2	185	235	5 1	29,5	35
180	110/125	M9	0x3	105	95/	110	292	2 2	10	58	G1	1/4	M4	2x2	194	264	4 1	43,5	40
200	125/140	M10	00x3	112	110/	120	306	5 2	35	58	G1	1/4	M4:	2x2	220	278	3 1	50,5	40
220 ⁶⁾	140/160	M12	25x4	125	120/	/140	355	5 2	70	65	G1	1/2	M48	x2 ³⁾	244	326	6	174	42
250	160/180	M12	25x4	125	140/	160	395	5 3	05	65	G1	1/2	M48	x2 ³⁾	257	326	6	194	42
280 ⁶⁾	180/200	M16	60x4	160	160/	180	445	5 3	43	65	G1	1/2	M48	x2 ³⁾	290	375	5 2	20,5	48
320	200/220	M16	60x4	160	180/	200	490) 3	94	65	G1	1/2	M48	x2 ³⁾	282	39	1 :	243	48
AL	MM	PK	XS	ZB	ZM	SS	X * 10)	s	S1	SB	ST	TS	US 14)	LH	L1	RA 7)	VE 7)	RA 8)	VE 8)
Ø	Ø	100	110	max.	000	50	min.	00	45	H13	00	js13	,	45		50		00	
40 ⁶⁾	25/28	120	118	230	286	50	1	30	15	11	32	110	140	45	89	52	29	88	-
50	32/36	120	135,5	244	316	45					07	100	101		100	- 00			
63 80	40/45 50/56	133	154			40	1	35	17,5	11	37	130	161	55	106	63	29	102	-
		155		274	357	49	1	40	20	13,5	42	150	183	65	125	75	32	120	-
		155	171,5	305	395	52	1 2	40 50	20 25	13,5 17,5	42 47	150 180	183 220	65 75	125 147,5	75 90	32 36	120 145	-
100	63/70	171	171,5 189	305 340	395 439	52 61	1 2 3	40 50 60	20 25 30	13,5 17,5 22	42 47 57	150 180 210	183 220 260	65 75 90	125 147,5 175	75 90 110	32 36 41	120 145 170	-
125	63/70 80/90	171 205	171,5 189 218	305 340 396	395 439 511	52 61 75	1 2 3 1	40 50 60 70	20 25 30 35	13,5 17,5 22 26	42 47 57 67	150 180 210 255	183 220 260 313	65 75 90 105	125 147,5 175 208	75 90 110 132	32 36 41 45	120 145 170 206	
125 140	63/70 80/90 90/100	171 205 219	171,5 189 218 240,5	305 340 396 430	395 439 511 551	52 61 75 70	1 2 3 1 19	40 50 60 70 85	20 25 30 35 42,5	13,5 17,5 22 26 30	42 47 57 67 72	150 180 210 255 290	183 220 260 313 359	65 75 90 105 115	125 147,5 175 208 228	75 90 110 132 145	32 36 41 45 45	120 145 170 206 226	- - - -
125 140 160	63/70 80/90 90/100 100/110	171 205 219 235	171,5 189 218 240,5 270	305 340 396 430 467	395 439 511 551 605	52 61 75 70 65	1 2 3 1 19 44	40 50 60 70 85 105	20 25 30 35 42,5 52,5	13,5 17,5 22 26 30 33	42 47 57 67 72 77	150 180 210 255 290 330	183 220 260 313 359 402	65 75 90 105 115 135	125 147,5 175 208 228 267,5	75 90 110 132 145 160	32 36 41 45 45 50	120 145 170 206 226 200	- - - - 50
125 140 160 180	63/70 80/90 90/100 100/110 110/125	171 205 219 235 264	171,5 189 218 240,5 270 291,5	305 340 396 430 467 510	395 439 511 551 605 652	52 61 75 70 65 69	1 2 3 1 19 44 50	40 50 60 70 85 105 115	20 25 30 35 42,5 52,5 57,5	13,5 17,5 22 26 30 33 40	42 47 57 67 72 77 92	150 180 210 255 290 330 360	183 220 260 313 359 402 445	65 75 90 105 115 135 150	125 147,5 175 208 228 267,5 296	75 90 110 132 145 160 185	32 36 41 45 45 50 55	120 145 170 206 226 200 220	- - - - 50 55
125 140 160 180 200	63/70 80/90 90/100 100/110 110/125 125/140	171 205 219 235 264 278	171,5 189 218 240,5 270 291,5 322,5	305 340 396 430 467 510 550	395 439 511 551 605 652 718	52 61 75 70 65 69 73	1 2 3 1 19 44 50 56	40 50 60 70 85 105 115 125	20 25 30 35 42,5 52,5 57,5 62,5	13,5 17,5 22 26 30 33 40 40	42 47 57 67 72 77 92 97	150 180 210 255 290 330 360 385	183 220 260 313 359 402 445 471	65 75 90 105 115 135 150 160	125 147,5 208 228 267,5 296 313	75 90 110 132 145 160 185 200	32 36 41 45 45 50 55 61	120 145 170 206 226 200 220 235	- - - 50 55 61
125 140 160 180 200 220 ⁶⁾	63/70 80/90 90/100 100/110 110/125 125/140 140/160	171 205 219 235 264 278 326	171,5 189 218 240,5 270 291,5 322,5 369,5	305 340 396 430 467 510 550 637	395 439 511 551 605 652 718 814	52 61 75 70 65 69 73 75	1 2 3 1 19 44 50 56 100	40 50 60 70 85 105 115 125	20 25 30 35 42,5 52,5 57,5 62,5 77,5	13,5 17,5 22 26 30 33 40 40 45	42 47 57 67 72 77 92 97 102	150 180 210 255 290 330 360 385 445	183 220 260 313 359 402 445 471 541	65 75 90 105 115 135 150 160 185	125 147,5 208 228 267,5 296 313 362,5	75 90 110 132 145 160 185 200 235	32 36 41 45 45 50 55 61 71	120 145 170 206 226 200 220 235 270	- - - 50 55 61 71
125 140 160 200 220 ⁶⁾ 250	63/70 80/90 90/100 100/110 110/125 125/140 140/160 160/180	171 205 219 235 264 278 326 326	171,5 189 218 240,5 270 291,5 322,5 369,5 382,5	305 340 396 430 467 510 550 637 650	395 439 511 551 605 652 718 814 840	52 61 75 70 65 69 73 75 75	1 2 3 1 9 44 50 56 100 100	40 50 60 70 85 105 115 125 155	20 25 30 35 42,5 52,5 57,5 62,5 77,5 77,5	13,5 17,5 22 26 30 33 40 40 45 52	42 47 57 67 72 77 92 97 102 112	150 180 210 255 290 330 360 385 445 500	183 220 260 313 359 402 445 471 541 610	65 75 90 105 115 135 150 160 185 205	125 147,5 208 228 267,5 296 313 362,5 402,5	75 90 110 132 145 160 185 200 235 250	32 36 41 45 45 50 55 61 71 71	120 145 170 206 226 200 220 235 270 300	- - - 50 55 61 71 71
125 140 160 180 200 220 ⁶⁾	63/70 80/90 90/100 100/110 110/125 125/140 140/160	171 205 219 235 264 278 326	171,5 189 218 240,5 270 291,5 322,5 369,5	305 340 396 430 467 510 550 637	395 439 511 551 605 652 718 814	52 61 75 70 65 69 73 75	1 2 3 1 19 44 50 56 100	40 50 60 70 85 105 115 125	20 25 30 35 42,5 52,5 57,5 62,5 77,5	13,5 17,5 22 26 30 33 40 40 45	42 47 57 67 72 77 92 97 102	150 180 210 255 290 330 360 385 445	183 220 260 313 359 402 445 471 541	65 75 90 105 115 135 150 160 185	125 147,5 208 228 267,5 296 313 362,5	75 90 110 132 145 160 185 200 235	32 36 41 45 45 50 55 61 71	120 145 170 206 226 200 220 235 270	- - - 50 55 61 71

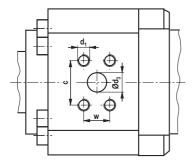

AL = Piston Ø

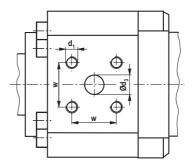
- MM = Piston rod Ø
- X* = Stroke length
- ¹⁾ Bleeding: When viewed on the piston rod, the orientation is always offset by 90° to the pipe connection (in a clockwise direction)
- ²⁾ Ø D4 max. 0.5 mm deep
- 3) M50 x 2 available on request
- ⁴⁾ For flange connections see separate table on pages 18 and 19
- ⁵⁾ Throttle valve only with end position damping "E" (180° to the bleed point)
- 6) Piston Ø not standardised


- 7) Dimensions for cylinder with seal versions M, T and S
- 8) Dimensions for cylinder with seal versions A and B
- 9) Tolerance: f8
- ¹⁰⁾ Take the minimum stroke length "X*min." into account
- 11) Not standardised
- ¹²⁾ 2 mm deep counter bore for the ISO 4762 S.H.C.S. The screws must not be subjected to shear loads. The forces have to be distributed by keys
- ¹³⁾ For equipotential bonding, see page 25
- ¹⁴⁾ The specified dimensions are maximum values, tolerance classes 342 according to ISO 9013 Thermal cutting

Flange connections

CDH2

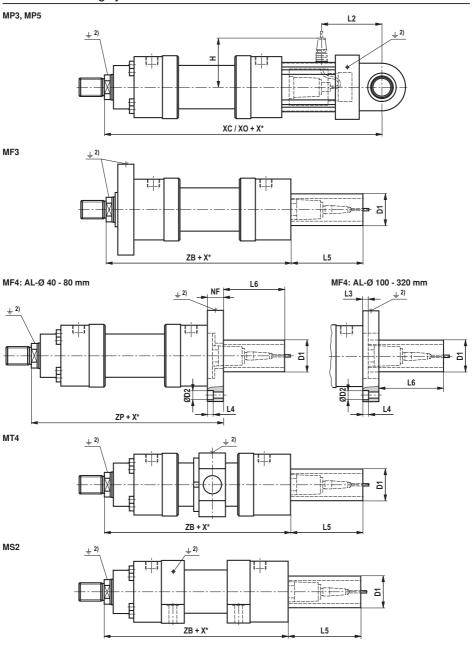



CGH2

Porting pattern for rectangular flanges to ISO 6162-1 Tab. 2 Type1 and ISO 6162-2 Tab. 2 Type1

Porting pattern for square flanges to ISO 6164 Tables 1 and 2

Flange connections (dimensions in mm)


AL					Versi	ion "F	:**								Vers	ion "	К"			
	ISO	6162	-1 Tab.	2 Ty	/pe1 (20)0 - 35	0 bar)	(≙ S/	AE 30	00 P	SI)			ISO 61	64 T	ab.1 (250 ba	ar)		
ø	Y	PJ	X1	d ₃	d ₃ ⁴⁾	с	w	d,	t, 1)	t1 ²⁾	p ³⁾	Y	PJ	X1	d ₃	w	d,	t, 1)	t, 2)	p ³⁾
		PK		ø	ø	±0,25	±0,25			<u> </u>			PK		ø	±0,25				
40	-	-		- 1		-	_	-	-	-	-	82	122	40,5	10	24,7	M6	12,5	10	250
50	_	-		-	-	-	-	_	-	-	-	97	122	48	10	24,7	M6	12,5	12,5	250
63	111	135	55	13	1/2"	38,1	17,5	M8	16	16	350	111	135	57	13	29,7	M8	16	16	250
80	123,5	148	68	13	1/2"	38,1	17,5	M8	16	16	350	123,5	148	69,5	13	29,7	M8	16	16	250
100	133	173	79	19	3/4"	47,6	22,3	M10	20	20	350	133	173	81,5	19	35,4	M8	16	16	250
125	153	205	98	25	1"	52,4	26,2	M10	20	20	350	157	197	100	19	35,4	M8	16	16	250
140	162	227	107	32	1 1/4"	58,7	30,2	M10	20	20	250	162	227	109	25	43,8	M10	20	20	250
160	181,5	242	127	32	1 1/4"	58,7	30,2	M10	20	20	250	181,5	242	128,5	25	43,8	M10	20	20	250
180	193	266	139	38	1 1/2"	69,9	35,7	M12	24	24	200	194	264	142	32	51,6	M12	24	24	250
200	219	280	146,5	38	1 1/2"	69,9	35,7	M12	24	24	200	220	278	148,5	32	51,6	M12	24	24	250

AL					Versi	ion "C)"								Vers	ion "	H"			
	19	SO 61	62-2 Ta	ab. 2	Type1	(400 k	oar) (≙	SAE	6000					ISO 61	64 T	ab.2 (
Ø	Υ	PJ	X1	d_3	d ₃ ⁵⁾	с	w	d ₁	t ₁ ¹⁾	t ₁ ²⁾	p ³⁾	Y	PJ	X1	d_3	w	d ₁	t, 1)	t1 ²⁾	p ³⁾
		PK		Ø	Ø	±0,25	±0,25						PK		Ø	±0,25				
40	-	-	-	-	-	-	-	-	-	-	-	82	122	40,5	10	24,7	M6	12,5	10	400
50	-	-	-	-	-	-	-	-	-	-	-	97	122	48	10	24,7	M6	12,5	12,5	400
63	-	-	-	-	-	-	-	-	-	-	-	111	135	57	13	29,7	M8	16	16	400
80	120	155	67	13	1/2"	40,5	18,2	M8	16	14	400	123,5	148	69,5	13	29,7	M8	16	16	400
100	134	171	80,5	13	1/2"	40,5	18,2	M8	16	16	400	133	173	81,5	19	35,4	M8	16	16	400
125	153	205	97	19	3/4"	50,8	23,8	M10	20	20	400	157	197	100	19	35,4	M8	16	16	400
140	162	227	107	25	1"	57,2	27,8	M12	24	24	400	162	227	109	25	43,8	M10	20	20	400
160	181,5	242	127	25	1"	57,2	27,8	M12	24	24	400	181,5	242	128,5	25	43,8	M10	20	20	400
180	194	264	139,5	32	1 1/4"	66,6	31,8	M14	26	26	400	194	264	142	32	51,6	M12	24	24	400
200	220	278	147	32	1 1/4"	66,6	31,8	M14	26	26	400	220	278	148,5	32	51,6	M12	24	24	400
220	244	326	168	38	1 1/2"	79,3	36,5	M16	30	30	400	244	326	171	38	60,1	M16	30	30	400
250	257	326	189	38	1 1/2"	79,3	36,5	M16	30	30	400	257	326	192	38	60,1	M16	30	30	400
280	290	375	215	38	1 1/2"	79,3	36,5	M16	30	30	400	290	375	218	38	60,1	M16	30	30	400
320	282	391	236	51	2"	96,8	44,5	M20	36	36	400	282	391	240	51	69,3	M16	30	30	400

For main dimensions see pages 6 to 17

- AL = Piston Ø
- X* = Stroke length
- 1) Thread depth for seal versions M, T and S
- ²⁾ Thread depth for seal versions A and B
- 3) Max. operating pressure for associated flanges in bar
- ⁴⁾ Flange porting pattern to ISO 6162-1 Tab. 2 Type1 relates to a flange porting pattern to SAE 3000 PSI
- ⁵⁾ Flange porting pattern to ISO 6162-2 Tab. 2 Type1 relates to a flange porting pattern to SAE 6000 PSI

Position measuring system

AL Ø	MM Ø	X* _{max}	ХС	хо	н	ZB	ZP	NF js13	L2	L3	L4	L5	L6	D1 max	D2 Ø
40	_ 28	1400	447	447	115	239	262	28	124	-	3	166	166	80	18
50	32 36	1400	470	470	120	254	278	28	132	_	3	166	166	96	20
63	40 45	2000	526	526	130	299	313	28	150	-	0	166	166	96	0
80	50 56	2000	580	580	125	332,5	350	32	176,5	-	0	166	166	96	0
100	63 70	3000	617	617	135	362	390	36	192	8	0	166	138	96	0
125	80 90	3000	693	693	145	410	445	55	227	20	21,5	166	131	96	33
140	90 100	3000	755	755	155	440	485	60	262	15	25,5	166	121	96	40
160	100 110	3000	787	787	165	472,5	525	65	269,5	12,5	25,5	166	113,5	96	40
180	110 125	3000	855	855	175	510	570	70	307	10	32	166	106	96	48
200	125 140	3000	926	926	190	550	616	76	333	10	32	166	100	96	48
220	140 160	3000	1100	1100	205	637	715	88	418	10	38	166	88	96	57
250	160 180	3000	1115	1115	220	650	730	90	420	10	38	166	86	96	57
280	180 200	3000	1295	1295	280	752	857	115	510	10	44	166	61	96	66
320	200 220	3000	1300	1300	300	760	865	115	520	10	44	166	61	96	66

Position measuring system (dimensions in mm)

For main dimensions see pages 6 to 17

AL = Piston Ø

MM = Piston rod Ø

X* = Stroke length

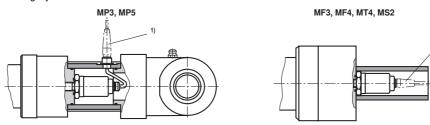
X*_{max} = Max. stroke length

2) Centering ring BA cannot be used

²⁾ For equipotential bonding, see page 25

Position measuring system

The contactless, absolute position measuring system is rated up to 500 bar. Its function principle is based on the magnetostrictive effect. In connection with this, a torsion impulse is triggered off when two magnetic fields meet. This impulse is directed from the point of measurement via the wave guide inside the measuring scale to the sensor head. The transmission time is constant and virtually independent of temperature. It is proportional to the position of the magnet and can therefore be used as a reference for the actual position value and is converted into a direct analogue of digital output in the sensor head.


Technical data (for applications outside these parameters, please consult us!)

Operating pressure		bar	250
Analogue output		V	0 to 10
	Load resistance	kΩ	≥ 5
	Resolution		Infinite
Analogue output		mA	4 to 20
	Load resistance	Ω	0 to 500
	Resolution		Infinite
Linearity (absolute accuracy)	Analogue	% mm	$\leq\pm0.02$ % (with reference to the measurement length) min. ±0.05
Repeatability		% mm	$\pm 0,001$ (with reference to the measurement length) min. $\pm 0,0025$
Hysteresis		mm	≤ 0,004
Supply voltage		V DC	24 (± 10 % with an anlogue output)
	Current consump- tion	mA	100
	Residual ripple	% s-s	≤ 1
Protection	Tube and flange		IP 67
	Sensor electronics		IP 65
Operating temperature	Sensor electronics	°C	- 40 bis + 75
Temperature co-efficient	Voltage	ppm/°C	70
	Current	ppm/°C	90

Hydraulics | Bosch Rexroth AG 23/44

Position measuring system

Mounting style

1) For analogue output:

6-pin Amphenol -

Plug-in connector Material No. R900072231

(plug-in connector is not included within the scope of supply, it must be ordered separately)

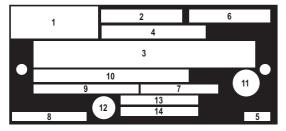
Connection allocation

Position measuring system (analogue output) Component plug (viewed on the pin side)

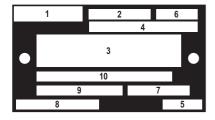
Pin	Cable	Signal / current	Signal / voltage
1	grey	420 mA	010 V
2	pink	DC Ground	DC Ground
3	yellow	not connect	not connect
4	green	DC Ground	DC Ground
5	brown	+24 V DC (+20% / -15%)	+24 V DC (+20% / –15%)
6	white	DC Ground (0 V)	DC Ground (0 V)

1)

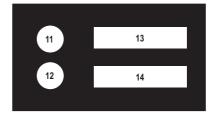
Name plate

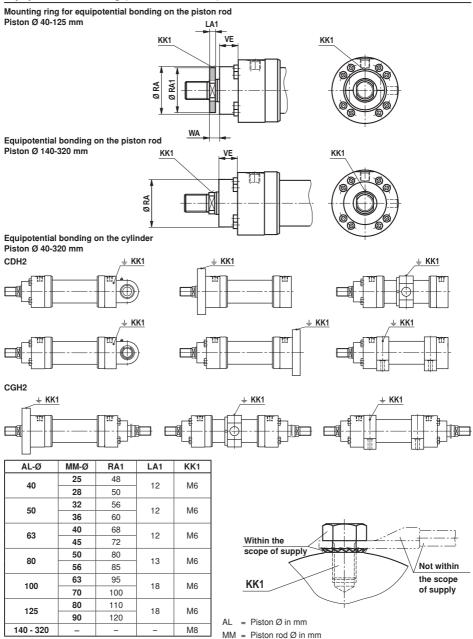

- 1 Trade mark
- 2 Material No.
- 3 Material short text
- 4 Serial number
- 5 Area/factory number
- 6 Manufacturing date
- 7 Catalogue No.
- 8 Origin code
- 1) Items 15 and 16 must be applied to the component.

- 9 Customer or manufacturing order
- 10 Customer material number or additional details
- 11 CE identification
- 12 EX protection


160

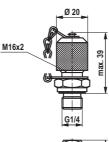
- 13 EX identification 1
- 14 EX identification 2
- 15 Test stamp 1)
- 16 Assembly stamp 1)


Name plate for piston Ø 63 mm to 320 mm


Name plate for piston Ø 40 mm and 50 mm

Separate bondable lable for ATEX components Piston Ø 40 mm and 50 mm

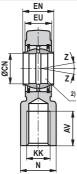
Equipotential bonding (dimensions in mm)

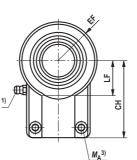


Screw coupling (dimensions in mm)

For pressure measurement or bleeding. For installation in the bleed/measuring port. Coupling with check valve function, i.e. it can also be connected when pressure is present.

Scope of supply:


Coupling AB 20-11/K1 with NBR seal Material No. **R900009090** Coupling AB 20-11/K1 V with FKM seal Material No. **R900001264**



Self-aligning clevis CGKD (dimensions in mm)

Note:

The geometry and dimensions may vary depending on the make.

For combination with other mounting elements, the usability must be verified.

2

					<u>.</u>	<u>'A</u>					
Ser	ies CDH2	Туре	Material no.	m ⁴⁾	AV	N	CH	EF	CN	EN	EU
AL	MM										
Ø	Ø			kg	min.	max.	js13	max.	H7	h12	max.
40	25 / 28	CGKD 25	R900323332	0,65	29	31	65	32	25	25	22
50	32 / 36	CGKD 32	R900322049	1,15	37	38	80	40	32	32	28
63	40 / 45	CGKD 40	R900322029	2,1	46	47	97	50	40	40	34
80	50 / 56	CGKD 50	R900322719	4	57	58	120	63	50	50	42
100	63 / 70	CGKD 63	R900322028	7,2	64	70	140	72,5	63	63	53,5
125	80 / 90	CGKD 80	R900322700	15	86	91	180	92	80	80	68
140	90 / 100	CGKD 90 7)	R900325702	19	91	100	195	101	90	90	72
160	100 / 110	CGKD 100	R900322030	25,5	96	110	210	114	100	100	85,5
180	110 / 125	CGKD 110 ⁷⁾	R900308153	36,5	106	125	235	129	110	110	88
200	125 / 140	CGKD 125	R900322026	52,5	113	135	260	160	125	125	105
220	140 / 160	CGKD 160	R900300718	82,5	126	165	310	200	160	160	133
250	160 / 180	CGKD 160	R900300718	82,5	126	165	310	200	160	160	133
280	180 / 200	CGKD 200	R900324814	168	161	215	390	250	200	200	165
320	200 / 220	CGKD 200	R900324814	168	161	215	390	250	200	200	165
Cor		Turne	Motorial no	VV	LF	Z	C 5)	E 6)	Cara		M
	ies CDH2	Туре	Material no.	KK		2	C ₀ ⁵⁾	F _{zul} ⁶⁾	Screv	N	M _A
AL	MM										
Ø	Ø				min		[kN]	[kN]	10.9		[NIm]

AL	MM									
Ø	Ø				min.		[kN]	[kN]	10.9	[Nm]
40	25 / 28	CGKD 25	R900323332	M20 x 1,5	25,5	4°	78	28,8	M8	30
50	32 / 36	CGKD 32	R900322049	M27 x 2	30	4°	114	42,1	M10	59
63	40 / 45	CGKD 40	R900322029	M33 x 2	39	4°	204	75,3	M10	59
80	50 / 56	CGKD 50	R900322719	M42 x 2	47	4°	310	114,4	M12	100
100	63 / 70	CGKD 63	R900322028	M48 x 2	58	4°	430	158,7	M16	250
125	80 / 90	CGKD 80	R900322700	M64 x 3	74	4°	695	256,5	M20	490
140	90 / 100	CGKD 90 7)	R900325702	M72 x 3	85	4°	750	276,8	M20	490
160	100 / 110	CGKD 100	R900322030	M80 x 3	94	4°	1060	391,1	M24	840
180	110 / 125	CGKD 110 ⁷⁾	R900308153	M90 x 3	105	4°	1200	442,8	M24	840
200	125 / 140	CGKD 125	R900322026	M100 x 3	116	4°	1430	527,7	M24	840
220	140 / 160	CGKD 160	R900300718	M125 x 4	145	4°	2200	811,8	M24	840
250	160 / 180	CGKD 160	R900300718	M125 x 4	145	4°	2200	811,8	M24	840
280	180 / 200	CGKD 200	R900324814	M160 x 4	190	4°	3650	1346,9	M30	1700
320	200 / 220	CGKD 200	R900324814	M160 x 4	190	4°	3650	1346,9	M30	1700

AL = Piston Ø

MM = Piston rod Ø

1) Lubricating nipple, cone head form A according to DIN 71412

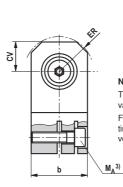
2) Associated pin Ø m6

(pins and pin securing rings are included within the scope of supply and not mounted at the point in time of the supply)

³⁾ M_A Tightening torque

The swivel head must always be screwed against the piston rod shoulder. Then, the clamping screws must be tightened to the specified tightening torque


⁴⁾ m Weight swivel head


 $^{5)}C_{0}$ Static load rating of the swivel head

 $^{6)}$ $F_{\rm zul}$ Maximum admissible load of the swivel heads with oscillatory or alternating loads 7)

Not standardised

Fork clevis CCKB (dimensions in mm)

Note:

The geometry and dimensions may vary depending on the make.

For combination with other mounting elements, the usability must be verified.

Seri	es CDH2	Туре	Material no.	Nominal	b	CE	СК	CL1	CL2	СМ	ER
AL	MM			force							
Ø	Ø			Ν	max.	js13	H9	h16	max.	A13	max.
40	25 / 28	CCKB 25	R900542845	32.000	50	65	25	56	84	25	32
50	32 / 36	CCKB 32	R900542846	50.000	65	80	32	70	105	32	40
63	40 / 45	CCKB 40	R900542847	80.000	80	97	40	90	133	40	50
80	50 / 56	CCKB 50	R900542848	125.000	100	120	50	110	165	50	63
100	63 / 70	CCKB 63	R900542849	200.000	140	140	63	140	185	63	71
125	80 / 90	CCKB 80	R900542850	320.000	180	180	80	170	225	80	90
140	90 / 100	CCKB 90	8)	400.000	200	195	90	190	8)	90	100
160	100 / 110	CCKB 100	8)	500.000	220	210	100	210	8)	100	110

Seri	es CDH2	Type	КК	LE	CV	Clamping screw	M _A ³⁾	m ⁴⁾
AL	MM							
Ø	Ø			min.	max.	ISO 4762-10.9	Nm	kg
40	25 / 28	CCKB 25	M20 x 1,5	34	32	M10 x 35	49	1,4
50	32 / 36	CCKB 32	M27x 2	41	40	M12 x 40	85	2,8
63	40 / 45	CCKB 40	M33 x 2	51	50	M16 x 50	210	5,2
80	50 / 56	CCKB 50	M42 x 2	63	63	M20 x 60	425	9,5
100	63 / 70	CCKB 63	M48 x 2	75	71	M24 x 80	730	21,5
125	80 / 90	CCKB 80	M64 x 3	94	90	M30 x 100	1450	38,2
140	90 / 100	CCKB 90	M72 x 3	108	100	M36 x 120	2480	8)
160	100 / 110	CCKB 100	M80 x 3	114	110	M36 x 130	2480	8)

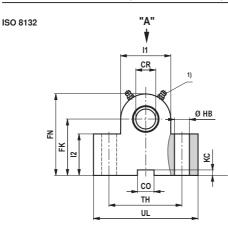
AL = Piston Ø

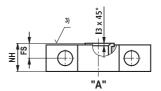
MM = Piston rod Ø

 Grease nipple, cone head form A according to DIN 71412

2) Associated pin Ø m6

(pins and pin securing rings are included within the scope of supply and not mounted at the point in time of the supply)


 $^{3)} M_{\rm A}$ Tightening torque


The fork clevis must always be screwed to the piston rod thread stop. Subsequently, the clamping screws have to be tightened to the specified torque.

 $^{4)}$ m Weight of the fork clevis

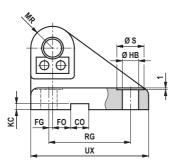
⁸⁾ Upon request

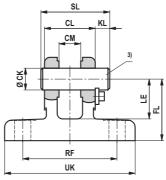
Trunnion bracket CLTB (dimensions in mm)

Note:

The geometry and dimensions may vary depending on the make.

For combination with other mounting elements, the usability must be verified.


Series	Туре	Material no.	Nominal force	CR	СО	FK	FN	FS	HB	КС
CDH2										
AL Ø			N	H7	N9	js12	max.	js14	H13	+0,3
40	CLTB 25	R900772610 ⁴⁾	32.000	25	25	55	80	12	13,5	5,4
50	CLTB 32	R900772611 4)	50.000	32	25	65	100	15	17,5	5,4
63	CLTB 40	R900772612 4)	80.000	40	36	76	120	16	22	8,4
80	CLTB 50	R900772613 4)	125.000	50	36	95	140	20	26	8,4
100	CLTB 63	R900772614 4)	200.000	63	50	112	180	25	33	11,4
125	CLTB 80	R900772615 ⁴⁾	320.000	80	50	140	220	31	39	11,4
140	CLTB 90	8); 4)	385.000	90	63	160	250	40	45	12,4
160	CLTB 100	R901205929 4)	500.000	100	63	180	280	45	52	12,4
180	CLTB 110	8); 4)	630.000	110	80	200	310	50	52	15,4
200	CLTB 125	8); 4)	785.000	125	80	220	345	56	45	15,4


Series CDH2	Туре	11	12	13	NH	тн	UL	m ²⁾
AL Ø					max.	js14	max.	kg
40	CLTB 25	56	45	1,5	26	80	110	2,1
50	CLTB 32	70	52	2	33	110	150	4,55
63	CLTB 40	88	60	2,5	41	125	170	7,3
80	CLTB 50	100	75	2,5	51	160	210	14,5
100	CLTB 63	130	85	3	61	200	265	23,1
125	CLTB 80	160	112	3,5	81	250	325	52,3
140	CLTB 90	8)	8)	3,5	91	265	345	8)
160	CLTB 100	215	145	3,5	102	295	385	100
180	CLTB 110	8)	8)	8)	112	320	410	8)
200	CLTB 125	8)	8)	8)	132	385	570	8)

- AL = Piston Ø
- Grease nipple, cone head form A according to DIN 71412
- ²⁾ *m* Weight of the trunnion bracket (indication per pair)
- ³⁾ Contact surface of the trunnion (inside face)
- ⁴⁾ Mounting blocks are always supplied in pairs
- ⁸⁾ Upon request

Clevis bracket CLCA (Maßangaben in mm)

ISO 8132, Form B

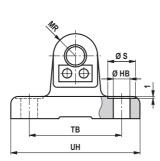
Note:

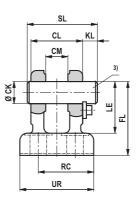
The geometry and dimensions may vary depending on the make.

For combination with other mounting elements, the usability must be verified.

Seri	es CDH2	Туре	Material-	Nominal	СК	CL	СМ	со	FG	FL	FO	HB	KC	KL	LE
AL	MM		no.	force											
Ø	Ø			N	H9	h16	A12	N9	js14	js12	js14	H13	+0,3		min.
40	25 / 28	CLCA 25	R900542864	32.000	25	56	25	25	10	55	10	13,5	5,4	10	37
50	32 / 36	CLCA 32	R900542865	50.000	32	70	32	25	14,5	65	6	17,5	5,4	13	43
63	40 / 45	CLCA 40	R900542866	80.000	40	90	40	36	17,5	76	6	22	8,4	16	52
80	50 / 56	CLCA 50	R900542867	125.000	50	110	50	36	25	95	0	26	8,4	19	65
100	63 / 70	CLCA 63	R900542868	200.000	63	140	63	50	33	112	0	33	11,4	20	75
125	80 / 90	CLCA 80	R900542869	320.000	80	170	80	50	45	140	0	39	11,4	26	95
140	90 / 100	CLCA 90	8)	400.000	90	190	90	63	47,5	160	0	45	12,4	28	108
160	100 / 110	CLCA 100	8)	500.000	100	210	100	63	52,5	180	0	52	12,4	30	120
180	110 / 125	CLCA 110	8)	635.000	110	240	110	80	62,5	200	0	52	15,4	31	138
200	125 / 140	CLCA 125	8)	800.000	125	270	125	80	75	230	0	52	15,4	32	170

0		Turne	MR	DE	DO.	S	01		117	m ⁴⁾	
Seri	es CDH2	Туре	IMR	RF	RG	5	SL	UK	UX	m º	
AL	MM										
Ø	Ø		max.	js14	js14			max.	max.	kg	
40	25 / 28	CLCA 25	25	90	85	20	69	120	115	3	AI
50	32 / 36	CLCA 32	32	110	110	26	87	145	145	5	Μ
63	40 / 45	CLCA 40	40	140	125	33	110	185	170	9,6	3)
80	50 / 56	CLCA 50	50	165	150	40	133	215	200	15,5	
100	63 / 70	CLCA 63	63	210	170	48	164	270	230	27,5	
125	80 / 90	CLCA 80	80	250	210	57	202	320	280	47	
140	90 / 100	CLCA 90	90	280	235	66	224	360	320	8)	4
160	100 / 110	CLCA 100	100	315	250	76	246	405	345	8)	4)
180	110 / 125	CLCA 110	110	335	305	76	277	425	400	8)	8)
200	125 / 140	CLCA 125	125	365	350	76	310	455	450	8)	


- AL = Piston \emptyset
- MM = Piston rod Ø


Associated pin Ø m6 (pins and pin securing rings are included within the scope of supply and not mounted at the point in time of the supply)

- 4) m Weight of the clevis bracket
 - Upon reques

Clevis bracket CLCD (dimensions in mm)

ISO 8132, Form A

Note:

The geometry and dimensions may vary depending on the make.

For combination with other mounting elements, the usability must be verified.

Serie	es CDH2	Туре	Material	Nominal	СК	CL	СМ	FL	HB	KL	LE	MR	RC	S
AL Ø	MM Ø		no.	force N	H9	h16	A13	js12	H13		min.	max.	js14	
40	25 / 28	CLCD 25	R900542882	32.000	25	56	25	55	13,5	10	37	25	40	20
50	32 / 36	CLCD 32	R900542883	50.000	32	70	32	65	17,5	13	43	32	50	26
63	40 / 45	CLCD 40	R900542884	80.000	40	90	40	76	22	16	52	40	65	33
80	50 / 56	CLCD 50	R900542885	125.000	50	110	50	95	26	19	65	50	80	40
100	63 / 70	CLCD 63	R900542886	200.000	63	140	63	112	33	20	75	63	100	48
125	80 / 90	CLCD 80	R900542887	320.000	80	170	80	140	39	26	95	80	125	57
140	90 / 100	CLCD 90	8)	400.000	90	190	90	160	45	28	108	90	140	66
160	100 / 110	CLCD 100	8)	500.000	100	210	100	180	45	30	120	100	160	66
180	110 / 125	CLCD 110	8)	635.000	110	240	110	200	52	31	138	110	180	76
200	125 / 140	CLCD 125	8)	800.000	125	270	125	230	52	32	170	125	200	76

Serie	es CDH2	Туре	SL	TB	UR	UH	m ⁴⁾
AL	MM						
Ø	Ø			js14	max.	max.	kg
40	25 / 28	CLCD 25	69	85	70	113	1,9
50	32 / 36	CLCD 32	87	110	85	143	3
63	40 / 45	CLCD 40	110	130	108	170	5,5
80	50 / 56	CLCD 50	133	170	130	220	10,6
100	63 / 70	CLCD 63	164	210	160	270	17
125	80 / 90	CLCD 80	202	250	210	320	32
140	90 / 100	CLCD 90	224	290	230	370	8)
160	100 / 110	CLCD 100	246	315	260	400	8)
180	110 / 125	CLCD 110	277	350	290	445	8)
200	125 / 140	CLCD 125	310	385	320	470	8)

- AL = Piston Ø
- MM = Piston rod Ø
- ³⁾ Associated pin Ø m6 (pins and pin securing rings are included within the scope of supply and not mounted at the point in time of the supply)
- 4) m Weight of the clevis bracket
- 8) Upon reques

Buckling

The permissible stroke length with a flexibly guided load and a

3.5 safety factor against buckling can be obtained from the appropriate table. With a deviating cylinder installation, the permissible stroke length has to be interpolated. Permissible stroke lengths for non-guided loads are available on request.

The calculation for buckling are carried out as follows:

1. Calculation according to Euler

$$\mathsf{F} = \frac{\pi^2 \cdot E \cdot I}{\mathbf{v} \cdot L_{\mathsf{K}}^2} \text{ wenn } \lambda > \lambda g$$

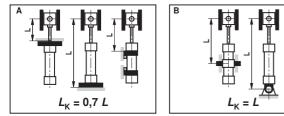
2. Calculation according to Tetmajer

$$\mathsf{F} = \frac{d^2 \cdot \pi (335 - 0.62 \cdot \lambda)}{4 \cdot v} \text{ wenn } \lambda \le \lambda g$$

The influence of the mounting style on the buckling length:

Explanation:

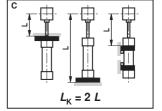
- E = Modulus of elasticity in N/mm²
- = 2.1 x 10⁵ for steel
- I = Moment of inertia in mm⁴ for a circular cross-


$$=\frac{d^4 \cdot \pi}{64} = 0,0491 \cdot d^4$$

- section area v = 3.5 (safety factor)
- $L_{\rm K}$ = Free buckling length in mm (dependent on the mounting style, see sketches A, B, C)
- d = Piston rod \emptyset in mm λ = Slenderness ratio

= Slenderness ratio
$$4 \cdot L_{K}$$

$$= \frac{\kappa}{d}$$
 $\lambda g = \pi \sqrt{0.8 \cdot F}$


R_e = Yield strength of the piston rod material

Permissible stroke lengths (dimensions in mm)

Mounting styles MP3, MP5

AL	MM						e length				Max.	
Ø	Ø	0°	100 baı 45°	90°	0°	160 bai 45°	90°	0°	250 baı 45°		available stroke lengths	Installation
	25	195	200	215	130	135	140	40	45	55	Stroke lengths	
40	28	385	400	445	295	300	320	215	220	225		0°
50	32 36	380 505	390 525	430 595	280 395	285 405	300 430	195 290	200 295	205 305	0000	#]B
63	40 45	480 640	500 660	550 750	365 505	370 515	385 550	255 380	260 385	265 395	2000	1)
80	50 56	590 765	615 800	690 930	455 615	465 630	495 685	330 470	335 475	345 495		
100	63 70	750 940	780 985	910 1195	595 775	610 800	660 885	445 605	455 615	470 650		<u>A</u>
125	80 90	970 1235	1015 1300	1200 1610	780 1030	805 1070	880 1200	595 825	605 840	635 895		45°
140	90 100	1075 1335	1130 1405	1360 1770	875 1120	905 1165	1000 1325	675 900	685 920	725 985	3000	
160	100 110	1175 1430	1230 1500	1480 1875	955 1195	985 1240	1085 1400	735 955	750 975	785 1040	3000	A.
180	110 125	1250 1620	1310 1710	1570 2160	1010 1365	1045 1420	1150 1620	775 1100	790 1125	830 1205		
200	125 140	1435 1795	1510 1900	1860 2450	1180 1525	1220 1590	1365 1840	915 1240	935 1270	990 1370		
220	140 160	1620 2075	1710 2200	2180 3000	1360 1810	1415 1890	1630 2280	1090 1510	1120 1560	1200 1730		90°
250	160 180	1805 2250	1910 2395	2490 3300	1520 1960	1590 2060	1850 2500	1220 1630	1250 1690	1360 1880	6000	n n n n n n n n n n n n n n n n n n n
280	180 200	2075 2510	2200 2670	2900 3700	1775 2200	1880 2310	2170 2820	1450 1850	1490 1920	1620 2140		
320	200 220	2135 2550	2270 2720	3030 3820	1820 2230	1900 2340	2260 2880	1470 1860	1510 1930	1660 2170		¹⁾ Perm. stroke length

Permissible stroke lengths (dimensions in mm)

Mounting style: MF3

AL	MM		Permissible stroke lengths at								Max.	
Ø	Ø		100 baı	•		160 baı	r	:	250 baı	•	available	Installation
		0°	45°	90°	0 °	45°	90°	0°	45°	90°	stroke lengths	
40	25	895	915	980	730	735	760	440	450	510		0°
40	28	1400	1415	1630	1180	1205	1275	970	980	1010		
50	32	1440	1490	1670	1210	1230	1300	985	995	1025		
50	36	1760	1830	2000	1510	1545	1675	1255	1270	1320	2000	
63	40	1735	1800	2000	1475	1510	1620	1215	1230	1270	2000	
03	45	2000	2000	2000	1830	1880	2080	1540	1560	1640		
80	50	2000	2000	2000	1810	1850	1995	1495	1515	1570		
00	56	2000	2000	2000	2000	2000	2000	1870	1900	2000		
100	63	2580	2690	3000	2235	2300	2550	1875	1910	2010		
100	70	3000	3000	3000	2690	2780	3000	2300	2350	2520		
125	80	3000	3000	3000	2840	2930	3000	2400	2450	2590		45°
125	90	3000	3000	3000	3000	3000	3000	3000	3000	3000		45°
140	90	3000	3000	3000	3000	3000	3000	2700	2760	2950		
140	100	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	
160	100	3000	3000	3000	3000	3000	3000	2920	2980	3000	3000	
100	110	3000	3000	3000	3000	3000	3000	3000	3000	3000		
180	110	3000	3000	3000	3000	3000	3000	3000	3000	3000		
100	125	3000	3000	3000	3000	3000	3000	3000	3000	3000		
200	125	3000	3000	3000	3000	3000	3000	3000	3000	3000		₩.
200	140	3000	3000	3000	3000	3000	3000	3000	3000	3000		
220	140	5400	5680	6000	4800	4980	5780	4120	4220	4560		90° 🗧
220	160	6000	6000	6000	5820	6000	6000	5150	5330	6000		30
250	160	5850	6000	6000	5270	5500	6000	4600	4740	5250		
230	180	6000	6000	6000	6000	6000	6000	5650	5850	6000	6000	
280	180	6000	6000	6000	6000	6000	6000	5270	5420	5970	0000	
200	200	6000	6000	6000	6000	6000	6000	6000	6000	6000		
320	200	6000	6000	6000	6000	6000	6000	5950	6000	6000		¹⁾ Perm. stroke
520	220	6000	6000	6000	6000	6000	6000	6000	6000	6000		length 🖵

Mounting style: MF4

AL	MM				nissible						Max.	
Ø	Ø		100 baı			160 baı			250 baı		available	Installation
		0°	45°	90°	0°	45°	<u>90°</u>	0°	45°	90°	stroke lengths	
40	25 28	325 565	340 590	370 695	245 465	250 475	260 520	105 365	110 370	140 385		0°
	32	600	625	715	485	495	530	370	375	390		IL
50	36	755	790	950	630	650	715	505	515	540		₩ा====₽¤⇒===₫
63	40	730	765	905	600	615	675	470	480	500	2000	1)
	45	920	965	1190	780	805	905	630	645	685		
80	50 56	910 1125	950 1185	1130	750 960	775 990	845 1120	595 785	605 800	630 850		
100	63	1120	1175	1460	945	980	1105	770	785	835		
100	70	1350	1430	1860	1175	1220	1420	980	1000	1090		179 A
125	80	1430	1510	1910	1225	1270	1450	1000	1025	1100		45°
	90 90	1750	1855	2490	1540	1610	1910	1300	1340	1470		
140	100	1585 1895	1675 2010	2170 2750	1370 1675	1425 1755	1650 2110	1135 1425	1165 1470	1260 1630		45°
100	100	1725	1820	2340	1490	1545	1780	1230	1260	1360	3000	
160	110	2030	2150	2900	1785	1870	2230	1510	1560	1720		1
180	110 125	1855 2300	1960 2440	2510	1595 2040	1660	1910 2580	1315 1735	1350 1790	1450 1990		
	125	2105	2230	3350 2950	1830	2130 1910	2250	1530	1570	1715		H-1
200	140	2535	2700	3000	2260	2370	2920	1940	2010	2255		
220	140	2250	2400	3350	1990	2090	2550	1685	1740	1950		90° =
220	160	2800	2990	4500	2530	2680	3480	2220	2310	2700		
250	160	2600	2770	3900	2310	2430	3000	1975	2040	2300		<u> </u>
	180	3130 2850	3350 3050	5050 4400	2840	3000	3910 3370	2500 2190	2600 2270	3040	6000	
280	200	3370	3050	5550	2550 3070	2680 3250	4300	2700	2820	3330		
	200	3070	3270	4750	2750	2890	3650	2150	2460	2810	1	¹⁾ Perm. stroke
320	220	3560	3820	5850	3250	3430	4550	2860	2980	3530		length

Permissible stroke lengths (dimensions in mm)

Mounting style: MT4 (trunnion located in the middle of the cylinder)

AL Ø	MM		100 bai	Perr	nissible	e stroke 160 bai		ns at	250 bai		Max. available	Installation
<i>v</i>		0°	45°	90°	0°	45°	90°	0°	45°	90°	stroke lengths	
40	25 28	340 590	345 605	365 665	250 470	255 480	260 500	130 365	135 370	145 375		0°
	32	600	615	670	470	480	495	355	360	365		
50	36	770	795	890	625	635	670	485	490	505	2000	
63	40 45	740 940	765 975	845 1115	590 770	600 790	630 845	450 610	455 620	465 640	2000	
80	50 56	920 1155	950 1195	1055 1375	735 950	750 975	790 1045	570 755	575 765	590 790		
100	63 70	1145 1400	1190 1460	1365 1740	940 1180	960 1210	1030 1330	740 955	750 970	775 1015		1 Alexandre
125	80 90	1470 1820	1530 1910	1780 2320	1220 1550	1250 1600	1350 1780	970 1275	985 1300	1020 1370		45°
140	90 100	1640 1980	1710 2080	2020 2570	1370 1700	1410 1755	1540 1970	1100 1400	1120 1430	1170 1515	1	AL A
160	100 110	1780 2110	1850 2210	2180 2710	1485 1800	1520 1860	1660 2080	1190 1480	1210 1510	1260 1595	3000	L. M. C.
180	110 125	1910 2405	1990 2530	2340 3000	1590 2065	1635 2130	1780 2400	1275 1710	1295 1740	1350 1850		
200	125 140	2180 2660	2280 2800	2740 3000	1840 2300	1890 2380	2090 2720	1490 1915	1510 1960	1590 2100		
220	140 160	2490 3000	2510 3170	3150 4230	2050 2640	2120 2750	2400 3260	1685 2240	1720 2310	1835 2530		90°
250	160 180	2730 3320	2870 3520	3640 4720	2350 2940	2440 3060	2790 3650	1950 2500	1990 2570	2140 2830		
280	180 200	3040 3620	3210 3840	4140 5210	2640 3210	2750 3360	3170 4040	2210 2750	2260 2830	2440 3140	6000	
320	200 220	3250 3800	3430 4030	4455 5500	2820 3370	2930 3530	3410 4250	2360 2880	2420 2970	2620 3290		¹⁾ Perm. stroke

Mounting style: MS2

AL	MM				nissible						Max.	
Ø	Ø	0°	100 baı 45°	90°	0°	160 baı 45°	90°	0°	250 bar 45°	90°	available stroke lengths	Installation
	25	825	45 840	885	645	45	665	370	375	410	Stroke lengths	
40	28	1305	1350	1535	1085	1110	1180	875	885	910		0°
0	32	1330	1375	1560	1095	1120	1190	875	885	910		
50	36	1645	1715	2030	1395	1430	1560	1140	1160	1210	2000	
63	40	1610	1670	1950	1345	1380	1490	1085	1100	1145	2000	
- 00	45	1980	2000	2000	1700	1750	1950	1410	1435	1510		
80	50 56	1980	2000 2000	2000 2000	1665 2000	1710 2000	1850 2000	1350 1730	1370 1760	1425 1860		
100	63	2420	2535	3000	2080	2140	2390	1720	1750	1850		k,
100	70	2880	3000	3000	2530	2630	3000	2140	2190	2360		
125	80	3000	3000	3000	2660	2750	3000	2220	2270	2410		45°
	90	3000	3000	3000	3000	3000	3000	2810	2890	3000		
140	90 100	3000 3000	3000 3000	3000	2970	3000	3000	2490	2550	2740		
	100	3000	3000	3000 3000	3000 3000	3000 3000	3000 3000	3000 2690	3000 2750	3000 2950	3000	/// ×
160	110	3000	3000	3000	3000	3000	3000	3000	3000	3000		(X)
100	110	3000	3000	3000	3000	3000	3000	2890	2960	3000		Ť
180	125	3000	3000	3000	3000	3000	3000	3000	3000	3000		
200	125	3000	3000	3000	3000	3000	3000	3000	3000	3000		
	140	3000	3000	3000	3000	3000	3000	3000	3000	3000		
220	140 160	5090 6000	5370 6000	6000 6000	4490 5510	4670 5800	5470 6000	3820 4850	3910 5020	4260 5750		90° 🗧
	160	5520	5860	6000	4940	5170	6000	4850	4410	4920		<u> </u>
250	180	6000	6000	6000	6000	6000	6000	5320	5520	6000		Ĥ
280	180	6000	6000	6000	5700	5960	6000	4930	5070	5630	6000	मुन
280	200	6000	6000	6000	6000	6000	6000	6000	6000	6000		
320	200	6000	6000	6000	5890	6000	6000	4750	5310	6000		¹⁾ Perm. stroke
	220	6000	6000	6000	6000	6000	6000	6000	6000	6000		length 🎹

End position cushioning

End position cushioning:

The objective is to reduce the speed of a moving mass, whose centre of gravity lies on the cylinder axis, to a level, at which neither the cylinder nor the machine, into which the cylinder is installed, can be damaged. For speeds over 20 mm/s we recommend the use of end position cushioning so that the energy can be absorbed without the use of any additional equipment. Checks must always be carried out whether, also at lower speeds, with high masses end position cushioning is required.

Cushioning capacity:

When braking masses via the end position cushioning, the design constricted cushioning capacity must not be exceeded. Cylinders with end position cushioning can only utilise their full cushioning capacity when the entire stroke length is used.

With the adjustable end position cushioning "E" an additional throttle valve is aded to the "D" version. The end position cushioning "E" makes it possible to optimise the cycle times. The maximum cushioning capacity can only be achieved when the throttle valve is fully closed.

The calculation depends on the factors of weight, velocity, system pressure and installation position. Therefore, the variable D_m is to be calculated from weight and speed, the variable D_c from system pressure and installation position.

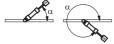
Formulas:

$$D_{\rm m} = \frac{m}{10^{\rm K}}; \ K = \rm kv \ (0,5-v)$$

m = Moved mass in kg
 v = Stroke velocity in m/s
 kv = See table on page 36

Extending:

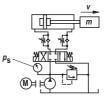
$$D_{\rm p} = p_{\rm S} - \frac{m \cdot 9,81 \cdot \sin\alpha}{A_1 \cdot 10}$$

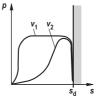

Retracing:

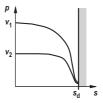
$$D_{\rm p} = p_{\rm S} + \frac{m \cdot 9,81 \cdot \rm sino}{A_3 \cdot 10}$$

 $p_{\rm S}$ = System pressure in bar

- A₁ = Piston area in cm² (see page 3)
- $A_3 = Annulus area in cm^2$ (see page 3)
- α = Angle in degrees with reference to
- the horizontal plain

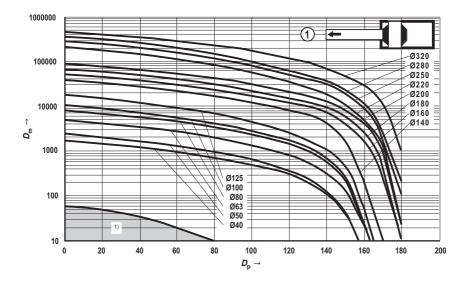

Damping length in mm




These variables are then used to verify the permissible cushioning performance in the "cushioning capacity" diagram. The interception point of the variables D_m and D_p must always be below the cushioning capacity curve of the selected cylinder. The values in the diagram refer to an average oil temperature of + 45 to +65 °C and with a closed throttle valve.

For special applications with very short stroke times, high speeds or masses, special cylinders with special end position cushioning can be offered on request.

When fixed or adjustable end stops are used, then special measures have to be taken.

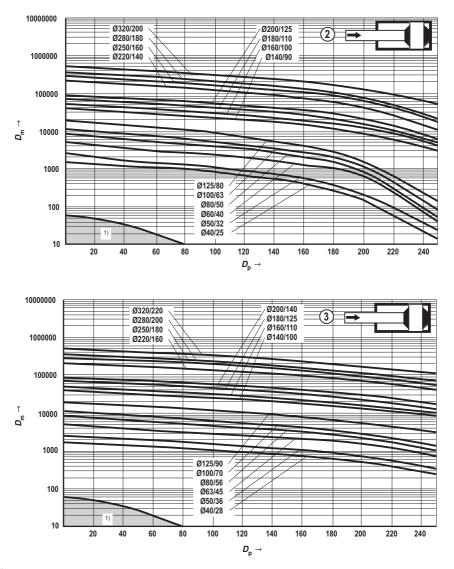


AL Ø mm 40 50 63 80 100 125 140 160 180 200 220 250 280 320 Head side 21 20 23 25 25 25 33 33 37 37 76 81 86 90 Base side 21 20 23 25 25 25 33 33 37 37 76 81 86 90

End position cushioning

AL Ø mm	40	50	63	80	100	125	140	160	180	200	220	250	280	320
kv (1)	2,85	2,97	2,56	2,82	3,51	3,02	2,53	2,65	2,91	2,76	2,85	2,95	3,11	3,13
kv ②	3,1	3,25	2,85	2,85	3,52	2,91	2,53	2,93	2,95	2,95	2,93	3,1	3,12	3,07
kv ③	2,95	3,1	2,73	3,1	3,51	2,95	2,51	2,91	2,95	2,91	2,93	2,93	3,15	3,25

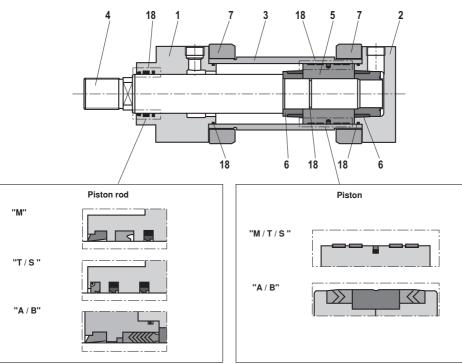
Cushioning capacity: Extending

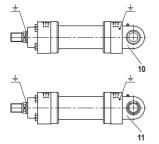


AL = Piston Ø

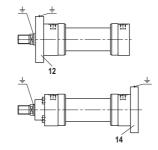
 $^{\rm 1)}$ If, for standard applications, the calculated interception point from $D_{\rm m}$ and $D_{\rm p}$ is within the indicated area, then we recommend that a cylinder is used without end position cushioning.

End position cushioning

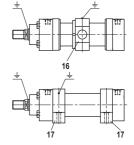

Cushioning capacity: Retracing



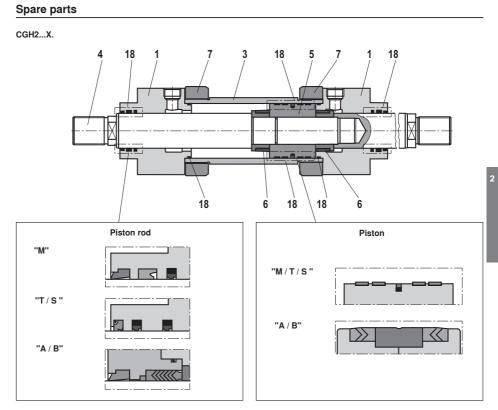
 $^{1)}$ If, for standard applications, the calculated interception point from $D_{\rm p}$ and $D_{\rm p}$ is within the indicated area, then we recommend that a cylinder is used without end position cushioning.

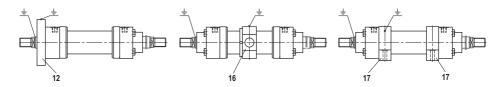

Spare parts

CDH2...X.



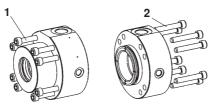
- 1 Head
- 2 Base
- 3 Barrel
- 4 Piston rod
- 5 Piston
- 6 Cushioning bush
- 7 Flange




- 10 Base MP3
- 11 Base MP5
- 12 Round flange MF3
- 14 Round flange MF4
- 16 Trunnion MT4
- 17 Foot MS2

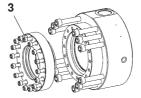
- 18 Seal kit: Wiper Rod seal Piston seal
 - O-ring
 - Guide bush
- + Equipotential bonding
- (must be connected)

174


- 1 Head
- 3 Barrel
- 4 Piston rod
- 5 Piston
- 6 Cushioning bush
- 7 Flange
- 12 Round flange MF3
- 16 Trunnion MT4

17 Foot MS2

- 18 Seal kit:
 - Wiper Rod seal Piston seal
 - O-ring Guide bush
 - Guide bus
- Equipotential bonding (must be connected)


Tightening torques

Screws: Head and base (Pos. 1 and 2)

Series	Piston Ø	Screw	Quantity	Grade	Tightening torque
CDH2 / CGH2	40	M8	4	10.9	23 Nm
CDH2 / CGH2	50	M8	8	10.9	20 Nm
CDH2 / CGH2	63	M8	8	10.9	30 Nm
CDH2 / CGH2	80	M10	8	10.9	55 Nm
CDH2 / CGH2	100	M12	8	10.9	100 Nm
CDH2 / CGH2	125	M16	8	10.9	200 Nm
CDH2 / CGH2	140	M16	12	10.9	170 Nm
CDH2 / CGH2	160	M16	12	10.9	220 Nm
CDH2 / CGH2	180	M20	12	10.9	350 Nm
CDH2 / CGH2	200	M20	12	10.9	410 Nm
CDH2 / CGH2	220	M20	16	10.9	460 Nm
CDH2 / CGH2	250	M24	16	10.9	700 Nm
CDH2 / CGH2	280	M30	12	10.9	1700 Nm
CDH2 / CGH2	320	M30	16	10.9	1500 Nm

Screws: Seal cover (Pos. 3)

Only for seal versions "A" and "B"

Series	Piston Ø	Piston rod Ø	Screw	Quantity	Grade	Tightening torque	
CDH2 / CGH2	160	100	M10	16	10.9	60 Nm	
	100	110	IVITO	10	10.9	60 Mm	
CDH2 / CGH2	180	110	M12	16	10.9	80 Nm	
CDH2 / CGH2	180	125	IVITZ	10	10.9	00 1111	
CDH2 / CGH2	200	125	M12	16	10.9	90 Nm	
CDH2 / CGH2	200	140	IVITZ	10	10.9	30 Mill	
CDH2 / CGH2	220	140	M12	16	10.9	90 Nm	
ODI 12 / OQI 12	220	160	IVITZ	24	10.5	50 Mill	
CDH2 / CGH2	250	160	M12	24	10.9	90 Nm	
CDH2 / CGH2	250	180	IVITZ	24	10.9	90 NIII	
CDH2 / CGH2	280	180	M12	24	10.9	90 Nm	
CDH2 / CGH2	200	200	IVITZ	24	10.9	90 NIII	
CDH2 / CGH2	320	200	M12	24	10.9	90 Nm	
CDH2/CGH2	320	220	M16	16	10.9	230 Nm	

Seal kits 1)

CDH2...X - Standard

AL	MM		Materi	al No. for seal v	ersion	
Ø	Ø	м	т	Α	s	В
10	25	R901010141	R901010143	R901010145	R901010146	R901010147
40	28	R900851087	R900858841	R900859445	R900861001	R900859770
	32	R900860274	R900860275	R900860929	R900861003	R900860939
50	36	R900849392	R900860277	R900851515	R900861004	R900860940
63	40	R900859509	R900860279	R900851637	R900861006	R900860941
63	45	R900847956	R900847855	R900851638	R900861007	R900859678
80	50	R900857129	R900860281	R900856092	R900861009	R900860943
80	56	R900850905	R900856180	R900854718	R900861010	R900851205
100	63	R900860283	R900860284	R900856093	R900861012	R900860945
100	70	R900853382	R900860285	R900856094	R900861013	R900860946
105	80	R900860287	R900860288	R900860931	R900861015	R900860950
125	90	R900857949	R900856102	R900856095	R900861016	R900855464
140	90	R900858281	R900860289	R900860932	R900861017	R900860951
140	100	R900853965	R900860290	R900856096	R900849080	R900860952
160	100	R900855683	R900860291	R900860468	R900861018	R900860953
160	110	R900851146	R900857536	R900860933	R900861019	R900860954
180	110	R900856497	R900852561	R900860934	R900861020	R900860955
180	125	R900848603	R900860292	R900860935	R900861021	R900860956
200	125	R900860294	R900860295	R900860936	R900861022	R900860957
200	140	R900856431	R900860293	R900860937	R900861023	R900860958
220	140	R900888100	R900888108	R900888116	R900888132	R900888140
220	160	R900888101	R900888109	R900888117	R900888133	R900888141
250	160	R900888102	R900888110	R900888118	R900888134	R900888142
200	180	R900888103	R900888111	R900888119	R900888135	R900888143
280	180	R900888104	R900888112	R900888120	R900888136	R900888144
200	200	R900888105	R900888113	R900888121	R900888137	R900888145
220	200	R900888106	R900888114	R900888122	R900888138	R900888146
320	220	R900888107	R900888115	R900888123	R900888139	R900888147

AL = Piston Ø in mm

MM = Piston rod Ø in mm

 Seal kits for position measuring system, separate Material No.

Seal kits

CGH2...X - Standard

AL	MM		Materi	al No. for seal v	version	
Ø	Ø	м	т	A	s	в
40	25	R901010159	R901010161	R901010162	R901010169	R901010170
40	28	R900867252	R900868889	R900866747	R900868943	R900867133
50	32	R900867254	R900868891	R900866749	R900868945	R900857135
50	36	R900864930	R900868892	R900866750	R900868946	R900867136
63	40	R900867261	R900868894	R900866752	R900868948	R900867138
63	45	R900867262	R900868895	R900866753	R900868949	R900867139
	50	R900867264	R900868897	R900866755	R900868951	R900867141
80	56	R900867265	R900868898	R900866756	R900868952	R900867142
100	63	R900867267	R900868900	R900866758	R900868954	R900867144
100	70	R900867268	R900868901	R900866759	R900868955	R900867146
125	80	R900860730	R900868903	R900866761	R900868956	R900867148
125	90	R900867270	R900868904	R900866762	R900868957	R900867149
140	90	R900867271	R900868905	R900866763	R900868958	R900867150
140	100	R900867272	R900868906	R900866764	R900868959	R900867151
160	100	R900867273	R900868907	R900866765	R900868960	R900867152
160	110	R900867274	R900868908	R900866766	R900868961	R900867153
180	110	R900867275	R900868909	R900866767	R900868962	R900867154
100	125	R900867276	R900868910	R900866768	R900868963	R900867155
200	125	R900867277	R900868911	R900866769	R900868964	R900867156
200	140	R900867278	R900868912	R900866770	R900868965	R900867157
220	140	R900888020	R900888028	R900888036	R900888052	R900888060
220	160	R900888021	R900888029	R900888037	R900888053	R900888061
250	160	R900888022	R900888030	R900888038	R900888054	R900888062
200	180	R900888023	R900888031	R900888039	R900888055	R900888063
280	180	R900888024	R900888032	R900888040	R900888056	R900888064
280	200	R900888025	R900888033	R900888041	R900888057	R900888065
320	200	R900888026	R900888034	R900888042	R900888058	R900888066
320	220	R900888027	R900888035	R900888043	R900888059	R900888067

Seal kits

CDH2X	 Standard 	d + 0	ption F
-------	------------------------------	-------	---------

AL	MM	Mate	erial No. for seal vers	ions
Ø	Ø	M+F	T+F	S+F
40	25	R901010148	R901010149	R901010150
40	28	R900861025	R900861050	R900861100
50	32	R900861027	R900861052	R900861102
50	36	R900861028	R900861053	R900861103
63	40	R900861030	R900861055	R900861105
03	45	R900861031	R900861056	R900861106
80	50	R900861033	R900861058	R900861108
00	56	R900861034	R900861059	R900861109
100	63	R900861036	R900861061	R900861114
100	70	R900861037	R900861062	R900861115
125	80	R900861039	R900861064	R900861120
125	90	R900861040	R900861065	R900861122
140	90	R900861041	R900861066	R900861124
140	100	R900861042	R900861067	R900861126
160	100	R900861043	R900861068	R900861128
100	110	R900861044	R900861069	R900861130
180	110	R900861045	R900861070	R900861133
100	125	R900861046	R900861071	R900861135
200	125	R900861047	R900861072	R900861142
200	140	R900861048	R900861073	R900861143

CGH2...X - Standard + Option F

AL	MM	Mat	erial No. for seal vers	ions
Ø	Ø	M+F	T+F	S+F
40	25	R901010151	R901010154	R901010156
40	28	R900868999	R900869026	R900869093
50	32	R900869001	R900869028	R900869095
50	36	R900869002	R900869029	R900869096
63	40	R900869004	R900869031	R900869098
03	45	R900869005	R900869032	R900869099
80	50	R900869007	R900869034	R900869101
80	56	R900869008	R900869035	R900869102
100	63	R900869012	R900869037	R900869104
100	70	R900869013	R900869038	R900869105
125	80	R900869015	R900869040	R900869107
125	90	R900869016	R900869041	R900869108
140	90	R900869017	R900869042	R900869109
140	100	R900869018	R900869043	R900869110
160	100	R900869019	R900869044	R900869111
100	110	R900869020	R900869045	R900869112
180	110	R900869021	R900869046	R900869113
180	125	R900869022	R900869047	R900869114
200	125	R900869023	R900869048	R900869115
200	140	R900869024	R900869049	R900869116

AL = Piston Ø in mm

MM = Piston rod Ø in mm

Seal kits

Only for position measuring system

AL		Mate	erial No. for seal ve	ersions	
Ø	M / M+F	T / T+F	A	S / S+F	В
40	R9008	85935	-	R900885937	-
50	R9008	94958	-	R900894979	-
63	R9008	94959	-	R900894980	-
80	R9008	94960	-	R900894981	-
100	R9008	94961	-	R900894982	_
125	R9008	94962	-	R900894983	-
140	R9008	94963	-	R900894985	_
160	R9008	94964	-	R900894986	-
180	R9008	94973	-	R900894987	-
200	R9008	94974	-	R900894988	_
220	R9008	94975	-	R900894989	-
250	R9008	94976	-	R900894991	-
280	R9008	94977	-	R900894993	_
320	R9008	94978	-	R900894994	-

AL = Piston Ø in mm

EG – Declaration of conformaty

We declare that the product conforms to the directive 94/9/EG explosion protection.

Product description

Cylinder series

Manufacturer:

Hydraulic cylinder mill type CDH2.....X../.... CGH2.....X../....

EN 1127-1, EN 13 463-1, EN 13 463-5

BOSCH REXROTH AG Hydraulics Zum Eisengießer 1 97816 Lohr am Main Deutschland

Bernd Balzer Technical Manager Hydraulic cylinder

Bosch Rexroth AG Hydraulics Zum Eisengießer 1 97816 Lohr am Main, Germany Telefon +49 (0) 93 52 / 18-0 documentation@boschrexroth.de cyl.hyd@boschrexroth.se www.boschrexroth.de

Lohr am Main, May 2012

Bosch Rexroth Teknik AB Varuvägen 7, Älvsjö S-125 81 Stockholm Telefon +46 (08) 72 79 20 0 Telefax +46 (08) 86 87 21 www.boschrexroth.se

Bosch Rexroth SA BP 37 - Z.I. Les Fourmis F-74131 Bonneville Cedex Telefon +33 (0) 4 50 25 35 45 Telefax +33 (0) 4 50 25 35 19 www.boschrexroth.fr

© Alle Rechte bei Bosch Rexroth AG, auch für den Fall von Schutzrechtsanmeldungen. Jede Verfügungsbefugnis, wie Kopier- und Weitergaberecht, bei uns.

Die angegebenen Daten dienen allein der Produktbeschreibung. Eine Aussage über eine bestimmte Beschaffenheit oder eine Eignung für einen bestimmten Einsatzzweck kann aus unseren Angaben nicht abgeleitet werden. Die Angaben entbinden den Verwender nicht von eigenen Beurteilungen und Prüfungen. Es ist zu beachten, dass unsere Produkte einem natürlichen Verschleiß- und Alterungsprozess unterliegen.

Applied harmonised standards

V.F. Avila

Franz Wirzberger Leader development Hydraulic cylinder

On/off valves

Designation	Туре	Size	Component series	p _{max} in bar	Data sheet	Page
Directional seat valves, direct operated						
3/2 and 4/2 directional seat valves with solenoid actuation	MSEXD	6	6X	420	22047-XD-B2	183
3/2 and 4/2 directional seat valves with solenoid actuation	E(W)SEXH	6	6X	420	22047-XH-B2	197
3/2 and 4/2 directional seat valves with solenoid actuation	MSEDXE	6	1X	350	22049-XE-B2	213
3/2 and 4/2 directional seat valves with solenoid actuation	MSEDXN	6	1X	350	22049-XN-B2	229
2/2,3/2 and $4/2$ directional seat valves with solenoid actuation	MSEWXE	6	ЗX	420	22058-XE-B2	245
3/2 and 4/2 directional seat valves with solenoid actuation	MSEWXE	10	1X	420	22075-XE-B2	259
3/2 and 4/2 directional seat valves with solenoid actuation	MSEDXN	10	1X	350	22045-XN-B2	273
Directional spool valves, direct operated						
4/3, 4/2 and 3/2 directional valves with wet-pin DC solenoids	WEBX	6	5X	210	23177-XH-B2	289
4/3, 4/2 and 3/2 directional valves with DC solenoids	WEEXD	6	6X	315	23178-XD-B2	301
4/3, 4/2 and 3/2 directional valves with wet-pin DC or AC solenoids	WEEXE	6	6X	350	23178-XE-B2	315
4/3, 4/2 and 3/2 directional valves with wet-pin DC solenoids	WEEXN	6	6X	350	23178-XN-B2	331
4/3, 4/2 and 3/2 directional valve with manual actuation	WMMXC	6	5X	315	22280-XC-B2	343
4/3, 4/2 and 3/2 directional valve with fluidic actuation	WPXC, WHXC	6	6X, 5X	315	22282-XC-B2	353
Directional spool valves, pilot operated						
4/2 and 4/3 directional valves, internally pilot opera-	H-4WEHXD	10 32	4X, 6X, 7X	350	24751-XD-B2	365
ted, externally pilot operated	II 4WEII	1052	47, 07, 77	550	24731 70 02	505
4/2 and 4/3 directional valves, internally pilot opera- ted, externally pilot operated	H-4WEHXE	1032	4X, 6X, 7X	350	24751-XE-B2	389
Pressure valves						
Pressure valves Pressure reducing valve, direct operated	DR.DPXC,	6	5X, 4X	315	26564-XC-B2	413
Pressure reducing valve, direct operated	ZDR.DXC	0	57, 47	313	20304-70-82	413
Pressure relief valve, pilot operated	DB5X/XC	1030	5X	350	25802-XC-B2	425
Safety valves, directly operated	DBDH1X/XCE	430	1X	630	25010-XC-B2	437
Flow control valves						
Twin throttle-type check valve, direct operated	Z2FSXC	6	4X	315	27506-XC-B2	453

Electric Drives and Controls

Hydraulics

Pneumatics

183

Service

Rexroth Bosch Group

1/14

3/2 and 4/2 directional seat valves with solenoid actuation

RE 22047-XD-B2/08.12 Replaces: 01.10

Type M-.SE 6 ...XD...

Size 6 Component series 6X Maximum operating pressure 420 bar Maximum flow 12 I/min

> ATEX units For explosive areas

Part II Data sheet

Information on the explosion protection:

- Area of application in accordance with the Explosion Protection Directive 94/9/EC: I M2; II 2G
- Type of protection of the valve solenoid: Ex d I Mb / Ex d IIC T4 Gb according to EN 60079-0:2009 / EN 60079-1:2007

What you need to know about these operating instructions

These operating instructions apply to the explosion-proof version of Rexroth valves and consist of the following three parts:

- Part I General information 07010-X-B1
- Part II Data sheet 22047-XD-B2
- Part III Product-specific instructions 22047-XD-B3

Operating instructions 22047-XD-B0

You can find further information on the correct handling of Rexroth hydraulic products in our publication "General product information on hydraulic products" 07008.

Table of contents

Contents	Page
Features	2
Ordering code and scope of delivery	3
Function, section, control spool symbols	4
Technical data	7
Technical data, information on the explosion protection	8
Switching times	8
Electrical connection	9
Performance limits, characteristic curves	11
Device dimensions	12
Installation conditions	14

Features

- Direct operated directional seat valve with solenoid actuation for proper use in explosive atmospheres
- Porting pattern according to DIN 24340-A6
- Subplates available in FE/ZN version (see pages 12/13)
- Blocked connection tight in a leak-free form
- Safe switching also with longer standstill periods under pressure
- Air-gap DC solenoids
- Electrical connection with individual connection and cable gland
- With manual override

3

Ordering code and scope of delivery

			· · ·											_				
M	÷	SE	6	6	5X/4	20	L	G24	1 N	I X	DZ	22/	۱V	1				
			<u> </u>			Τ.		<u> </u>	<u> </u>		Γ.	T						
Mineral oil = M														V =			FKN	/I seals
3 main ports	= 3													(0	ther	seals	upon re	equest)
	= 4																	ortant:
Seat valve															omn	otibilit	O of sea /	bserve
Size 6			= 6														lic fluid	
			-										no c	ode				k valve
Main ports	3	4																e insert
· · · · · · · · · · · · · · · · · · ·	-												P =		Wit	th cheo	k valve	e insert
Control spool symbols													B12				ttle Ø 1	
A													B15				ttle Ø 1	
			= U										B18				ttle Ø 1	
a / \$ \ \$ Wb		-	-0										B20				ttle Ø 2	
PI TI													B22	=			ttle Ø 2	
A																	l conn	
			= C									Z2 =		S	olend		n termir	
a 🖊 🖓 🗘 M Þ		-	=0												_		d cable	•
PI TI																	s see c	
AL RI																		nection
											XD	=		-			ion pro ant enc	tection
a 7 Å • M b	-	•	= D															
P T												or deta	lis see	inio	rmat		the expection,	
													14/11	1		<u> </u>		<u> </u>
									L	N =			VVIt	n ma	inua		de (sta	
аг71 и Х Мль	-	•	= Y					_	G24 :	=						Direc	t voltag	le 24 V
PITI																		
		= Avai	labla															
		= Avai	lable															
Component series 60 to				= 6X														
(60 to 69: Unchanged in	stallat	tion ar	nd															
connection dimensions)																		
Operating pressure up to	o 420	bar		-	420													
High-power solenoid,						=	L											

Included in the scope of delivery:

- Valve mounting screws

(air-gap)

- Valve operating instructions with declaration of conformity in part III

Function, section, control spool symbols: 3/2 directional seat valve

General:

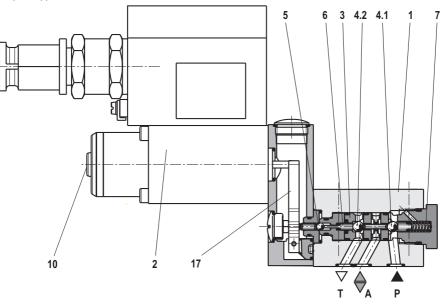
The directional valve type M-.SE.. is a directional seat valve with solenoid actuation. It controls the start, stop and direction of a flow. It basically comprises a housing (1), the solenoid (2), the hardened valve system (3) and the balls (4.1 and 4.2) as closing element.

Basic principle:

In the initial position, the ball (4.1) is pressed onto the seat by the spring (7), in spool position, the ball (4.2) is pressed onto the seat by the solenoid (2). The force of solenoid (2) acts via the lever (17) and the ball (5) on the actuating plunger (6) that is sealed on two sides. The chamber between the two sealing elements is connected to port P.

Thus, the valve system (3) is pressure-compensated in relation to the actuating forces (solenoid or return spring). Thus, the valves can be used up to 420 bar.

Important


 The 3/2 directional seat valves have a "negative spool overlap". Therefore, port T must always be connected. That means that during the switching process – from the starting of the opening of one valve seat to the closing of the other valve seat – ports P–A–T are connected with each other. This process takes, however, place within such a short time that it is irrelevant in nearly all applications.

- The manual override (10) allows for the switching of the valve without solenoid energization.
- It has to be made sure that the specified maximum flow is not exceeded! A throttle insert must be used for limiting the flow, if necessary (see page 6).
- In order to switch the valve safely or maintain it in its spool position, the pressure situation must be as follows: P≥ A ≥ T (for design reasons).
- The ports P, A and T (3/2 directional seat valve) are clearly determined according to the tasks. They must not be exchanged or closed. The flow is only permitted in the direction of arrow.

-		
Control spool symbol	U	С
Initial position	P and A connected, T blocked in a leak- free form	P blocked in a leak- free form, A and T connected
Spool position	P blocked in a leak- free form, A and T connected	P and A connected, T blocked in a leak- free form

The seat arrangement offers the following options:

Example: Type M-3SE 6 C6X/420L.NXDZ2/V

Function, section, control spool symbols: 4/2 directional seat valve

With a sandwich plate, the Plus-1 plate, under the 3/2 directional seat valve, the function of a 4/2 directional seat valve is achieved.

Function of the Plus-1 plate:

Initial position:

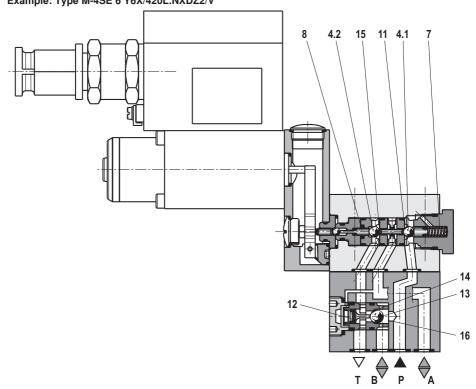
The main valve is not operated. The spring (7) holds the ball (4.1) on the seat (11). Port P is blocked and A connected to T. Apart from that, one control line is connected from A to the large area of the control spool (12), which is thus unloaded to the tank. The pressure applied via P now pushes the ball (13) onto the seat (14). Now, P is connected to B, and A to T

Transition position:

When the main valve is operated, the control spool (8) is shifted against the spring (7) and the ball (4.2) is pressed onto the seat (15). During this, port T is blocked, P, A, and B are briefly connected to each other.

Spool position:

P is connected to A. As the pump pressure acts via A on the large area of the control spool (12), the ball (13) is pressed onto the seat (16). Thus, B is connected to T, and P to A. The ball (13) in the Plus-1 plate has a "positive spool overlap". The use of the Plus-1 plate and the seat arrangement offer the following options:


Control spool symbol D:

3

Control spool symbol Y:

To prevent pressure intensification in conjunction with differential cylinders, the annulus area of the cylinder must be connected to A.

Example: Type M-4SE 6 Y6X/420L.NXDZ2/V

Function, section: Throttle insert, check valve insert

Throttle insert

The use of a throttle insert is required when due to prevailing operating conditions, flows can occur during the switching processes, which exceed the performance limit of the valve.

- Examples:
- Accumulator operation,
- Use as pilot control valve with internal pilot fluid tapping.

3/2 directional seat valve (see page 4)

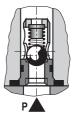
The throttle insert is inserted in port P of the seat valve.

4/2 directional seat valve (see page 5)

The throttle insert is inserted in port P of the Plus-1 plate.

Check valve insert

188


The check valve insert allows free flow from P \rightarrow A and closes A \rightarrow P in a leak-free form.

3/2 directional seat valve (see page 4)

The check valve insert is inserted in port P of the seat valve.

4/2 directional seat valve (see page 5)

The check valve insert is inserted in port P of the Plus-1 plate.

Technical data

general			
Installation po	sition		Any
Ambient temp	erature range	°C	-20 +80
Storage tempe	erature range	°C	+15 +30
Admissible vib	bration load		
Valve axis	direction		20 2000 Hz amplitude 0.032 g ² /Hz (8 g RMS)
90 ° direct	tion to the valve axis		20 2000 Hz amplitude 0.05 g ² /Hz (10 g RMS)
Weight	3/2 directional seat valve	kg	6.2
	4/2 directional seat valve	kg	7.0
Surface protect	ction		Galvanically coated

hydraulic

Maximum surface temperature		°C	See information on the explosion protection on page 8
Maximum operating pressure	Port P, A, B	bar	420
	Port T	bar	40
Maximum flow		l/min	12
Hydraulic fluid			Mineral oil (HL, HLP) according to DIN 51524; fast bio- degradable hydraulic fluids according to VDMA 24568 (see also data sheet 90221); HETG (rape seed oil); HEPG (polyglycols); HEES (synthetic esters), other hydraulic fluids on request, ignition temperature > 180 °C
Hydraulic fluid temperature rang	e	°C	-15 +80
Viscosity range		mm²/s	2.8 500
Maximum permitted degree of c fluid - cleanliness class accordin			Class 20/18/15 ¹⁾

electric

Voltage type	Direct voltage
Available voltages	/ 24
Voltage tolerance (nominal voltage) %	6 ±10
Admissible residual ripple %	< 5
Duty cycle / operating mode according to VDE 0580	S1 (continuous operation)
Switching time according to ISO 6403	See page 8
Switching frequency 1/	n up to 15000
Nominal power at ambient temperature 20 °C V	/ 13
Maximum power with 1.1 x nominal voltage and ambient temperature 20 °C	/ 15.8
Protection class according to EN 60529 ²⁾	IP 65

¹⁾ The cleanliness classes specified for the components must be adhered to in hydraulic systems. Effective filtration prevents faults and at the same time increases the life cycle of the components. For the selection of the filters see www.boschrexroth.com/filter.

²⁾ With correctly installed electrical connection

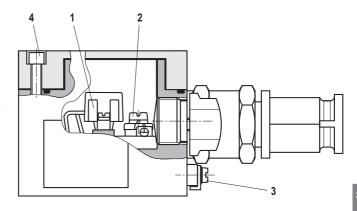
Technical data

Information on the explosion protection

Area of application as per directive 94/9/EC	I M2, II 2G
Type of protection Valve	c (EN 13463-5:2011)
Maximum surface temperature ¹⁾ °C Temperature class	130 T4
Type of protection Solenoid according to EN 60079-0:2009 / EN 60079-1:2007	Ex d I Mb Ex d IIC T4 Gb
Type examination certificate Solenoid	BVS 03 ATEX E 300 X
"IEC Certificate of Conformity" Solenoid	IECEx BVS 11.0091 X
Special conditions for safe use	In case of bank assembly, only one solenoid of all valves may be energized at a time.
Ambient temperature range °C	-20 +80

 $^{1)}$ Surface temperature > 50 $\,^{\circ}\text{C},$ provide contact protection

		DC solenoid								
Pressure <i>p</i> in bar	Flow <i>q</i> v in l/min		Control spool symbols U, C, D, Y							
			ton without ta	off						
		U	С	D	Y	U	С	D	Y	
70	12	35	55	40	60	20	10	25	15	
140	12	35	55	40	60	25	10	30	15	
280	12	35	60	40	65	30	10	35	15	
320	12	35	65	40	70	30	12	35	17	
420	12	35	65	40	70	35	12	40	17	


Switching times t in ms (Installation position: Solenoid horizontal)

Electrical connection

The type-examination tested valve solenoid of the valve is equipped with one terminal box and a type-tested cable entry. The connection is polarity-independent.

Important

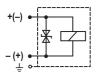
When establishing the electrical connection, the protective earthing conductor (PE $\stackrel{\perp}{=}$) has to be connected properly.

Properties of the connection terminals and mounting elements

Item	Function	Connectable line cross-section
1	Operating voltage connection	Single-wire max. 2.5 mm ²
		Finely stranded max. 2.5 mm ²
2	Connection for protective earthing conductor	Single-wire 0.75 2.5 mm ²
		Finely stranded 0.75 1.5 mm ²
3	Connection for potential equalization conductor	Single-wire 4 6 mm ²
		Finely stranded min. 4 mm ²
4	Screws for cover	-

Cable gland

Line diameter mm	912
Sealing	Outer sheath sealing


Connection line

Line type	Non-armored cables and lines (outer sheath sealing)
Temperature range °C	-20 > +110

Electrical connection

Circuit diagram

Direct voltage, polarity-independent

Over-current fuse and switch-off voltage peak

Important

A fuse appropriate for the solenoid's rated current (max. 3 x l_{rated} according to DIN 41571 and/or IEC 60127) or a protective motor switch with short-circuit and thermal instantaneous tripping must be connected to each valve solenoid as short-circuit protection. The cut-off capacity of this fuse must match or exceed the short-circuit current of the supply source.

This fuse or protective motor switch may only be fitted outside the explosive area or must be of an explosion-proof design. When inductivities are switched off, voltage peaks result which may cause failures in the connected control electronics. For this reason, the valve solenoids comprise a suppression circuit which dampens this voltage peak to the voltage value shown in the table.

Voltage data in the valve type code	Nominal voltage Valve solenoid	Rated current Valve solenoid	Recommended pre-fuse charac- teristics medium time-lag according to DIN 41571	Maximum voltage value upon switch-off	Suppression circuit
G24	24 V DC	0.542 A DC	630 mA	–90 V	Suppressor diode bi-directional

General information

Seat valves can be used according to the control spool symbols and the related operating pressures and flows (see performance limits page 11).

In order to guarantee safe functioning, the following points must imperatively be observed:

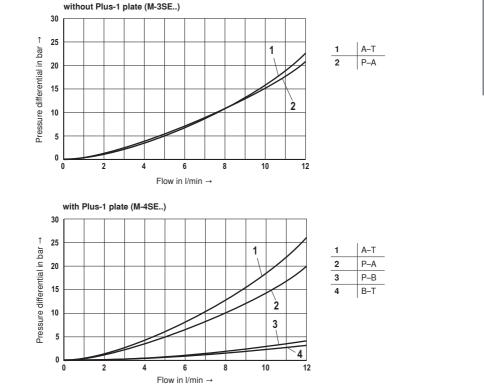
- Seat valves have negative spool overlap, i.e. leakage oil occurs during the switching process. This process takes, however, place within such a short time that it is irrelevant in nearly all applications.
- The specified maximum flow must not be exceeded (if necessary, use a throttle insert for the flow limitation)!

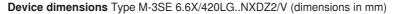
Plus-1 plate:

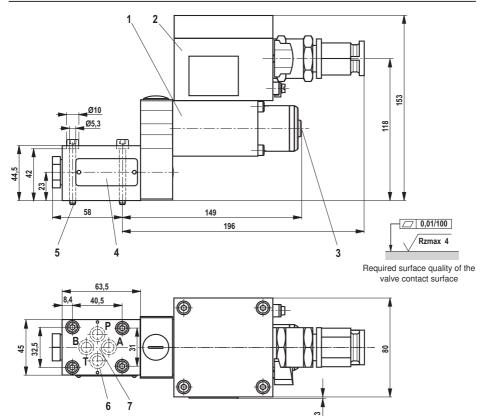
- When the Plus-1 plate (4/2 directional function) is used, the following lower operating values are to be observed:
 *p*_{min} = 8 bar, *q*_V > 3 l/min.
- The ports P, A, B and T are clearly determined according to the tasks. They must not be exchanged or closed arbitrarily!
- Port T must always be connected.
- · Pressure level and pressure distribution are to be observed!
- · The flow is only permitted in the direction of arrow!

Performance limits (measured with HLP46, $\vartheta_{oil} = 40 \text{ °C} \pm 5 \text{ °C}$)

Important:


The specified switching power limits are valid for operation with two directions of flow (e.g. from P \rightarrow A and simultaneous return flow from B \rightarrow T).


Due to the flow forces acting within the valves, the admissible switching power limit may be considerably lower with only one direction of flow (e.g. from $P \rightarrow A$ while port B is blocked)!

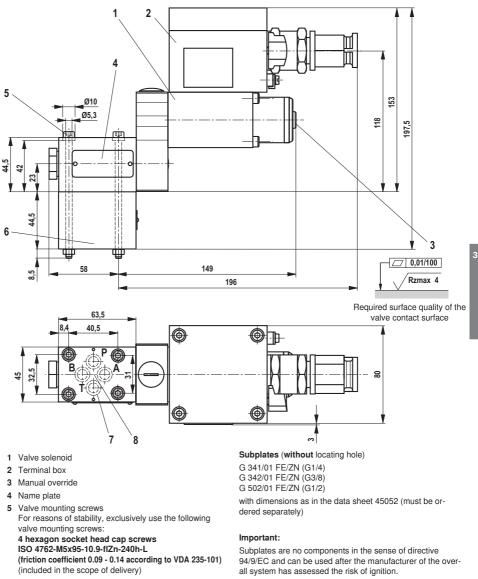

(In such cases, please consult us.)

The switching power limit was established while the solenoids were at operating temperature, at 10 % undervoltage and without tank pre-loading.

- 1 Valve solenoid
- 2 Terminal box
- 3 Manual override
- 4 Name plate
- 5 Valve mounting screws
 For reasons of stability, exclusively use the following valve mounting screws:
 4 hexagon socket head cap screws
 ISO 4762-M5x50-10.9-fIZn-240h-L
 (friction coefficient 0.09 0.14 according to VDA 235-101)
 (included in the scope of delivery)
- 6 Identical seal rings for ports P, A, B, T
- 7 Porting pattern according to DIN 24340-A6

Subplates (without locating hole)

G 341/01 FE/ZN (G1/4) G 342/01 FE/ZN (G3/8) G 502/01 FE/ZN (G1/2)


with dimensions as in the data sheet 45052 (must be ordered separately)

Important:

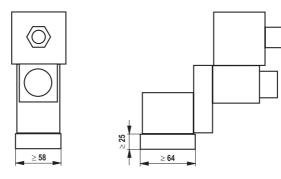
Subplates are no components in the sense of directive 94/9/EC and can be used after the manufacturer of the overall system has assessed the risk of ignition.

The G...FE/ZN versions are free from aluminum and/or magnesium and galvanized.

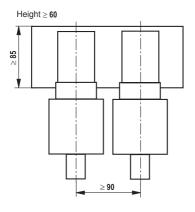
Device dimensions Type M-4SE 6.6X/420LG..NXDZ2/V (dimensions in mm)

- 6 Plus-1 plate
- 7 Identical seal rings for ports P, A, B, T
- 8 Porting pattern according to DIN 24340-A6

195


The G...FE/ZN versions are free from aluminum and/or magnesium and galvanized.

Installation conditions (dimensions in mm)


	Individual assembly	Bank assembly				
Subplate dimensions	Minimum dimensions	Minimum cross-section				
	Length \ge 64, width \ge 58, height \ge 25	Height \ge 60, width \ge 85				
Thermal conductivity of the subplate	≥ 38 W/mK (EN-GJS-500-7)					
Minimum distance between the longitu- dinal valve axes	See schematic diagram below					

Schematic diagram

Individual assembly

Bank assembly

Important:

In case of bank assembly, only one solenoid of all valves may be energized at a time.

Bosch Rexroth AG Hydraulics Zum Eisengießer 1 97816 Lohr am Main, Germany Phone +49 (0) 93 52 / 18-0 documentation@boschrexroth.de www.boschrexroth.de © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Electric Drives and Controls

Hydraulics

Pneumatics

Service

1/16

3/2 and 4/2 directional seat valves with solenoid actuation

RE 22047-XH-B2/09.12 Replaces: 05.12

Type E-.SE 6 ...X... Type W-.SE 6 ...X...

Size 6 Component series 6X Maximum operating pressure 420 bar Maximum flow 4 I/min

ATEX units For explosive areas

Part II Data sheet

Information on the explosion protection:

- Area of application in accordance with the Explosion Protection Directive 94/9/EC: I M2; II 2G
- Types of protection of the valve solenoids: Ex ib I Mb / Ex ib IIC T6 Gb according to EN 60079-0:2009 / EN 60079-11:2007

What you need to know about these operating instructions

These operating instructions apply to the explosion-proof version of Rexroth valves and consist of the following three parts:

- Part I General information 07010-X-B1
- Part II Data sheet 22047-XH-B2
- Part III Product-specific instructions 22047-XH-B3

Operating instructions 22047-XH-B0

You can find further information on the correct handling of Rexroth hydraulic products in our publication "General product information on hydraulic products" 07008.

197

Table of contents

Contents	Page
Features	2
Ordering code and scope of delivery	3
Function, section, control spool symbols	4
Technical data	7
Switching times	9
Electrical connection	9
Performance limits	10
Characteristic curves	10
Unit dimensions	11
Installation conditions	15

Features

- Direct operated directional seat valve with solenoid actuation for proper use in explosive atmospheres
- Porting pattern according to DIN 24340-A6
- Subplates available in FE/ZN version (see pages 11 to 14)
- Blocked connection tight in a leak-free form
- Safe switching also with longer standstill periods under pressure
- Wet-pin DC solenoids in hydraulic fluid
- Electrical connection with:
 - Individual connection with cable gland
 Connector
- depending on the valve type
- With manual override

Ordering code and scope of delivery

			, <u> </u>											
	<u>.</u>	SE	6	6	X /42	20	B	1	N I		1		v	
		<u> </u>			<u> </u>						4			
	: 3 : 4	=	6									no		other seals upon request) Important: Observe compatibility of seals with hydraulic fluid used!
Main ports	3	4												Without throttle insert
· · · · · · · · · · · · · · · · · · ·		-										P =		With check valve insert
Control spool symbols												B12	- (Throttle Ø 1.2 mm
												B15	5 =	Throttle Ø 1.5 mm Throttle Ø 1.8 mm
	•	-	= U									B20		Throttle Ø 2.0 mm
												B22	2 =	Throttle Ø 2.2 mm
A1														Electrical connection
IA Î∖ I											Z2 =		S	olenoid with terminal box
a 7 QON Mub	•	-	= C											and cable gland
PIT											1/00			(only with type ESE 6)
											K20		otor	Solenoid with facing the valve housing
												onne		only with type W –.SE 6)
а 7 Х. Ц и МАЛИВ	-	•	= D										(For details see chapter
PITI														Electrical connection
										XH =		Exp	losic	on protection "Intrinsically
												1.		e" for component group II
	-	•	= Y											(all, except for mining)
PITI										XM :				on protection "Intrinsically
		1	- 1- 1 -											mponent group I (mining)
		= avail									Detail	s see	into	ormation on the explosion
Component series 60 to 6			-	= 6X										protection page 8
(60 to 69: Unchanged inst connection dimensions)	allatio	n and							N =			Wit	h m	anual override (standard)
/	100 h	~			420									Direct voltage 12 V
Operating pressure up to	42U Da	ar		=	-	<u>ا</u>		G12	-12 =			N		nal power supply 120 mA
High-power solenoid	4)					= B		010	-19 =			N		(only with type ESE 6)
(switching in hydraulic fluid	u)							GIZ	-19 =			IN		nal power supply 190 mA only with type W SE 6)
													(,

Included in the scope of delivery:

- Valve mounting screws

Valve operating instructions with declaration of conformity in part III

Function, section, control spool symbols: 3/2 directional seat valve

General:

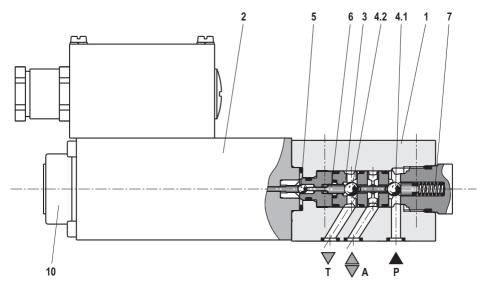
The directional valve type .-SE.. is a directional seat valve with solenoid actuation. It controls the start, stop and direction of flow.

It basically comprises a housing (1), the solenoid (2), the hardened valve system (3) and the balls (4.1 and 4.2) as closing element.

Basic principle:

In the initial position, the ball (4.1) is pressed onto the seat by the spring (7), in spool position, the ball (4.2) is pressed onto the seat by the solenoid (2). The force of solenoid (2) acts via the ball (5) on the actuating plunger (6) that is sealed on two sides. The chamber between the two sealing elements is connected to port P. Thus, the valve system (3) is pressurecompensated in relation to the actuating forces (solenoid or return spring). Thus, the valves can be used up to 420 bar.

Important


 The 3/2 directional seat valves have a "negative spool overlap". Therefore, port T must always be connected. That means that during the switching process – from the starting of the opening of one valve seat to the closing of the other valve seat – ports P–A–T are connected with each other. This process takes, however, place within such a short time that it is irrelevant in nearly all applications.

- The manual override (10) allows for the switching of the valve without solenoid energization.
- It has to be made sure that the specified maximum flow is not exceeded! A throttle insert must be used for limiting the flow, if necessary (see page 6).
- In order to switch the valve safely or maintain it in its spool position, the pressure situation must be as follows: P ≥ A ≥ T (for design reasons).
- The ports P, A and T (3/2 directional seat valve) are clearly determined according to the tasks. They must not be exchanged or closed. The flow is only permitted in the direction of arrow.

The seat arrangement offers the following options:

Control spool symbol	U	С
Initial position	P and A connected, T blocked in a leak- free form	P blocked in a leak- free form, A and T connected
Spool position	P blocked in a leak- free form, A and T connected	P and A connected, T blocked in a leak- free form

Example: Type E-3SE 6 C6X/420BG12-12NX.Z2/V

Function, section, control spool symbols: 4/2 directional seat valve

201

With a sandwich plate, the **Plus-1 plate**, under the 3/2 directional seat valve, the function of a 4/2 directional seat valve is achieved.

Function of the Plus-1 plate:

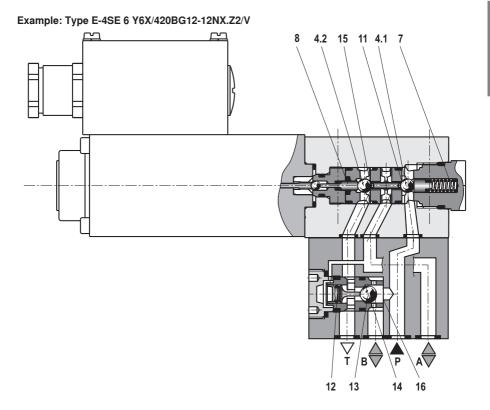
Initial position:

The main valve is not operated. The spring (7) holds the ball (4.1) on the seat (11). Port P is blocked and A connected to T. Apart from that, one pilot line is connected from A to the large area of the control spool (12), which is thus unloaded to the tank. The pressure applied via P now pushes the ball (13) onto the seat (14). Now, P is connected to B, and A to T.

Transition position:

When the main valve is operated, the control spool (8) is shifted against the spring (7) and the ball (4.2) is pressed onto the seat (15). During this, port T is closed, P, A, and B are briefly connected to each other.

Spool position:


P is connected to A. As the pump pressure acts via A on the large area of the control spool (12), the ball (13) is pressed onto the seat (16). Thus, B is connected to T, and P to A. The ball (13) in the Plus-1 plate has a "positive spool overlap". The use of the Plus-1 plate and the seat arrangement offer the following options:

Control spool symbol D:

Control spool symbol Y:

To prevent pressure intensification in conjunction with single-rod cylinders, the annulus area of the cylinder must be connected to A.

Function, section: Throttle insert, check valve insert

Throttle insert

The use of a throttle insert is required when due to prevailing operating conditions, flows can occur during the switching processes, which exceed the performance limit of the valve.

Examples:

- Accumulator operation,
- Use as pilot control valve with internal pilot fluid tapping.

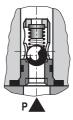
3/2 directional seat valve (see page 4)

The throttle insert is inserted in port P of the seat valve.

4/2 directional seat valve (see page 5)

The throttle insert is inserted in port P of the Plus-1 plate.

Check valve insert


The check valve insert allows free flow from P \rightarrow A and closes A \rightarrow P in a leak-free form.

3/2 directional seat valve (see page 4)

The check valve insert is inserted in port P of the seat valve.

4/2 directional seat valve (see page 5)

The check valve insert is inserted in port P of the Plus-1 plate.

Technical data

general					
Installation position				Any	
Ambient temperature range °C				-20 +50	
Storage temperature range °C			+15 +30		
Admissible vibration load	Admissible vibration load			20 2000 Hz amplitude 0.05 g ² /Hz (10 g RMS)	
Weight	3/2 directiona	l seat valve	kg	2.6	
	4/2 directiona	l seat valve	kg	3.4	
Surface protection	Valve body	Valve body Valve type E		Galvanically coated	
		Valve type	W	Stainless steel	
	Solenoid			Galvanically coated	

hydraulic

e	°C	See information on the explosion protection on page 8			
Maximum operating pressure Port P, A, B bar		420			
Port T	bar	40			
	l/min	4			
Hydraulic fluid Valve type E		HFA, HFB, HFD			
Valve type	W	Water			
inge	°C	+5 +50			
	mm²/s	1 380			
f contamination of	the hydraulic	Class 20/18/15 1)			
ding to ISO 4406	(c)	For water-containing liquids, a comparable cleanliness is to be ensured.			
1	Port P, A, B Port T Valve type Valve type nge f contamination of	Port P, A, B bar Port T bar Valve type E Valve type W nge °C			

electric

electric				
Nominal voltage	V	12		
Voltage type		Direct voltage (DC)		
Admissible residual ripple	%	<	5	
Voltage tolerance	%	±10		
Duty cycle / operating mode according to VDE 0580	100 % / S1 (DB)			
Information on the rated current in the ordering code		G12-12	G12-19	
Rated current	mA	120	190	
Coil resistance with solenoid temperature 20 °C	Ω	89	59	
Minimum current for achieving the hydraulic switch- ing power	mA	88	143	
Switching times according to ISO 6403	ms	See table page 9		
Switch-off voltage peak Solenoid	V	Max. –3		
Protection class according to EN 60529 ²⁾		IP 65		

¹⁾ The cleanliness classes specified for the components must be adhered to in hydraulic systems. Effective filtration prevents faults and at the same time increases the service life of the components. For the selection of the filters see www.boschrexroth.com/filter.

²⁾ With correctly installed electrical connection

Technical data

Information on the explosion protection

Ordering code		G12	G12-19		
Ordering code		XM	XH	XM	
Area of application as per directive 94/9/EC		I M2	ll 2G	I M2	
Type of protection valve solenoid according to EN 60079-0:2009 / EN 60079-11:2007		Ex ib I Mb	Ex ib IIC T6 Gb	Ex ib I Mb	
Maximum surface temperature 1)	°C	80		80	
Temperature class		-	T6	-	
Type examination certificate Solenoid		BVS 08 ATEX E 023			
"IEC Certificate of Conformity" Solenoid		IECEx BVS 07.0008			
Type of protection Valve		c (EN 13463-5:2011)			
Special operating conditions for a safe application			_		

Safety-related maximum values of the solenoids depending on the component group and the type of the electrical connection

Component group	l (mi	II (all, except for mining)		
Ordering code for explosion protection	X	ХН		
Ordering code for solenoid	G12-12 G12-19		G12-12	

Electrical connection Z2

Maximum voltage U _i	V DC	15		27
Maximum current I _i	A	2	Version not	2
Effective inner inductivity L _i	nH	Neglectable	available	Neglectable
Effective inner capacity C _i	pF	Neglectable		Neglectable
Ambient temperature range	°C	-20+50		-20+50

Electrical connection K20ZL

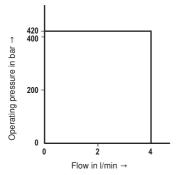
Maximum voltage U _i	V DC		15			
Maximum current I _i	A	Version not	2	Version not		
Effective inner inductivity L_{i}	nH	available	Neglectable	available		
Effective inner capacity C _i	pF		Neglectable			
Ambient temperature range	°C		-20+50			

¹⁾ Surface temperature > 50 °C, provide contact protection

Switching times t in ms (installation position: Solenoid horizontal)

Pres-	Flow a	with solenoid G12-12							with solenoid G12-19								
sure p in bar	Flow <i>q</i> ∨ in l/min	with	t _o out tar	n nk pres	sure		ť	off		with		n nk pres	sure		ť	off	
		С	U	Y	D	С	U	Y	D	С	U	Y	D	С	U	Y	D
70	4	220	265	230	275	95	85	105	95	140	160	150	170	110	100	120	110
140	4	260	265	270	275	100	90	110	100	150	165	160	175	120	110	130	120
280	4	320	260	330	270	115	110	125	120	170	170	180	180	125	135	135	145
320	4	350	260	360	270	120	115	130	125	175	170	185	180	130	140	140	150
420	4	360	260	370	270	120	130	130	140	185	170	195	180	135	145	145	155

Type .-3SE 6 C 6X/... and type .-3SE 6 U 6X/...


Electrical connection

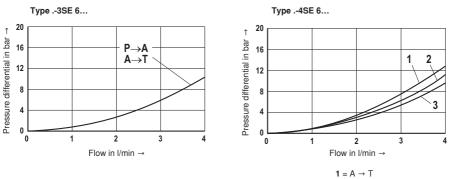
The type-examination tested valve solenoid of the valve is equipped with an electrical connection according to the following table. The electrical connection of the solenoid is polarity-independent.

Ordering code for the electri- cal connection	Type of connection Description	Circuit diagram	Ordering code for the sole- noid, availability
Z2	 Electrical connection via 2-pole termi- nal in terminal box with cable gland without operating display 		G12-12 (120 mA)
	Cable gland		
	Threaded connection	M20x1.5	1
	Line diameter mm	6.59.5 ¹⁾	1
	Sealing	Outer sheath sealing]
	Connection terminal Solenoid		1
	For line cross-section mm ²	0.75 1.5]
K20ZL	 Electrical connection via connector, 3-pole with pin contacts, type 845-11-1125-001, FCI/Souriau Connector facing the valve housing Operating display via light emitting diode (LED), red Suitable mating connector, type 845-11-8522-001, FCI/Souriau, must be ordered separately 		G12-19 (190 mA)

1) Larger diameters upon request

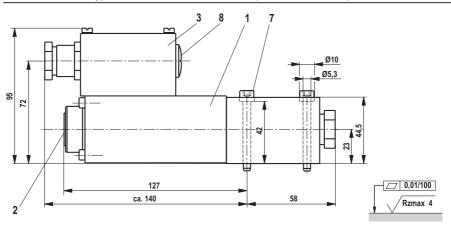
Performance limits (measured with HLP46, $\vartheta_{oil} = 40 \text{ °C} \pm 5 \text{ °C}$)

Important:

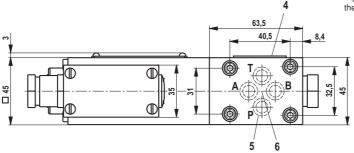

The specified switching power limits are valid for operation with two directions of flow (e.g. from P \rightarrow A and simultaneous return flow from B \rightarrow T).

Due to the flow forces acting within the valves, the admissible switching power limit may be considerably lower with only one direction of flow (e.g. from P \rightarrow A while port B is blocked)!

(In such cases, please consult us.)


The switching power limit was established while the solenoids were at operating temperature, at 10 % undervoltage and without tank pre-loading.

Characteristic curves (measured with HLP46, $\vartheta_{oil} = 40 \text{ °C} \pm 5 \text{ °C}$ and p = 100 bar)



 $^{2 =} P \rightarrow A$ $3 = B \rightarrow T, P \rightarrow B$

Unit dimensions type E-3SE 6 ... BG12-12X.Z2/... (dimensions in mm)

Required surface quality of the valve mounting face

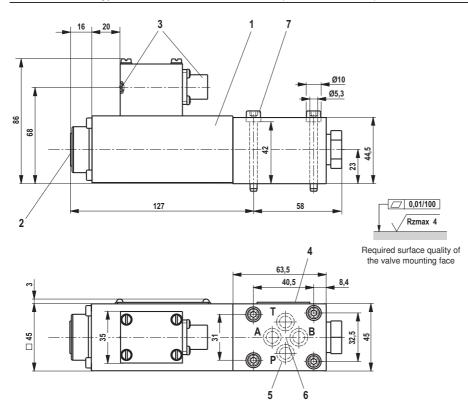
- 1 Valve solenoid
- 2 Manual override
- 3 Terminal box
- 4 Name plate
- 5 Identical seal rings for ports P, A, B, T
- 6 Porting pattern according to DIN 24340-A6
- Valve mounting screws
 For reasons of stability, exclusively use the following valve mounting screws:
 4 hexagon socket head cap screws
 ISO 4762-M5x50-10.9-flZn-240h-L (friction coefficient 0.09 - 0.14 according to VDA 235-101) (included in the scope of delivery)

8 Plug screw

Subplates (without locating hole)

G 341/01 FE/ZN (G1/4) G 342/01 FE/ZN (G3/8) G 502/01 FE/ZN (G1/2)

with dimensions as in the data sheet 45052 (must be ordered separately)


Important:

Subplates are no components in the sense of directive 94/9/EC and can be used after the manufacturer of the overall system has assessed the risk of ignition.

The G...FE/ZN versions are free from aluminum and/or magnesium and galvanized.

207

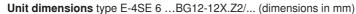
Unit dimensions type W-3SE 6 ... BG12-19X.K20ZL/...(dimensions in mm)

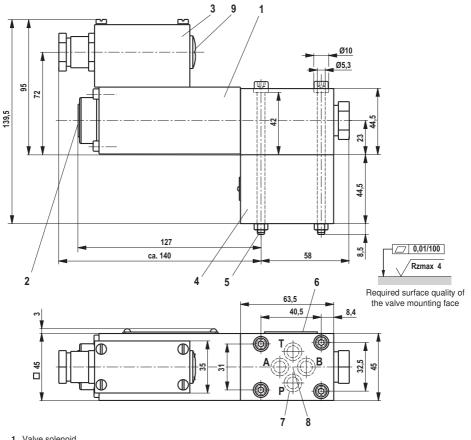
- 1 Valve solenoid
- 2 Manual override
- 3 Operating display and connector
- 4 Name plate
- 5 Identical seal rings for ports P, A, B, T
- 6 Porting pattern according to DIN 24340-A6
- 7 Valve mounting screws For reasons of stability, exclusively use the following valve mounting screws:

4 hexagon socket head cap screws ISO 4762-M5x50-10.9-flZn-240h-L (friction coefficient 0.09 - 0.14 according to VDA 235-101) (included in the scene of deliver.)

(included in the scope of delivery)

Subplates (without locating hole)


with dimensions as in the data sheet 45052 (upon request)


Important:

Subplates are no components in the sense of directive 94/9/EC and can be used after the manufacturer of the overall system has assessed the risk of ignition.

The G...FE/ZN versions are free from aluminum and/or magnesium and galvanized.

3

- 1 Valve solenoid
- 2 Manual override
- 3 Terminal box
- 4 Plus-1 plate
- 5 Valve mounting screws For reasons of stability, exclusively use the following valve mounting screws: 4 hexagon socket head cap screws ISO 4762-M5x95-10.9-flZn-240h-L (friction coefficient 0.09 - 0.14 according to VDA 235-101) (included in the scope of delivery)
- 6 Name plate
- 7 Identical seal rings for ports P, A, B, T
- 8 Porting pattern according to DIN 24340-A6
- 9 Plug screw

Subplates (without locating hole)

G 341/01 FE/ZN (G1/4) G 342/01 FE/ZN (G3/8) G 502/01 FE/ZN (G1/2)

with dimensions as in the data sheet 45052 (must be ordered separately)

Important:

Subplates are no components in the sense of directive 94/9/EC and can be used after the manufacturer of the overall system has assessed the risk of ignition.

The G...FE/ZN versions are free from aluminum and/or magnesium and galvanized.

Unit dimensions type W-4SE 6 ... BG12-19X.K20ZL/... (dimensions in mm)

- 2 Manual override
- 3 Operating display and connector
- 4 Plus-1 plate
- Valve mounting screws
 For reasons of stability, exclusively use the following valve mounting screws:

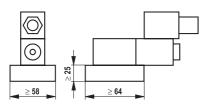
 4 hexagon socket head cap screws
 ISO 4762-M5x95-10.9-fIZn-240h-L (friction coefficient 0.09 - 0.14 according to VDA 235-101)
 - (included in the scope of delivery)
- 6 Name plate
- 7 Identical seal rings for ports P, A, B, T
- 8 Porting pattern according to DIN 24340-A6

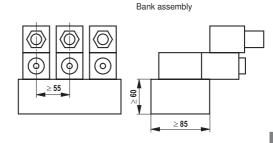
Subplates (without locating hole) with dimensions as in the data sheet 45052 (upon request)

Important:

Subplates are no components in the sense of directive 94/9/EC and can be used after the manufacturer of the overall system has assessed the risk of ignition.

The G...FE/ZN versions are free from aluminum and/or magnesium and galvanized.


Installation conditions (dimensions in mm)


	Individual assembly	Bank assembly		
Subplate dimensions	Minimum dimensions	Minimum cross-section		
	Length \ge 64, width \ge 58, height \ge 25	Height \ge 60, width \ge 85		
Heat conductivity of the subplate	≥ 38 W/mK (EN-GJS-500-7)			
Minimum distance between the longitu- dinal valve axes	≥ 55	mm		

211

Schematic diagram

Individual assembly

3

Notes

Bosch Rexroth AG Hydraulics Zum Eisengießer 1 97816 Lohr am Main, Germany Phone +49 (0) 93 52 / 18-0 documentation@boschrexroth.de www.boschrexroth.de © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging. Hydraulics

Pneumatics

213

Service

Rexroth Bosch Group

1/16

3/2 and 4/2 directional seat valves with solenoid actuation

RE 22049-XE-B2/09.13 Replaces: 01.10

Type M-.SED 6...XE...

Size 6 Component series 1X Maximum operating pressure 350 bar Maximum flow 25 I/min

> ATEX units For explosive areas

Part II Data sheet

Information on the explosion protection:

- Area of application in accordance with the Explosion Protection Directive 94/9/EC: II 2G
- Type of protection of the valve solenoid: Ex e mb IIC T4 Gb according to EN 60079-7: 2007 / EN 60079-18: 2009

What you need to know about these operating instructions

These operating instructions apply to the explosion-proof version of Rexroth valves and consist of the following three parts:

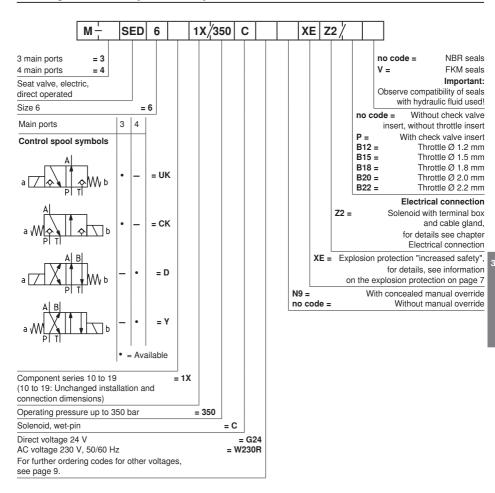
- Part I General information 07010-X-B1
- Part II Data sheet 22049-XE-B2
- Part III Product-specific instructions 22049-XE-B3

Operating instructions 22049-XE-B0

You can find further information on the correct handling of Rexroth hydraulic products in our publication "General product information on hydraulic products" 07008.

Actual product may differ

Table of contents


Contents	Page
	0
Features	2
Ordering code and scope of delivery	3
Function, section, control spool symbols	4
Technical data	6
Technical data, information on the explosion protection	7
Switching times	7
Electrical connection	8
General information	10
Performance limits	10
Characteristic curves	11
Dimensions	12
Installation conditions	16

Features

- Direct operated directional seat valve with solenoid actuation for proper use in explosive atmospheres
- Porting pattern according to DIN 24340-A6
- Subplates available in FE/ZN version (see pages 12 to 15)
- Blocked port is tight
- Safe switching also with longer standstill periods under pressure
- Wet-pin DC and AC solenoids
- Solenoid coil can be rotated by 90°
- Electrical connection as individual connection with cable gland
- With concealed manual override, optional

Hydraulics | Bosch Rexroth AG 3/16

Ordering code and scope of delivery

Included in the scope of delivery:

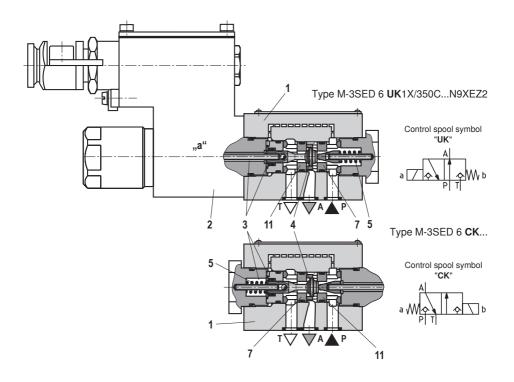
Valve operating instructions with declaration of conformity in Part III

Function, section, control spool symbols: 3/2 directional seat valve

General:

The directional valve type M-.SED is a direct operated directional seat valve with solenoid actuation. It controls the start, stop and direction of flow and basically comprises a housing (1), the solenoid (2), the valve seats (7) and (11) and the control spool (4).

The manual override (6) allows for the switching of the valve without solenoid energization.


Basic principle:

The initial position of the valve (normally open "UK" or normally closed "CK") is determined by the arrangement of the spring (5). The chamber (3) behind the control spool (4) is connected to port P and sealed against port T. Thus, the valve is pressure-compensated in relation to the actuating forces (solenoid and spring).

By means of the control spool (4), the ports P, A and T can be loaded with the maximum operating pressure (350 bar) and the flow can be directed in both directions (see control spool symbols).

In the initial position, the control spool (4) is pressed onto the seat (11) by the spring (5), in spool position, it is pressed onto the seat (7) by the solenoid (2). The flow is blocked in a leak-free manner.

Seat valves can be used according to the control spool symbols and the related operating pressures and flows (see Performance limits page 10).

Function, section, control spool symbols: 4/2 directional seat valve

With a sandwich plate, the **Plus-1 plate**, under the 3/2 directional seat valve, the function of a 4/2 directional seat valve is achieved.

Function of the Plus-1 plate:

Initial position:

The main valve is not operated. The spring (5) holds the control spool (4) on the seat (11). Port P is blocked and A connected to T. Apart from that, one control line is connected from A to the large area of the control spool (8), which is thus unloaded to the tank. The pressure applied via P now pushes the ball (9) onto the seat (10). Now, P is connected to B, and A to T.

Transition position:

When the main valve is operated, the control spool (4) is shifted against the spring (5) and pressed onto the seat (7). During this, port T is blocked, P, A, and B are briefly connected to each other.

Type M-4SED 6 Y1X/350C...N9XEZ2

Spool position:

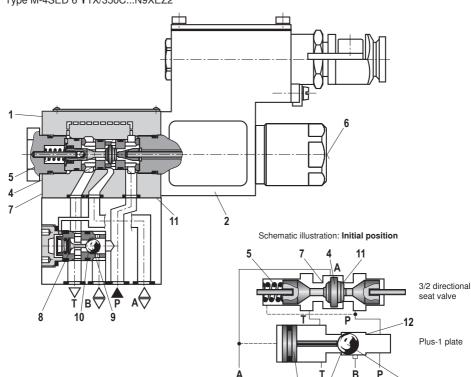
P is connected to A. As the pump pressure acts via A on the large area of the control spool (8), the ball (9) is pressed onto the seat (12). Thus, B is connected to T, and P to A. The ball (9) in the Plus-1 plate has a "positive spool overlap". **Important:**

To prevent pressure intensification in conjunction with differential cylinders, the annulus area of the cylinder must be connected to A.

The use of the Plus-1 plate and the seat arrangement offer the following options:

Control spool symbol "D"

Control spool symbol "Y"


8

10

9

3

Function, section: Throttle insert, check valve insert

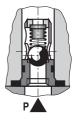
Throttle insert

The use of a throttle insert is required when due to prevailing operating conditions, flows can occur during the switching processes, which exceed the performance limit of the valve. Examples:

- Accumulator operation,
- Use as pilot control valve with internal pilot fluid tapping.

3/2 directional seat valve (see page 4) The throttle insert is inserted in port P of the seat valve.

4/2 directional seat valve (see page 5) The throttle insert is inserted in port P of the Plus-1 plate.


Check valve insert

The check valve insert allows free flow from P \rightarrow A and closes A \rightarrow P in a leak-free way.

3/2 directional seat valve (see page 4)

The check valve insert is inserted in port P of the seat valve.

4/2 directional seat valve (see page 5) The check valve insert is inserted in port P of the Plus-1 plate.

Technical data

general	
1	

		Any
e	°C	-20 +70 ¹⁾
9	°C	-20 +50
		20 2000 Hz amplitude 0.05 g ² /Hz (10 g RMS)
3/2 directional seat valve	kg	3.1
4/2 directional seat valve	kg	3.9
		Galvanized coating
		e °C 3/2 directional seat valve kg

hydraulic

Maximum operating pressure bar	See table on page 10
Maximum flow I/min	25
Hydraulic fluid	Mineral oil (HL, HLP) according to DIN 51524 ²⁾ ; fast bio-degradable hydraulic fluids according to VDMA 24568 (see also RE 90221); HETG (rape seed oil) ²); HEPG (polyglycols) ³); HEES (synthetic esters) ³); Other hydraulic fluids upon request Ignition temperature > 180 °C
Hydraulic fluid temperature range °C	-20 +80 (for NBR seals)
	-15 +80 (for FKM seals)
Viscosity range mm ² /s	2.8 500
Maximum admissible degree of contamination of the hydrau- lic fluid, cleanliness class according to ISO 4406 (c)	Class 20/18/15 ⁴⁾

¹⁾ Observe the "Special conditions for safe use" on page 7.

2) Suitable for NBR and FKM seals

³⁾ Suitable **only** for FKM seals

⁴⁾ The cleanliness classes specified for the components must be adhered to in hydraulic systems. Effective filtration prevents faults and at the same time increases the life cycle of the components. For the selection of the filters see www.boschrexroth.com/filter.

Technical data

	Direct voltage	Alternating voltage 50/60 Hz		
V	24, 48, 96, 110	110, 230		
%	-5 /	+10		
%	< 5	-		
	100 % / S1 (continuous operation)			
	See table below			
1/h	up to 15000 up to 7200			
W	1	7		
W	20.6			
	IP 6	66 ¹⁾		
	% % 1/h W	V 24, 48, 96, 110 % -5 / % <5		

1) If the electrical connection is correctly installed

Information on the explosion protection

Area of application as per directive	94/9/EC	II 2G			
Type of protection Valve		c (EN 13463-5:2011)			
Maximum surface temperature ¹⁾ Temperature class	°C	135 T4			
Type of protection Valve solenoid a EN 60079-7:2007 / EN 60079-18:2		Ex e mb IIC T4 Gb			
Type examination certificate Solene	bid	KEMA 02ATEX2240 X			
"IECEx Certificate of Conformity" S	olenoid	IECEx DEK 12.0068X			
Ambient temperature range	°C	-20 +70 ²⁾			
Special conditions for safe use	 Maximum ambient temperature: In case of bank assembly, as long as only one solenoid is energized at a time, and in case of individual assembly: +70 °C In case of bank assembly when more than one solenoid is energized at a time: +60 °C 				
	 The maximum temperature of the valve casing surface is 120 °C. This has to be con- sidered when selecting the connection cable and contact of the connection cable with the casing surface is to be prevented. 				

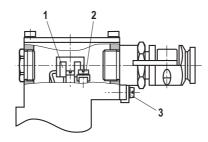
¹⁾ Surface temperature > 50 °C, provide contact protection

²⁾ Observe the "Special conditions for safe use"

		DC solenoid								AC so	lenoid				
		Cont	rol spoc	ol symbo	ols UK,	CK, D a	and Y		Cont	rol spoc	ol symbo	ols UK,	CK, D a	and Y	
Pres-			t	on		t	off	t _{on}		t _{off}					
sure p	Flow g	wit	hout tar	nk press	sure	UK	D	with	nout tar	k press	ure				
in bar	in l/min	UK	СК	D	Y	СК	Y	UK	СК	D	Y	UK	СК	D	Y
70	25	50	45	55	50	10	10	50	65	55	70	50	45	55	50
140	25	65	45	70	50	10	15	55	65	60	70	50	50	55	55
210	25	75	55	80	60	10	15	65	65	70	70	50	55	55	60
280	25	90	55	95	60	15	20	80	65	85	70	50	65	55	70
315	25	95	55	100	60	15	20	95	65	100	70	50	65	55	70
350	25	100	55	105	60	20	25	110	65	115	70	50	65	55	70

Switching times t in ms (Installation position: Solenoid horizontal)

Electrical connection


The type-examination tested valve solenoid of the valve is equipped with a terminal box and a type-tested cable gland.

The connection is polarity-independent.

Solenoids to be connected to AC voltage are equipped with an integrated rectifier.

Important

When establishing the electrical connection, the protective earthing conductor (PE \pm) has to be connected properly.

Properties of the connection terminals

Position	Function	Connectable line cross-section
1	Operating voltage connection	Single-wire 0.75 2.5 mm ²
		Finely stranded 0.75 1.5 mm ²
2	Connection for protective earthing conductor	Single-wire max. 2.5 mm ²
		Finely stranded max. 1.5 mm ²
3	Connection for potential equalization conductor	Single-wire 4 6 mm ²
		Finely stranded 4 mm ²

Cable gland

Type approval	II 2G Ex e IIC Gb
Threaded connection	M20 x 1.5
Protection class according to EN 60529	IP66 ¹⁾
Line diameter mm	911
Sealing	Outer sheath sealing

Connection line

Line type	Non-armored cables and lines (outer sheath sealing)
Temperature range °C	-30 > +110

1) If installed properly

Hydraulics | Bosch Rexroth AG 9/16

Electrical connection

Circuit diagrams

Over-current fuse and switch-off voltage peaks

Important:

Corresponding to the rated current, a fuse according to DIN 41571 and EN / IEC 60127 has to be connected ahead of every valve solenoid (max. $3 \times I_{rated}$).

The shut-off threshold of the fuse has to match the prospective short-circuit current of the supply source.

The prospective short-circuit current of the supply source may amount to a maximum of 1500 A.

This fuse may only be installed outside the explosive area or must be of an explosion-proof design.

When inductivities are switched off, voltage peaks are the result which may cause faults in the connected control electronics. For this reason, the valve solenoids comprise an interference protection circuit which dampens this voltage peak to the voltage value shown in the table.

ninal ge va olen		Rated current valve solenoid	Rated current external miniature fuse: Medium time-lag (M) according to DIN 41571 and EN/IEC 60127	Rated voltage of exter- nal miniature fuse: Medium time-lag (M) according to DIN 41571 and EN/IEC 60127	Maximum voltage value upon switch-off	Interference protection circuit
4 V [DC	0.708 A DC	800 mA	250 V	–90 V	
8 V I	DC	0.354 A DC	400 mA	250 V	–200 V	Suppressor
6 V I	DC	0.177 A DC	200 mA	250 V	–370 V	diode bi-directional
0 V	DC	0.155 A DC	200 mA	250 V	–390 V	
10 V	AC	0.163 A AC	200 mA	250 V	–3 V	Bridge recti-
30 V	AC	0.078 A AC	80 mA	250 V	–3 V	fier and sup- pressor diode

General information

Seat valves can be used according to the control spool symbols and the related operating pressures and flows (see performance limits below).

In order to guarantee safe functioning, the following points must imperatively be observed:

- Seat valves have negative spool overlap, i.e. leakage oil occurs during the switching process. However, this process takes place within such a short time that it is irrelevant in nearly all applications.
- The specified maximum flow must not be exceeded (if necessary, use a throttle insert for the flow limitation).

Plus-1 plate:

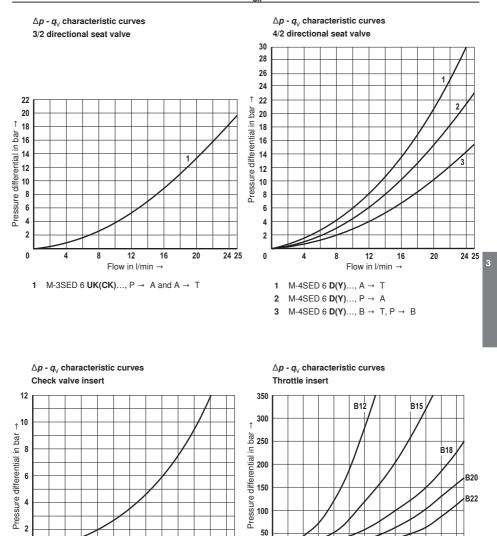
- When the Plus-1 plate (4/2 directional function) is used, the following lower operating values have to be observed: $p_{min} = 8 \text{ bar}, q_V > 3 \text{ l/min}.$
- The ports P, A, B and T are clearly determined according to the tasks. They must not be exchanged or closed.
- · Port T must always be connected.
- Pressure level and pressure distribution are to be observed.
- · The flow is only admissible in the direction of the arrow.

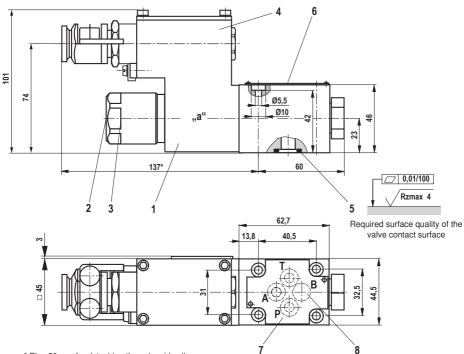
		Control spool symbol	Comment	Oper	Flow			
				Р	Α	В	т	in l/min
2-way circuit	"UK"		With 2/2-way circuits,	350	350		350	25
2-way	"СК"		port P or T must be closed by the customer!	350	350		350	25
3-way circuit	"UK"			350	350		350	25
3-way	"СК"			350	350		350	25
4-way circuit (flow only possible in the direction of arrow)	"D"		3/2 directional valve (symbol "UK") in connec- tion with Plus-1 plate: $p_{\rm P} \ge p_{\rm A} \ge p_{\rm B} \ge p_{\rm T}$	350	350	350	P/A/B -40	25
4-way circuit (flow only possible in direction of arrow)	"Y"		3/2 directional valve (symbol "CK") in connec- tion with Plus-1 plate: $p_{\rm P} \ge p_{\rm A} \ge p_{\rm B} \ge p_{\rm T}$	350	350	350	P/A/B -40	25

Performance limits (measured with HLP46, $\vartheta_{oil} = 40 \text{ °C} \pm 5 \text{ °C}$)

Important

The switching power limits were established while the solenoids were at operating temperature, at 10% undervoltage and without tank preloading.


Flow in I/min →


24 25

Flow in I/min →

24 25

Characteristic curves (measured with HLP46, $\vartheta_{oil} = 40 \text{ °C} \pm 5 \text{ °C}$)

Dimensions: 3/2 directional seat valve - design "UK" (dimensions in mm)

* Plus 80 mm for detaching the solenoid coil

- 1 Solenoid coil
- 2 Concealed manual override "N9"
- 3 Mounting nut with hexagon SW32
- 4 Terminal box
- 5 Identical seal rings for ports A, B, T seal ring for port P
- 6 Name plate
- 7 Porting pattern according to DIN 24340-A6
- 8 Port B is designed as blind counterbore

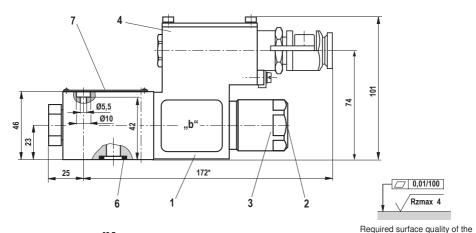
Valve mounting screws

For reasons of stability, exclusively use the following valve mounting screws:

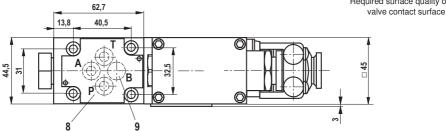
4 hexagon socket head cap screws

ISO 4762-M5x50-10.9-flZn-240h-L (friction coefficient 0.09 - 0.14 according to VDA 235-101) (must be ordered separately)

Subplates


G 341/01 FE/ZN (G1/4) G 342/01 FE/ZN (G3/8) G 502/01 FE/ZN (G1/2)

with dimensions as in the data sheet 45052 (must be ordered separately)


Important:

Subplates are no components in the sense of directive 94/9/EC and can be used after the manufacturer of the overall system has assessed the risk of ignition.

The G...FE/ZN versions are free from aluminum and/or magnesium and galvanized.

Dimensions: 3/2 directional seat valve - design "CK" (dimensions in mm)

* Plus 80 mm for detaching the solenoid coil

- 1 Solenoid coil
- 2 Concealed manual override "N9"
- 3 Mounting nut with hexagon SW32
- 4 Terminal box
- 5 Space required to remove the solenoid coil
- 6 Identical seal rings for ports A, B, T seal ring for port P
- 7 Name plate
- 8 Porting pattern according to DIN 24340-A6
- 9 Port B is designed as blind counterbore

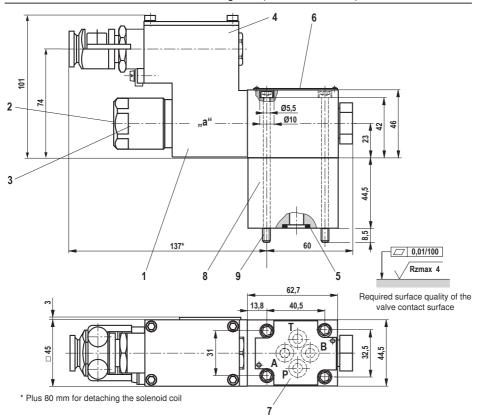
Valve mounting screws

For reasons of stability, exclusively use the following valve mounting screws:

4 hexagon socket head cap screws ISO 4762-M5x50-10.9-fiZn-240h-L (friction coefficient 0.09 - 0.14 according to VDA 235-101) (must be ordered separately)

Subplates

G 341/01 FE/ZN (G1/4) G 342/01 FE/ZN (G3/8) G 502/01 FE/ZN (G1/2)


with dimensions as in the data sheet 45052 (must be ordered separately)

Important:

Subplates are no components in the sense of directive 94/9/EC and can be used after the manufacturer of the overall system has assessed the risk of ignition.

The G...FE/ZN versions are free from aluminum and/or magnesium and galvanized.

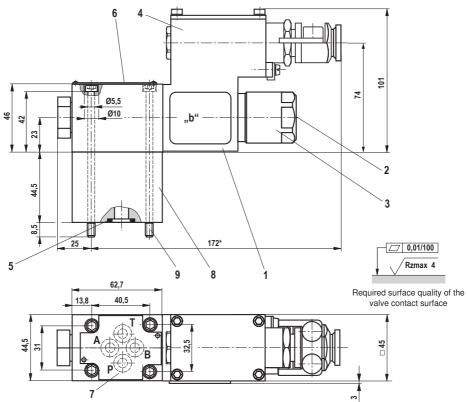
225

Dimensions: 4/2 directional seat valve - design "D" (dimensions in mm)

- 1 Solenoid coil
- 2 Concealed manual override "N9"
- 3 Mounting nut with hexagon SW32
- 4 Terminal box
- 5 Identical seal rings for ports A, B, T seal ring for port P
- 6 Name plate
- 7 Porting pattern according to DIN 24340-A6
- 8 Plus-1 plate
- 9 Valve mounting screws
 For reasons of stability, exclusively use the following valve mounting screws:
 4 hexagon socket head cap screws
 ISO 4762-M5x95-10.9-flZn-240h-L
 (friction coefficient 0.09 0.14 according to VDA 235-101)

(included in the scope of delivery)

Subplates


G 341/01 FE/ZN (G1/4) G 342/01 FE/ZN (G3/8) G 502/01 FE/ZN (G1/2)

with dimensions as in the data sheet 45052 (must be ordered separately)

Important:

Subplates are no components in the sense of directive 94/9/EC and can be used after the manufacturer of the overall system has assessed the risk of ignition.

The G...FE/ZN versions are free from aluminum and/or magnesium and galvanized.

Dimensions: 4/2 directional seat valve - design "Y" (dimensions in mm)

* Plus 80 mm for detaching the solenoid coil

- 1 Solenoid coil
- 2 Concealed manual override "N9"
- 3 Mounting nut with hexagon SW32
- 4 Terminal box
- 5 Identical seal rings for ports A, B, T seal ring for port P
- 6 Name plate
- 7 Porting pattern according to DIN 24340-A6
- 8 Plus-1 plate
- 9 Valve mounting screws

For reasons of stability, exclusively use the following valve mounting screws:

4 hexagon socket head cap screws ISO 4762-M5x95-10.9-ftZn-240h-L (friction coefficient 0.09 - 0.14 according to VDA 235-101)

(included in the scope of delivery)

Subplates

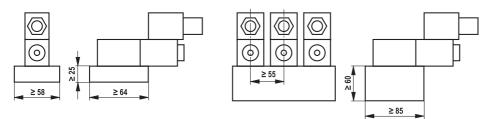
G 341/01 FE/ZN (G1/4) G 342/01 FE/ZN (G3/8) G 502/01 FE/ZN (G1/2)

with dimensions as in the data sheet 45052 (must be ordered separately)

Important:

Subplates are no components in the sense of directive 94/9/EC and can be used after the manufacturer of the overall system has assessed the risk of ignition.

The G...FE/ZN versions are free from aluminum and/or magnesium and galvanized.


Installation conditions (dimensions in mm)

	Individual assembly	Bank assembly			
Subplate dimensions	Minimum dimensions	Minimum cross-section			
	Length \ge 64, width \ge 58, height \ge 25	Height \ge 60, width \ge 85			
Thermal conductivity of the subplate	≥ 38 W/mK (EN-GJS-500-7)				
Minimum distance between the longitu- dinal valve axes	≥ 55 mm				

Schematic diagram

Individual assembly

Bank assembly

Important:

Observe the "Special conditions for safe use" on page 7.

Bosch Rexroth AG Hydraulics Zum Eisengießer 1 97816 Lohr am Main, Germany Phone +49 (0) 93 52 / 18-0 documentation@boschrexroth.de www.boschrexroth.de © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Electric Drives and Controls

Hydraulics

229

Pneumatics

Service

Rexroth Bosch Group

1/16

3/2 and 4/2 directional seat valves with solenoid actuation

RE 22049-XN-B2/08.12 Replaces: 07.10

Type M-.SED 6...XN...

Size 6 Component series 1X Maximum operating pressure 350 bar Maximum flow 25 I/min

> ATEX units For explosive areas

Part II Data sheet

Information on the explosion protection:

- Area of application in accordance with the Explosion Protection Directive 94/9/EC: II 3G; II 3D
- Type of protection of the valve solenoid:
 Ex nA IIC T3 Gc according to EN 60079-15:2010 and
 Ex tc IIIC T140°C Dc IP65 according to EN 60079-31:2009

What you need to know about these operating instructions

These operating instructions apply to the explosion-proof version of Rexroth valves and consist of the following three parts:

Part I General information 07010-X-B1

- Part II Data sheet 22049-XN-B2
- Part III Product-specific instructions 22049-XN-B3

Operating instructions 22049-XN-B0

You can find further information on the correct handling of Rexroth hydraulic products in our publication "General product information on hydraulic products" 07008.

Table of contents

Contents	Page
Features	2
Ordering code and scope of delivery	3
Function, section, control spool symbols	4
Technical data	6
Technical data, information on the explosion protection	7
Switching times	8
Electrical connection	9
General information	10
Performance limits	10
Characteristic curves	11
Device dimensions	12
Installation conditions	16

Features

- Direct operated directional seat valve with solenoid actuation for proper use in explosive atmospheres
- Porting pattern according to DIN 24340-A6
- Subplates available in FE/ZN version (see pages 12 to 15)
- Blocked connection tight in a leak-free form
- Safe switching also with longer standstill periods under pressure
- Wet-pin DC solenoids
- Solenoid coil rotatable by 90 °
- Electrical connection as individual connection with connector according to EN 175301-803, design A
- With manual override, optional

Ordering code and scope of delivery

· · · · ·					-1.										
M-	SE	D 6	ô	12	X/¦35	0 C	G2	24	X	N	K4 /				
3 main ports = 3 4 main ports = 4 Size		= 6											no code V =	=	Seal material NBR seals FKM seals
Main ports	3	4													Important: Observe
Control spool symbols															ty of seals with aulic fluid used.
	•		= UK = CK									no (P = B12 B15 B18 B20 B22	code = insert, w Wit = = = = =	Withou vithou h che Thr Thr Thr Thr Thr Thr	out check valve it throttle insert eck valve insert ottle Ø 1.2 mm ottle Ø 1.5 mm ottle Ø 1.8 mm ottle Ø 2.0 mm ottle Ø 2.2 mm
	_	•	= D								K4	= Sole	noid witho For	ut ma deta	al connection ating connector ils see chapter ical connection
										XN				ion oi	Non-sparking", n the explosion otection page 7
a W	-	•	= Y						N9 = no c		=				nanual override nanual override
P[1]								G24 =	-					Dire	ct voltage 24 V
0		Ava	ilable												
Component series 10 to 19 (10 to 19: Unchanged insta connection dimensions)		n and		: 1X											
Operating pressure up to 3	350 ba	ır		-	= 350										

= C

Solenoid, wet-pin

Included in the scope of delivery:

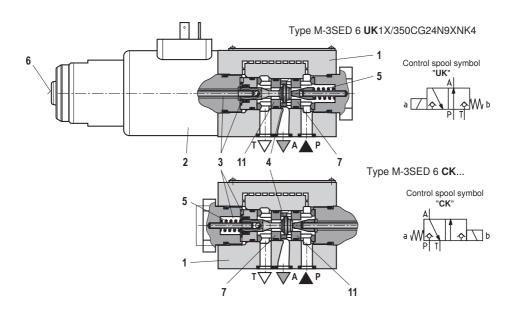
Valve operating instructions with declaration of conformity in part III

Function, section, control spool symbols: 3/2 directional seat valve

General:

The directional valve type M-.SED is a direct operated directional seat valve with solenoid actuation. It controls the start, stop and direction of flow and basically comprises a housing (1), the solenoid (2), the valve seats (7) and (11) and the control spool (4).

The manual override (6) allows for the switching of the valve without solenoid energization.


Basic principle:

The initial position of the valve (normally open "UK" or normally closed "CK") is determined by the arrangement of the spring (5). The chamber (3) behind the control spool (4) is connected to port P and sealed against port T. Thus, the valve is pressure-compensated in relation to the actuating forces (solenoid and spring).

By means of the control spool (4), the ports P, A and T can be loaded with the maximum operating pressure (350 bar) and the flow can be directed in both directions (see control spool symbols).

In the initial position, the control spool (4) is pressed onto the seat (11) by the spring (5), in spool position, it is pressed onto the seat (7) by the solenoid (2). The flow is blocked in a leak-free manner.

Seat valves can be used according to the control spool symbols and the related operating pressures and flows (see performance limits page 10).

Function, section, control spool symbols: 4/2 directional seat valve

233

With a sandwich plate, the **Plus-1 plate**, under the 3/2 directional seat valve, the function of a 4/2 directional seat valve is achieved.

Function of the Plus-1 plate:

Initial position:

The main valve is not operated. The spring (5) holds the control spool (4) on the seat (11). Port P is blocked and A connected to T. Apart from that, one control line is connected from A to the large area of the control spool (8), which is thus unloaded to the tank. The pressure applied via P now pushes the ball (9) onto the seat (10). Now, P is connected to B, and A to T.

Transition position:

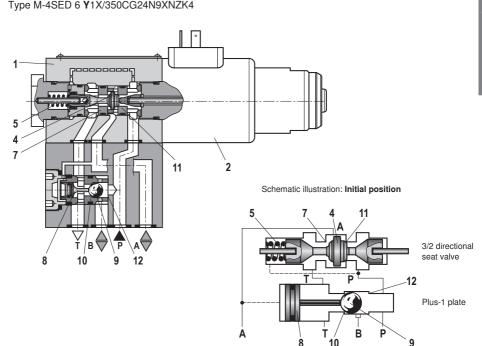
When the main valve is operated, the control spool (4) is shifted against the spring (5) and pressed onto the seat (7). During this, port T is blocked, P, A, and B are briefly connected to each other.

Spool position:

P is connected to A. As the pump pressure acts via A on the large area of the control spool (8), the ball (9) is pressed onto the seat (12). Thus, B is connected to T, and P to A. The ball (9) in the Plus-1 plate has a "positive spool overlap".

Important:

To prevent pressure intensification in conjunction with differential cylinders, the annulus area of the cylinder must be connected to A.


The use of the Plus-1 plate and the seat arrangement offer the following options:

Control spool symbol "D"

Control spool symbol "Y"

Function, section: Throttle insert, check valve insert

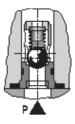
Throttle insert

The use of a throttle insert is required when due to prevailing operating conditions, flows can occur during the switching processes, which exceed the performance limit of the valve. Examples:

- Accumulator operation,
- Use as pilot control valve with internal pilot fluid tapping.

3/2 directional seat valve (see page 4) The throttle insert is inserted in port P of the seat valve.

4/2 directional seat valve (see page 5) The throttle insert is inserted in port P of the Plus-1 plate.



Check valve insert

The check valve insert allows free flow from P \rightarrow A and closes A \rightarrow P in a leak-free form.

3/2 directional seat valve (see page 4) The check valve insert is inserted in port P of the seat valve.

4/2 directional seat valve (see page 5) The check valve insert is inserted in port P of the Plus-1 plate.

Technical data

general			
Installation position	n		Any
Ambient temperatu	ure range	°C	-20 +50
Storage temperatu	ire range	°C	+15 +30
Admissible vibratio	on load		20 2000 Hz amplitude 0.05 g ² /Hz (10 g RMS)
Weight	3/2 directional seat valve	kg	2.2
	4/2 directional seat valve	kg	3.2
Surface protection			Galvanically coated

hydraulic

Maximum operating pressure bar	See table on page 10
Maximum flow I/min	25
Hydraulic fluid	Mineral oil (HL, HLP) according to DIN 51524 ¹); fast bio- degradable hydraulic fluids according to VDMA 24568 (see also data sheet 90221); HETG (rape seed oil) ¹); HEPG (polyglycols) ²); HEES (synthetic esters) ²); other hydraulic fluids on request, ignition temperature > 190 °C
Hydraulic fluid temperature range °C	-20 +80 (for NBR seals) 3)
	-15 +80 (for FKM seals) 3)
Viscosity range mm ² /s	2.8 500
Maximum admissible degree of contamination of the hydrau- lic fluid, cleanliness class according to ISO 4406 (c)	Class 20/18/15 4)

1) Suitable for NBR and FKM seals

2) Suitable only for FKM seals

³⁾ Observe the "Special conditions for safe use" on page 7.

⁴⁾ The cleanliness classes specified for the components must be adhered to in hydraulic systems. Effective filtration prevents faults and at the same time increases the life cycle of the components. For the selection of the filters see www.boschrexroth.com/filter.

Technical data

electric		
Voltage type		Direct voltage (DC)
Nominal voltage	V	24
Voltage tolerance	%	±10
Admissible residual ripple	%	< 5
Duty cycle / operating mode according to VDE 0580		100 % / S1 (continuous operation)
Switching times according to ISO 6403	ms	See table on page 8
Switching frequency	Hz	Max. 1
Nominal power at ambient temperature 20 °C	W	23
Maximum power with 1.1 x nominal voltage and ambient temperature 20 °C	W	28.8
Protection class according to EN 60529		IP 65 ¹⁾

235

¹⁾ If suitable mating connectors are used (protection class at least IP 65) and in case of appropriate assembly.

Information on the explosion protection

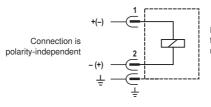
Area of application as per directive 94/9/EC		II 3G	II 3D		
Type of protection of the valve solenoid according to EN 60079-15:2010 / EN 60079-31:2009		Ex nA IIC T3 Gc	Ex tc IIIC T140°C Dc IP65		
Maximum surface temperature 1)	°C	140	140		
Type examination certificate Solenoid		BVS 12 AT	EX E 062 X		
Type of protection Valve		c (EN 134	63-5:2011)		
Special conditions for safe use		- Connection lines must be pa	ssed in a pull-relieved way.		
		 The valve is to be installed s can take effect. 	to that no impact stresses > 4 J		
		 In order to avoid dangers ca base and/or subplate on whi be electrically conductive an tial bonding. 	ch the valve is to be fitted must		
		 The valve solenoid must not be installed close to charge generating processes. 			
		- Dust layers with a thickness	> 50 mm are not admissible.		
		energized at a time, and in c +80 °C	s long as only one solenoid is		
		 The maximum temperature d is 110 °C. This has to be co connection cable and/or con with the casing surface is to 	nsidered when selecting the tact of the connection cable		
Ambient temperature range	°C	-20 +50			

Requirements on the mating connector

Temperature at the connector of the valve solenoid °C	≥ 100
Area of application as per directive 94/9/EC	II 3G; II 3D
Protection class in plugged condition	IP 65

¹⁾ Surface temperature > 50 °C, provide contact protection

Switching times (installation position: Solenoid horizontal)


Pressure <i>p</i> in bar	Flow $m{q}_{ee}$ in l/min	Switching times <i>t</i> in ms Control spool symbols UK, CK, D and Y					
			UK t	D D			
		UK	СК	D	Y	ск	Y
70	25	40	45	45	50	10	10
140	25	45	45	50	50	10	15
210	25	50	45	55	50	15	20
280	25	55	50	60	55	20	20
315	25	60	50	65	55	20	20
350	25	70	50	75	55	20	25

Electrical connection

The valves are equipped with a plug-in connector according to EN 175301-803, design A.

Information on the suitability of mating connectors is available on page 7.

Circuit diagram

For protection of the valve solenoids, suitable measures are to be taken which limit the switch-off overvoltages to a maximum of 500 V.

Over-current fuse and switch-off voltage peak

Important:

A fuse appropriate for the solenoid's rated current (max. 3 x I_{rated} according to DIN 41571 and/or IEC 60127) or a protective motor switch with short-circuit and thermal instantaneous tripping must be connected to each valve solenoid as short-circuit protection. The cut-off capacity of the fuse must match or exceed the short-circuit current of the supply source.

This fuse or protective motor switch may only be fitted outside the explosive area or must be of an explosion-proof design.

When an inductivity is switched off, a voltage peak results which may cause failures or damage in the connected control electronics.

Voltage data in the valve type code	Nominal voltage	Rated current	Recommended pre-fuse characteristics medium
	Valve solenoid	Valve solenoid	time-lag according to DIN EN 60127-1: 2011
G24	24 V DC	0.95 A DC	1 A

General information

Seat valves can be used according to the control spool symbols and the related operating pressures and flows (see performance limits below).

In order to guarantee safe functioning, the following points must imperatively be observed:

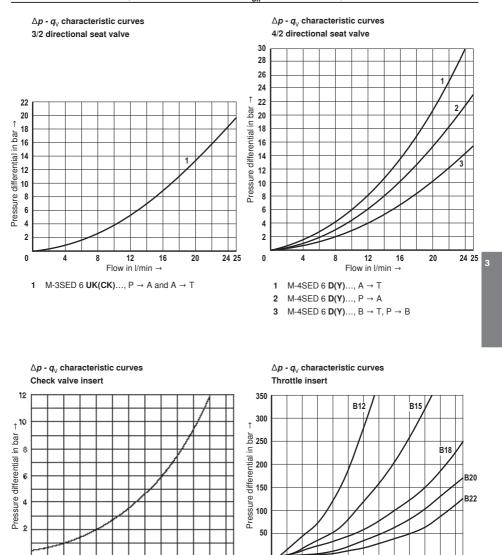
- Seat valves have negative spool overlap, i.e. leakage oil occurs during the switching process. This process takes, however, place within such a short time that it is irrelevant in nearly all applications.
- The specified maximum flow must not be exceeded (if necessary, use a throttle insert for the flow limitation).

Plus-1 plate:

- When the Plus-1 plate (4/2 directional function) is used, the following lower operating values are to be observed: $p_{min} = 8 \text{ bar}, q_V > 3 \text{ l/min}.$
- The ports P, A, B and T are clearly determined according to the tasks. They must not be exchanged or closed.
- · Port T must always be connected.
- · Pressure level and pressure distribution are to be observed.
- · The flow is only permitted in the direction of arrow.

		Control spool symbol	Comment	Oper	ating pr	essure i	n bar	Flow
				Р	Α	В	т	in l/min
2-way circuit	"UK"		With 2/2 way circuits,	350	350		350	25
2-way	"СК"		port P or T must be closed - by the customer!	350	350		350	25
3-way circuit	"UK"			350	350		350	25
3-way	"СК"			350	350		350	25
4-way circuit only possible in the ection of arrow)	"D"		3/2 directional valve (symbol "UK") in connec- tion with Plus-1 plate: $p_{\rm P} \ge p_{\rm A} \ge p_{\rm B} \ge p_{\rm T}$	350	350	350	P/A/B -40	25
4-way circuit (flow only possible in the direction of arrow)	"Y"		3/2 directional valve (symbol "CK") in connec- tion with Plus-1 plate: $p_{\rm P} \ge p_{\rm A} \ge p_{\rm B} \ge p_{\rm T}$	350	350	350	P/A/B -40	25

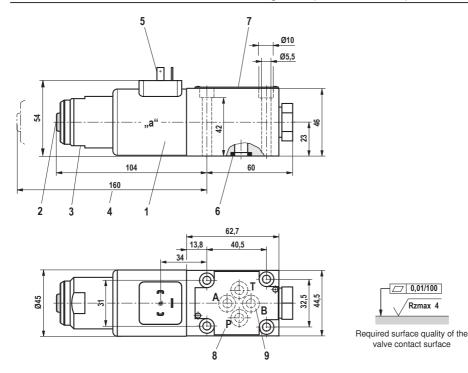
Performance limits (measured with HLP46, voil = 40 °C ± 5 °C)


Important

The switching power limits were established while the solenoids were at operating temperature, at 10 % undervoltage and without tank pre-loading.

Flow in I/min \rightarrow

24 25


Characteristic curves (measured with HLP46, $\vartheta_{oil} = 40 \text{ °C} \pm 5 \text{ °C}$)

24 25

Flow in I/min →

Device dimensions: 3/2 directional seat valve - design "UK" (dimensions in mm)

- 1 Solenoid coil
- 2 Manual override "N9"
- 3 Mounting nut with double edge SW32
- 4 Space required to remove the solenoid coil
- 5 Plug-in connector according to EN 175301-803, design A
 6 Identical seal rings for ports A, B, T Seal ring for port P
- 7 Name plate
- 8 Porting pattern according to DIN 24340-A6
- 9 Port B is designed as blind counterbore

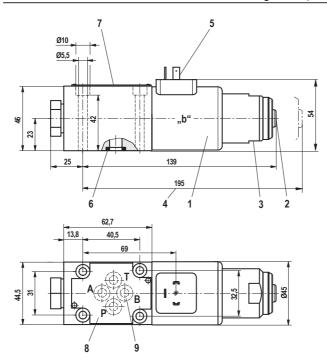
Valve mounting screws

For reasons of stability, exclusively use the following valve mounting screws:

4 hexagon socket head cap screws ISO 4762-M5x50-10.9-flZn-240h-L (friction coefficient 0.09 - 0.14 according to VDA 235-101) (must be ordered separately)

Subplates

G 341/01 FE/ZN (G 1/4) G 342/01 FE/ZN (G 3/8) G 502/01 FE/ZN (G 1/2)


with dimensions as in the data sheet 45052 (must be ordered separately)

Important:

Subplates are no components in the sense of directive 94/9/EC and can be used after the manufacturer of the overall system has assessed the risk of ignition.

The G...FE/ZN versions are free from aluminum and/or magnesium and galvanized.

Device dimensions: 3/2 directional seat valve - design "CK" (dimensions in mm)

Required surface quality of the valve contact surface

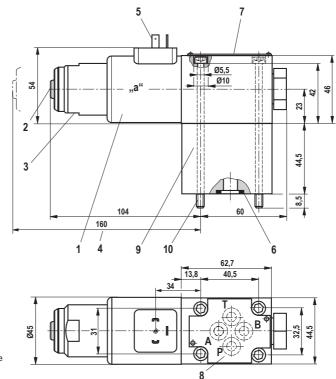
- 1 Solenoid coil
- 2 Manual override "N9"
- **3** Mounting nut with double edge SW32
- 4 Space required to remove the solenoid coil
- 5 Plug-in connector according to EN 175301-803, design A
- 6 Identical seal rings for ports A, B, T Seal ring for port P
- 7 Name plate
- 8 Porting pattern according to DIN 24340-A6
- 9 Port B is designed as blind counterbore

Valve mounting screws

For reasons of stability, exclusively use the following valve mounting screws:

4 hexagon socket head cap screws ISO 4762-M5x50-10.9-flZn-240h-L (friction coefficient 0.09 - 0.14 according to VDA 235-101) (must be ordered separately)

Subplates


G 341/01 FE/ZN (G 1/4) G 342/01 FE/ZN (G 3/8) G 502/01 FE/ZN (G 1/2)

with dimensions as in the data sheet 45052 (must be ordered separately)

Important:

Subplates are no components in the sense of directive 94/9/EC and can be used after the manufacturer of the overall system has assessed the risk of ignition.

The G...FE/ZN versions are free from aluminum and/or magnesium and galvanized.

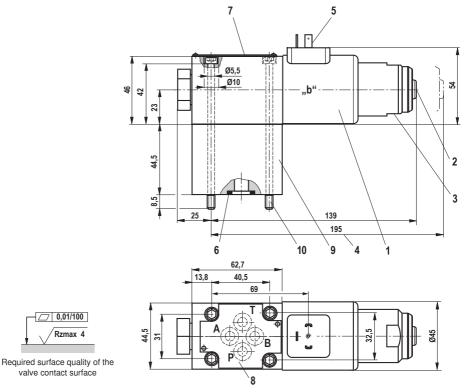
Device dimensions: 4/2 directional seat valve - design "D" (dimensions in mm)

Required surface quality of the valve contact surface

- 1 Solenoid coil
- 2 Manual override "N9"
- 3 Mounting nut with double edge SW 32
- 4 Space required to remove the solenoid coil
- 5 Plug-in connector according to EN 175301-803, design A
- 6 Identical seal rings for ports A, B, T Seal ring for port P
- 7 Name plate
- 8 Porting pattern according to DIN 24340-A6
- 9 Plus-1 plate
- 10 Valve mounting screws For reasons of stability, exclusively use the following valve mounting screws:

4 hexagon socket head cap screws ISO 4762-M5x95-10.9-fIZn-240h-L (friction coefficient 0.09 - 0.14 according to VDA 235-101) (included in the scope of delivery)

Subplates


G 341/01 FE/ZN (G 1/4) G 342/01 FE/ZN (G 3/8) G 502/01 FE/ZN (G 1/2)

with dimensions as in the data sheet 45052 (must be ordered separately)

Important:

Subplates are no components in the sense of directive 94/9/EC and can be used after the manufacturer of the overall system has assessed the risk of ignition.

The G...FE/ZN versions are free from aluminum and/or magnesium and galvanized.

Device dimensions: 4/2 directional seat valve - design "Y" (dimensions in mm)

- valve contact surface
 - 1 Solenoid coil
- 2 Manual override "N9"
- 3 Mounting nut with double edge SW 32
- 4 Space required to remove the solenoid coil
- 5 Plug-in connector according to EN 175301-803, design A
- 6 Identical seal rings for ports A, B, T Seal ring for port P
- 7 Name plate
- 8 Porting pattern according to DIN 24340-A6
- 9 Plus-1 plate
- 10 Valve mounting screws For reasons of stability, exclusively use the following valve mounting screws: 4 hexagon socket head cap screws ISO 4762-M5x95-10.9-flZn-240h-L (friction coefficient 0.09 - 0.14 according to VDA 235-101) (included in the scope of delivery)

Subplates

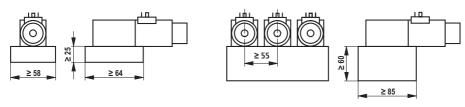
G 341/01 FE/ZN (G 1/4) G 342/01 FE/ZN (G 3/8) G 502/01 FE/ZN (G 1/2)

with dimensions as in the data sheet 45052 (must be ordered separately)

Important:

Subplates are no components in the sense of directive 94/9/EC and can be used after the manufacturer of the overall system has assessed the risk of ignition.

The G...FE/ZN versions are free from aluminum and/or magnesium and galvanized.


Installation conditions (dimensions in mm)

	Individual assembly	Bank assembly			
Subplate dimensions	Minimum dimensions	Minimum cross-section			
	Length \ge 64, width \ge 58, height \ge 25	Height \ge 60, width \ge 85			
Thermal conductivity of the subplate	≥ 38 W/mK (EN-GJS-500-7)				
Minimum distance between the longitu- dinal valve axes	≥ 55 mm				

Schematic diagram

Individual assembly

Important:

With regard to the hydraulic fluid temperature, observe the "Special conditions for safe use" on page 7.

Bosch Rexroth AG Hydraulics Zum Eisengießer 1 97816 Lohr am Main, Germany Phone +49 (0) 93 52 / 18-0 documentation@boschrexroth.de www.boschrexroth.de © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging. Hydraulics

Pneumatics

Service

Rexroth Bosch Group

1/14

2/2, 3/2 and 4/2 directional seat valves with solenoid actuation

Type M-.SEW 6...XE...

Size 6 Component series 3X Maximum operating pressure 420 bar Maximum flow 25 I/min

> ATEX units For explosive areas

Part II Data sheet

Information on the explosion protection:

- Area of application in accordance with the Explosion Protection Directive 94/9/EC: II 2G
- Type of protection of the valve solenoid: Ex e mb IIC T4 Gb according to EN 60079-7: 2007 / EN 60079-18: 2009

What you need to know about these operating instructions

These operating instructions apply to the explosion-proof version of Rexroth valves and consist of the following three parts:

- Part I General information 07010-X-B1
- Part II Data sheet 22058-XE-B2
- Part III Product-specific instructions 22058-XE-B3

Operating instructions 22058-XE-B0

You can find further information on the correct handling of Rexroth hydraulic products in our publication "General product information on hydraulic products" 07008.

RE 22058-XE-B2/09.13 Replaces: 01.10

Actual product may differ

245

Table of contents

Contents	Page
Features	2
Ordering code and scope of delivery	3
Function, section, control spool symbols	4
Technical data	6
Information on the explosion protection	7
Switching times	7
Electrical connection	8
General information	10
Performance limits	10
Characteristic curves	11
Dimensions	12
Installation conditions	14

Features

- Direct operated directional seat valve with solenoid actuation for proper use in explosive atmospheres
- Porting pattern according to DIN 24340-A6, without locating hole
- Subplates available in FE/ZN version (see pages 12/13)
- Blocked port is tight
- Safe switching also with longer standstill periods under pressure
- Air-gap DC and AC solenoids
- Solenoid coil can be rotated by 90°
- Electrical connection as individual connection with cable gland
- With concealed manual override, optional

3

Ordering code and scope of delivery

					_			1/201			<u> </u>	_		_ 1	_	- 1/			٦				
	M		SE	w	6		3X/	/420	ונ	М				E	Z	2/	-						
2 main ports 3 main ports 4 main ports Seat valve Size 6	= 2 = 3 = 4	3		= 6	6													1.	no V =	Ot	serve	FKI Imp comp with hy	R seals M seals ortant: patibility draulic
Main ports		2	3	4													no		de	_	,	-	d used! t check
Control spool symbols	Мр	•	_	_	=	P											P			w	ithout 1 chea	valve throttl k valv	e insert, e insert e insert 0.8 mm
]\\\b	•	-	-	=	N											B1 B1 B2	2 = 5 = 8 = 0 = 2 =			Thro Thro Thro	ttle Ø ttle Ø ttle Ø	1.2 mm 1.5 mm 1.8 mm 2.0 mm 2.2 mm
A	_																L			Ele	ctrica	l con	nection
a a b P T	УМР	-	•	-	= 1	J										Z2 :	=			For	an detai	d cable s see	nal box e gland, chapter
	Мр	_	•	-	=									x	E =					E	xplos	ion pro	nection otection safety",
	7				=									fo	or d	etail	s, se	e in	forr	matio	on on	the ex	plosion page 7
	₩ь	_	-		=								N9 = no c		e =		W	ith c					override override
	Мр	-	-	•	=	Y							0 R =	or	der	ing c				age	W 23	0 V, 5	ge 24 V)/60 Hz page 9
• = available																							
Component series 30 to 39 = 3X (30 to 39: Unchanged installation and connection dimensions)																							
Operating pressure up to 420 bar = 420																							

= M

Included in the scope of delivery:

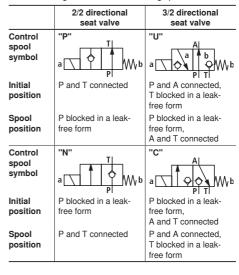
Solenoid (air-gap)

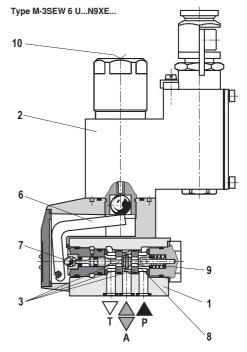
Valve operating instructions with declaration of conformity in Part III $% \left({{\left| {{{\rm{B}}} \right|} \right|_{{\rm{B}}}} \right)$

Function, section, control spool symbols: 2/2, 3/2 directional seat valve

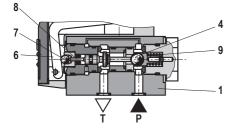
General:

The directional valve type M-.SEW...XE... is a directional seat valve with solenoid actuation. It controls the start, stop and direction of flow.


It basically comprises a housing (1), the solenoid (2), the hardened valve system (3) and the control spool (8).


Basic principle:

In the initial position, the control spool (8) is pressed onto the seat by the spring (9) and in spool position by the solenoid (2). The force of the solenoid (2) acts via the angled lever (6) and the ball (7) on the control spool (8) that is sealed on two sides. The chamber between the two sealing elements is connected to port P. Thus, the valve system (3) is pressurecompensated in relation to the actuating forces (solenoid or retum spring).


Important:

- The 3/2 directional seat valves have a "negative spool overlap". Therefore, port T must always be connected. That means that during the switching process – from the starting of the opening of one valve seat to the closing of the other valve seat – ports P–A–T are connected with each other. This process takes, however, place within such a short time that it is irrelevant in nearly all applications.
- The manual override (10) allows for the switching of the valve without solenoid energization.
- It has to be made sure that the specified maximum flow is not exceeded! A throttle insert must be used for limiting the flow, if necessary (see page 6).

Type M-2SEW 6 N...XE...

The seat arrangement offers the following options:

248

Function, section, control spool symbols: 4/2 directional seat valve

With a sandwich plate, the **Plus-1 plate**, under the 3/2 directional seat valve, the function of a 4/2 directional seat valve is achieved.

Function of the Plus-1 plate:

Initial position:

The main valve is not operated. The spring (9) holds the ball (4) on the seat (11). Port P is blocked and A is connected to T. Apart from that, one control line is connected from A to the large area of the control spool (12), which is thus unloaded to the tank. The pressure applied via P now pushes the ball (13) onto the seat (14). Now, P is connected to B, and A to T.

Transition position:

When the main valve is operated, the control spool (8) is shifted against the spring (9) and pressed onto the seat (15). During this, port T is blocked, P, A, and B are briefly connected to each other.

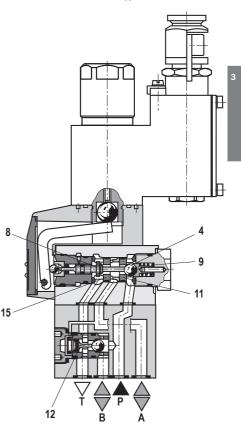
Spool position:

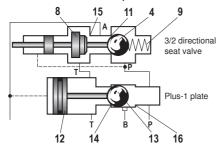
P is connected to A. As the pump pressure acts via A on the large area of the control spool (12), the ball (13) is pressed onto the seat (16). Thus, B is connected to T, and P to A. The ball (13) in the Plus-1 plate has a "positive spool overlap".

Important:

To prevent pressure intensification in conjunction with differential cylinders, the annulus area of the cylinder must be connected to A.

The use of the Plus-1 plate and the seat arrangement offer the following options:


Control spool symbol "D":


Control spool symbol "Y":

Type M-4SEW 6 Y...N9XE...

Schematic illustration: Initial position

Function, section: Throttle insert, check valve insert

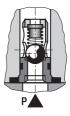
Throttle insert

The use of a throttle insert is required when due to prevailing operating conditions, flows can occur during the switching processes, which exceed the performance limit of the valve. Examples:

- Accumulator operation,
- Use as pilot control valve with internal pilot fluid tapping.

3/2 directional seat valve (see page 4) The throttle insert is inserted in port P of the seat valve.

4/2 directional seat valve (see page 5) The throttle insert is inserted in port P of the Plus-1 plate.



Check valve insert

The check valve insert allows a free flow from P to A and closes A to P in a leak-free form.

3/2 directional seat valve (see page 4) The check valve insert is inserted in port P of the seat valve.

4/2 directional seat valve (see page 5) The check valve insert is inserted in port P of the Plus-1 plate.

Technical data

general

J								
Installation p	osition	Any						
Ambient temperature range °C			-20 +70 ¹⁾					
Storage temp	perature range	°C	-20 +50					
Admissible vibration load			20 2000 Hz amplitude 0.05 g ² /Hz (10 g RMS)					
Weight	2/2 and 3/2 directional seat valve	kg	3.2					
	4/2 directional seat valve	kg	4.1					
Surface protection			Galvanic coating					

hydraulic

Maximum operating pressure bar	See table on page 10						
Maximum flow I/min	25						
Hydraulic fluid	Mineral oil (HL, HLP) according to DIN 51524 ²⁾ ; fast bio-de- gradable hydraulic fluids according to VDMA 24568 (see also RE 90221); HETG (rape seed oil) ²⁾ ; HEPG (polyglycols) ³⁾ ; HEES (synthetic esters) ³ ; flame-resistant hydraulic fluid HFC according to ISO 12922 ⁴⁾ Other hydraulic fluids upon request Ignition temperature > 180 °C						
Hydraulic fluid temperature range °C	-20 +80 (NBR seals)						
	-15 +80 (FKM seals)						
Viscosity range mm ² /s	2.8 500						
Maximum admissible degree of contamination of the hydrau- lic fluid, cleanliness class according to ISO 4406 (c)	Class 20/18/15 5)						

¹⁾ Observe the "Special conditions for safe use" on page 7.

2) Suitable for NBR and FKM seals

3) Suitable only for FKM seals

 $^{4)}$ Only in connection with NBR seals, max. admissible pressure 210 bar, Δp < 15 bar, hydraulic fluid temperature max. 60 °C

More information is available from our sales staff.

⁵⁾ The cleanliness classes specified for the components must be adhered to in hydraulic systems. Effective filtration prevents faults and at the same time increases the life cycle of the components. For the selection of the filters see www.boschrexroth.com/filter.

Technical data

electric							
Voltage type		Direct voltage	Alternating voltage 50/60 Hz				
Available voltages	V	24, 48, 96, 110	110, 230				
Voltage tolerance (nominal voltage)	%	-5 /	+10				
Admissible residual ripple	< 5	-					
Duty cycle/operating mode according to VDE 0580		100 % / S1 (continuous operation)					
Switching time according to ISO 6403		See table below					
Switching frequency	1/h	up to 15000 up to 7200					
Nominal power at ambient temperature 20 °C	W	1	7				
Maximum power with 1.1 x nominal voltage and ambient temperature 20 °C	W	20.6					
Protection class according to EN 60529		IP 66 ¹⁾					

1) If the electrical connection is correctly installed

Information on the explosion protection

Area of application as per directive 94/9/	EC	II 2G					
Type of protection Valve		c (EN 13463-5:2011)					
Maximum surface temperature ¹⁾ Temperature class	°C	135 T4					
Type of protection Valve solenoid accord EN 60079-7:2007 / EN 60079-18:2009	ling to	Ex e mb IIC T4 Gb					
Type examination certificate Solenoid		KEMA 02ATEX2240 X					
"IECEx Certificate of Conformity" Soleno	id	IECEx DEK 12.0068X					
Ambient temperature range	°C	-20 +70 ²⁾					
Special conditions for safe use	 Maximum ambient temperature: In case of bank assembly, as long as only one solenoid is energized at a time, and in case of individual assembly: +70 °C In case of bank assembly when more than one solenoid is energized at a time: +60 °C The maximum temperature of the valve casing surface is 120 °C. This has to be considered when selecting the connection cable and contact of the connection cable with the casing surface is to be prevented. 						

¹⁾ Surface temperature > 50 °C, provide contact protection

²⁾ Observe the "Special conditions for safe use".

		DC solenoid						AC solenoid								
		С	ontrol s	pool sy	mbols l	J, C, D,	Y		Control spool symbols U, C, D, Y							
Pres-		t _{on} t _{off}					t _{on} t _{off}									
sure p	Flow q _v	without tank pressure		U	D	wit	hout tar	k press	ure							
in bar	in l/min	U	С	D	Y	С	Y	U	С	D	Y	U	С	D	Y	
70	25	30	40	30	40	15	15	25	40	25	40	45	65	45	65	
140	25	30	50	30	50	15	15	25	40	25	40	65	65	65	65	
280	25	35	60	35	60	15	15	25	45	25	45	75	65	75	65	
320	25	40	70	40	70	15	15	25	45	25	45	80	65	80	65	
420	25	45	70	45	70	15	15	30	45	30	45	100	65	100	65	

Switching times t in ms (Installation position: Solenoid horizontal)

Electrical connection

The type-examination tested valve solenoid of the valve is equipped with a terminal box and a type-tested cable gland. The connection is polarity-independent.

Solenoids to be connected to AC voltage are equipped with an integrated rectifier.

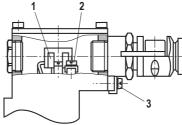
3

Properties of the connection terminals

When establishing the electrical connection, the protective earthing conductor (PE \pm) has to be connected properly.

Position	Function	Connectable line cross-section
1	Operating voltage connection	Single-wire 0.75 2.5 mm ²
		Finely stranded 0.75 1.5 mm ²
2	Connection for protective earthing conductor	Single-wire max. 2.5 mm ²
		Finely stranded max. 1.5 mm ²
3	Connection for potential equalization conductor	Single-wire 4 6 mm ²
		Finely stranded 4 mm ²

Cable gland


Important

Type approval	II 2G Ex e IIC Gb
Threaded connection	M20 x 1.5
Protection class according to EN 60529	IP66 ¹⁾
Line diameter mm	911
Sealing	Outer sheath sealing

Connection line

Line type	Non-armored cables and lines (outer sheath sealing)
Temperature range °C	-30 > +110

1) If installed properly

Hydraulics | Bosch Rexroth AG 9/14

Electrical connection

Circuit diagrams

Over-current fuse and switch-off voltage peaks

Important:

Corresponding to the rated current, a fuse according to DIN 41571 and EN / IEC 60127 has to be connected ahead of every valve solenoid (max. $3 \times I_{rated}$).

The shut-off threshold of the fuse has to match the prospective short-circuit current of the supply source.

The prospective short-circuit current of the supply source may amount to a maximum of 1500 A.

This fuse may only be installed outside the explosive area or must be of an explosion-proof design.

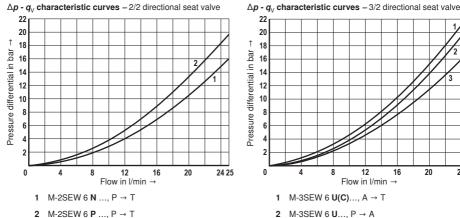
When inductivities are switched off, voltage peaks are the result which may cause faults in the connected control electronics. For this reason, the valve solenoids comprise an interference protection circuit which dampens this voltage peak to the voltage value shown in the table.

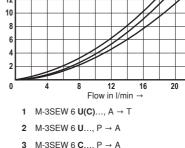
Interference protection circuit	Maximum voltage value upon switch-off	Rated voltage of exter- nal miniature fuse: Medium time-lag (M) according to DIN 41571 and EN/IEC 60127	Rated current external miniature fuse: Medium time-lag (M) according to DIN 41571 and EN/IEC 60127	Rated cur- rent valve solenoid	Nominal volt- age valve solenoid	Voltage data in the valve type code
	–90 V	250 V	800 mA	0.708 A DC	24 V DC	G24
Suppressor	–200 V	250 V	400 mA	0.354 A DC	48 V DC	G48
diode bi-directional	–370 V	250 V	200 mA	6 96 V DC 0.177 A DC 200		G96
	–390 V	250 V	200 mA	0.155 A DC	110 V DC	G110
Bridge recti-	–3 V	250 V	200 mA	0.163 A AC	110 V AC	W110R
fier and sup- pressor diode	–3 V	250 V	80 mA	W230R 230 V AC 0.078 A AC		

General information

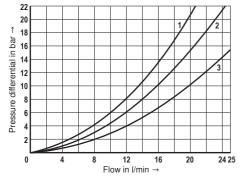
- In order to switch the valve safely or maintain it in its spool position, the pressure situation must be as follows:
 P ≥ A ≥ T (for design reasons).
- The ports P, A and T (3/2 directional seat valve) as well as P, A, B and T (4/2 directional seat valve) are clearly determined according to their tasks. They must not be exchanged or closed. The flow is only permitted in the direction of the arrow.
- When the Plus-1 plate (4/2 directional function) is used, the following minimum operating values have to be observed: $p_{\rm min}$ = 8 bar; $q_{\rm V}$ > 3 l/min.
- The specified maximum flow must not be exceeded (if necessary, use a throttle insert for flow limitation)!

				Oper	Flow			
	Control spool symbol		Comment	P A		в	т	in l/min
2-way circuit	"P"		Pressure at P ≥ T	420			100	25
2-way	"N"		riessure at r 2 i	420			100	25
circuit	"U"		Pressure at P ≥ A ≥ T	420	420		100	25
3-way circuit	"C"		Pressure at $P \ge A \ge 1$	420	420		100	25
2-way circuit (only for unloading)	"U"		Before switching from the initial position to the spool position, pressure must be applied to port A. Pressure at $A \ge T$		420		100	25
2-wa) (only for	"C"		Pressure at A ≥ T		420		100	25
4-way circuit <i>w</i> only possible in direction of arrow)	"D"		Valve (symbol "U") in connection with Plus-1 plate $P > A \ge B > T$	420	420	420	100	25
4-way circuit (flow only possible in the direction of arrow)	"Y"		Valve (symbol "C") in connection with Plus-1 plate $P > A \ge B > T$	420	420	420	100	25

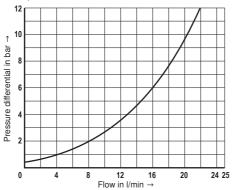

Performance limits (measured with HLP46, $\vartheta_{oil} = 40 \text{ °C} \pm 5 \text{ °C}$)


Important

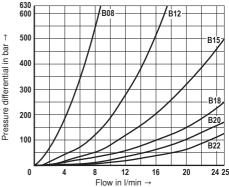
The switching power limits were established while the solenoids were at operating temperature, at 10 % undervoltage and without tank preloading.


Characteristic curves (measured with HLP46, $\vartheta_{oil} = 40 \text{ °C} \pm 5 \text{ °C}$)

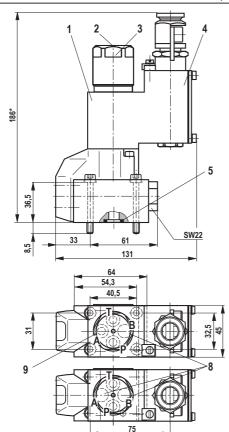
255



 $\Delta p - q_v$ characteristic curves – 4/2 directional seat valve



1 M-4SEW 6 D(Y)..., A → T

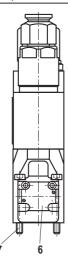

- 2 M-4SEW 6 D(Y)..., P → A
- 3 M-4SEW 6 D(Y)..., P → B, B → T



24 25

3

Dimensions: 2/2 and 3/2 directional seat valve (dimensions in mm)


- 1 Solenoid coil
- 2 Concealed manual override "N9"
- 3 Mounting nut with hexagon SW32
- 4 Terminal box
- 5 Identical seal rings for ports A, B, and T, seal ring for port P
- 6 Name plate

7 Valve mounting screws

For reasons of stability, exclusively use the following valve mounting screws:

4 hexagon socket head cap screws ISO 4762 M5x45-10.9-flZn-240h-L

(friction coefficient 0.09 - 0.14 according to VDA 235-101) (included in the scope of delivery)

Required surface quality of the valve contact surface

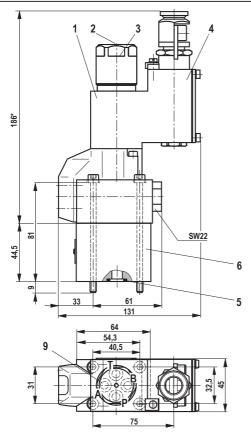
8 Important

With 3/2 directional seat valves, port B is available as blind counterbore. With 2/2 directional seat valves, ports A and B are

available as blind counterbores.

9 Porting pattern according to DIN 24340-A6

Subplates


G 341/01 FE/ZN (G1/4) G 342/01 FE/ZN (G3/8) G 502/01 FE/ZN (G1/2)

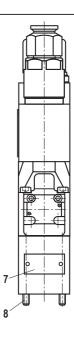
with dimensions as in the data sheet 45052 (must be ordered separately)

Important:

Subplates are no components in the sense of directive 94/9/EC and can be used after the manufacturer of the overall system has assessed the risk of ignition.

The $G\ldots FE/ZN$ versions are free from aluminum and/or magnesium and galvanized.

Dimensions: 4/2 directional seat valve (dimensions in mm)


* Plus 80 mm for detaching the solenoid coil

- 1 Solenoid coil
- 2 Concealed manual override "N9"
- 3 Mounting nut with hexagon SW32
- 4 Terminal box
- 5 Identical seal rings for ports A, B, and T, seal ring for port P
- 6 Plus-1 plate
- 7 Name plate
- 8 Valve mounting screws

For reasons of stability, exclusively use the following valve mounting screws:

4 hexagon socket head cap screws ISO 4762 M5x90-10.9-ftZn-240h-L (friction coefficient 0.09 - 0.14 according to VDA 235-101) (included in the scope of delivery)

9 Porting pattern according to DIN 24340-A6

Required surface quality of the valve contact surface

Subplates

G 341/01 FE/ZN (G1/4) G 342/01 FE/ZN (G3/8) G 502/01 FE/ZN (G1/2)

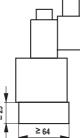
with dimensions as in the data sheet 45052 (must be ordered separately)

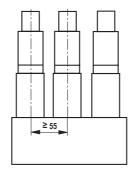
Important:

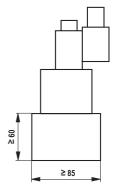
Subplates are no components in the sense of directive 94/9/EC and can be used after the manufacturer of the overall system has assessed the risk of ignition.

The G...FE/ZN versions are free from aluminum and/or magnesium and galvanized.

Installation conditions (dimensions in mm)


	Individual assembly	Bank assembly				
Subplate dimensions	Minimum dimensions Length ≥ 64, width ≥ 58, height ≥ 25	Minimum cross-section Height \ge 60, width \ge 85				
Thermal conductivity of the subplate	≥ 38 W/mK (E	N-GJS-500-7)				
Minimum distance between the longitudi- nal valve axes	≥ 55 mm					


Schematic diagram


Individual assembly

Bank assembly

Important:

Observe the "Special conditions for safe use" on page 7.

Bosch Rexroth AG Hydraulics Zum Eisengießer 1 97816 Lohr am Main, Germany Phone +49 (0) 93 52 / 18-0 documentation@boschrexroth.de www.boschrexroth.de © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Electric Drives and Controls

Hydraulics

Pneumatics

259

Service

Rexroth Bosch Group

1/14

3/2 and 4/2 directional seat valves with solenoid actuation

RE 22075-XE-B2/09.13 Replaces: 01.10

Type M-.SEW 10...XE...

Size 10 Component series 1X Maximum operating pressure 420 bar Maximum flow 40 l/min

> ATEX units For explosive areas

Part II Data sheet

Information on the explosion protection:

- Area of application in accordance with the Explosion Protection Directive 94/9/EC: II 2G
- Type of protection of the valve solenoid: Ex e mb IIC T4 Gb according to EN 60079-7: 2007 / EN 60079-18: 2009

What you need to know about these operating instructions

These operating instructions apply to the explosion-proof version of Rexroth valves and consist of the following three parts:

Part I General information 07010-X-B1

Part II Data sheet 22075-XE-B2

Part III Product-specific instructions 22075-XE-B3

Operating instructions 22075-XE-B0

You can find further information on the correct handling of Rexroth hydraulic products in our publication "General product information on hydraulic products" 07008.

H7096 Actual product may differ

Table of contents

Features	2
Ordering code and scope of delivery	3
Function, section, control spool symbols: 3/2 directional seat valve	4
	•
Throttle insert	4
Check valve insert	4
Function, section, control spool symbols:	
4/2 directional seat valve	5
Technical data	6
Information on the explosion protection	7
Switching times t in ms	7
Electrical connection	8
Electrical connection	9
General information	10
Performance limits	10
Characteristic curves	11
Dimensions: 3/2 directional seat valve	12
Dimensions: 4/2 directional seat valve	13
Installation conditions	14

Features

- Direct operated directional seat valve with solenoid actuation for proper use in explosive atmospheres
- Porting pattern according to DIN 24340-A10 and ISO 4401-05-04-0-05
- Subplates available in FE/ZN version (see pages 12/13)
- Blocked port is tight
- Safe switching also with longer standstill periods under pressure
- Air-gap DC and AC solenoids
- Solenoid coil can be rotated by 90°
- Electrical connection as individual connection with cable gland
- With concealed manual override, optional

Ordering code and scope of delivery

M	s	EW	10	1	X/42	0	М			X	E	Z2	/		
3 main ports = 4 main ports =	-										·			no code = V =	NBR seals FKM seals Important:
Seat valve Size 10 Main ports	3	=	10												compatibility with hydraulic fluid used!
Control spool symbols														no code = V	Vithout check valve insert.
	•	_	= L	1										P = With chec B12 = Throt	throttle insert k valve insert ttle $Ø$ 1.2 mm ttle $Ø$ 1.5 mm
		_	= 0	;										B18 = Throt B20 = Throt	ttle Ø 1.5 mm ttle Ø 1.8 mm ttle Ø 2.0 mm ttle Ø 2.2 mm
	-	•	= 0	•								:	Z2 =	Solenoid with and for details	I connection terminal box cable gland, s see chapter al connection
	-	•	=)	,							XE	=		Explosi "incre	on protection ased safety",
• = available												for details, see in the explosion prote			
(10 to 19: Unchanged ins	Component series 10 to 19 = 1X (10 to 19: Unchanged installation and								N9 = no c	ode	=		With concealed ma		
connection dimensions) Operating pressure up to	420 ba	r			_ = 420				24 =						voltage 24 V
Solenoid (air-gap)	420 08	u			= 420	= N	Λ	W	230	R =				AC voltage W 230 For further or for other voltages	dering codes

Included in the scope of delivery:

Valve operating instructions with declaration of conformity in Part III

Function, section, control spool symbols: 3/2 directional seat valve

General:

The directional valve type M-.SEW...XE is a directional seat valve with solenoid actuation. It controls the start, stop and direction of flow.

It basically comprises a housing (1), the solenoid (2), the hardened valve system (3) and the control spool (8).

Basic principle:

In the initial position, the control spool (8) is pressed onto the seat by the spring (9) and in spool position by the solenoid (2). The force of the solenoid (2) acts via the angled lever (6) and the ball (7) on the control spool (8) that is sealed on two sides. The chamber between the two sealing elements is connected to port P. Thus, the valve system (3) is pressure-compensated in relation to the actuating forces (solenoid or return spring).

Important:

- · The 3/2 directional seat valves have a "negative spool overlap". Therefore, port T must always be connected. That means that during the switching process - from the starting of the opening of one valve seat to the closing of the other valve seat - ports P-A-T are connected with each other. This process takes, however, place within such a short time that it is irrelevant in nearly all applications.
- · The manual override (10) allows for the switching of the valve without solenoid energization.
- · Make sure that the specified maximum flow is not exceeded. Use a throttle insert for flow limitation, if necessary (see below).

The seat arrangement offers the following options:

Control spool symbol "U": Control spool symbol "C": Type M-3SEW 10 U...N9XE. 10 2 6 9 8

Throttle insert

The use of a throttle insert is required when due to prevailing operating conditions, flows can occur during the switching processes, which exceed the performance limit of the valve. Examples:

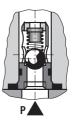
- Accumulator operation,

- Use as pilot control valve with internal pilot fluid tapping.

3/2 directional seat valve

The throttle insert is inserted in port P of the seat valve.

4/2 directional seat valve (see page 5) The throttle insert is inserted in port P of the Plus-1 plate.


Check valve insert

The check valve insert allows free flow from P to A and closes A to P in a leak-free way.

3/2 directional seat valve

The check valve insert is inserted in port P of the seat valve.

4/2 directional seat valve (see page 5) The check valve insert is inserted in port P of the Plus-1 plate.

With a sandwich plate, the **Plus-1 plate**, under the 3/2 directional seat valve, the function of a 4/2 directional seat valve is achieved.

Function of the Plus-1 plate:

Initial position:

The main valve is not operated. The spring (9) holds the ball (4) on the seat (11). Port P is blocked and A connected to T. Apart from that, one control line is connected from A to the large area of the control spool (12), which is thus unloaded to the tank. The pressure applied via P now pushes the ball (13) onto the seat (14). Now, P is connected to B, and A to T.

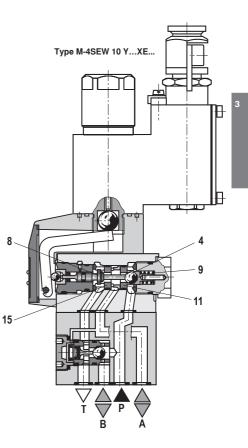
Transition position:

When the main valve is operated, the control spool (8) is shifted against the spring (9) and pressed onto the seat (15). During this, port T is blocked, P, A, and B are briefly connected to each other.

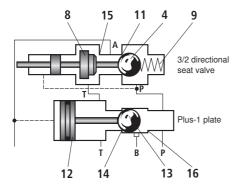
Spool position:

P is connected to A. As the pump pressure acts via A on the large area of the control spool (12), the ball (13) is pressed onto the seat (16). Thus, B is connected to T, and P to A. The ball (13) in the Plus-1 plate has a "positive spool overlap".

Important:


To prevent pressure intensification in conjunction with differential cylinders, the annulus area of the cylinder must be connected to A.

The use of the Plus-1 plate and the seat arrangement offer the following options:


Control spool symbol "D":

AB

Control spool symbol "Y":

Schematic illustration: Initial position

Technical data

general			
Installation position			Any
Ambient temperature range °C		°C	-20 +70 ¹⁾
Storage temperature range °C			-20 +50
Admissible vibratio	on load		20 2000 Hz amplitude 0.05 g ² /Hz (10 g RMS)
Weight	3/2 directional seat valve	kg	3.8
	4/2 directional seat valve	kg	5.3
Surface protection	1		Galvanized coating

hydraulic

Maximum operating pressure	bar	See table on page 10						
Maximum flow	l/min	40						
Hydraulic fluid		Mineral oil (HL, HLP) according to DIN 51524 ²⁾ ; fast bio- degradable hydraulic fluids according to VDMA 24568 (see also RE 90221); HETG (rape seed oil) ²⁾ ; HEPG (polyglycols) ³⁾ ; HEES (synthetic esters) ³⁾ ; flame-resistant hydraulic fluid HFC according to ISO 12922 ⁴⁾ Other hydraulic fluids upon request Ignition temperature > 180 °C						
Hydraulic fluid temperature range	°C	-20 +80 (NBR seals)						
		-15 +80 (FKM seals)						
Viscosity range	mm²/s	2.8 500						
Maximum admissible degree of contamination lic fluid, cleanliness class according to ISO 440		Class 20/18/15 5)						

electric

Voltage type		Direct voltage	Alternating voltage 50/60 Hz					
Available voltages	V	24, 48, 96, 110	110, 230					
Voltage tolerance (nominal voltage)	%	-5	/ +10					
Admissible residual ripple	%	< 5	-					
Duty cycle/operating mode according to VDE 0580		100 % / S1 (continuous operation)						
Switching time according to ISO 6403		See table page 7						
Switching frequency	1/h	up to 15000	up to 7200					
Nominal power at ambient temperature 20 °C	W		17					
Maximum power with 1.1 x nominal voltage and ambient temperature 20 °C	w	20.6						
Protection class according to EN 60529		IP 66 ⁶⁾						

¹⁾ Observe the "Special conditions for safe use" on page 7.

2) Suitable for NBR and FKM seals

3) Suitable only for FKM seals

 $^{4)}$ Only in connection with NBR seals, max. admissible pressure 210 bar, Δp < 15 bar, hydraulic fluid temperature max. 60 °C

More information is available from our sales staff.

- ⁵⁾ The cleanliness classes specified for the components must be adhered to in hydraulic systems. Effective filtration prevents faults and at the same time increases the life cycle of the components. For the selection of the filters see www.boschrexroth.com/filter.
- 6) If the electrical connection is correctly installed.

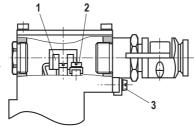
Information on the explosion protection

Area of application as per directive 94/9/EC	II 2G
Type of protection Valve	c (EN 13463-5:2011)
Maximum surface temperature ¹⁾ °C Temperature class	135 T4
Type of protection Valve solenoid according to EN 60079-7:2007 / EN 60079-18:2009	Ex e mb IIC T4 Gb
Type examination certificate Solenoid	KEMA 02ATEX2240 X
"IECEx Certificate of Conformity" Solenoid	IECEx DEK 12.0068X
Ambient temperature range °C	-20 +70 ²⁾
Special conditions for safe use	 Maximum ambient temperature: In case of bank assembly, as long as only one solenoid is energized at a time, and in case of individual assem- bly: +70 °C In case of bank assembly when more than one solenoid is energized at a time: +60 °C
	 The maximum temperature of the valve casing surface is 120 °C. This has to be considered when selecting the connection cable and contact of the connection cable with the casing surface is to be prevented.

¹⁾ Surface temperature > 50 °C, provide contact protection

²⁾ Observe the "Special conditions for safe use".

			DC solenoid						AC solenoid							
		Cor	ntrol spo	ool sym	bols U,	C, D ar	nd Y	Control spool symbols U, C, D and Y								
Pres- sure p	Flow g	wit	t _c hout tar	n nk press	sure		D D	with	t _o nout tar	on Ik press	sure		ť	off		
in bar	in I/min	U	С	D	Y	С	Y	U	С	D	Y	U	С	D	Y	
140	40	25	50	25	50	12	17	25	50	25	50	50	45	55	50	
280	40	25	55	25	55	15	20	25	70	25	70	70	45	75	50	
320	40	25	55	25	55	15	20	25	75	25	75	75	45	80	50	
420	40	30	60	30	60	20	25	30	75	30	75	75	45	80	50	


Switching times t in ms (Installation position: Solenoid horizontal)

Electrical connection

The type-examination tested valve solenoid of the valve is equipped with a terminal box and a type-tested cable gland.

The connection is polarity-independent.

Solenoids to be connected to AC voltage are equipped with an integrated rectifier.

When establishing the electrical connection, the protective earthing conductor (PE $\frac{1}{2}$) has to be connected properly.

Important

Properties of the connection terminals

Position	Function	Connectable line cross-section
1	Operating voltage connection	Single-wire 0.75 2.5 mm ²
		Finely stranded 0.75 1.5 mm ²
2	Connection for protective earthing conductor	Single-wire max. 2.5 mm ²
		Finely stranded max. 1.5 mm ²
3	Connection for potential equalization conductor	Single-wire 4 6 mm ²
		Finely stranded 4 mm ²

Cable gland

Type approval	II 2G Ex e IIC Gb						
Threaded connection	M20 x 1.5						
Protection class according to EN 60529	IP66 ¹⁾						
Line diameter mm	911						
Sealing	Outer sheath sealing						

Connection line

Line type	Non-armored cables and lines (outer sheath sealing)
Temperature range °C	-30 > +110

1) If installed properly

Hydraulics | Bosch Rexroth AG 9/14

Electrical connection

Circuit diagrams

267

Over-current fuse and switch-off voltage peaks

Important:

Corresponding to the rated current, a fuse according to DIN 41571 and EN / IEC 60127 has to be connected ahead of every valve solenoid (max. $3 \times I_{rated}$).

The shut-off threshold of the fuse has to match the prospective short-circuit current of the supply source.

The prospective short-circuit current of the supply source may amount to a maximum of 1500 A.

This fuse may only be installed outside the explosive area or must be of an explosion-proof design.

When inductivities are switched off, voltage peaks are the result which may cause faults in the connected control electronics. For this reason, the valve solenoids comprise an interference protection circuit which dampens this voltage peak to the voltage value shown in the table.

Voltage data in the valve type code	Nominal volt- age valve solenoid	Rated cur- rent valve solenoid	Rated current external miniature fuse: Medium time-lag (M) according to DIN 41571 and EN/IEC 60127	Rated voltage of exter- nal miniature fuse: Medium time-lag (M) according to DIN 41571 and EN/IEC 60127	Maximum voltage value upon switch-off	Interference protection circuit
G24	24 V DC	0.708 A DC	800 mA	250 V	–90 V	
G48	48 V DC	0.354 A DC	400 mA	250 V	–200 V	Suppressor
G96			250 V	–370 V	diode bi-directional	
G110	110 V DC	0.155 A DC	200 mA	250 V	–390 V	
W110R	110 V AC	0.163 A AC	200 mA	250 V	–3 V	Bridge recti-
W230R	230 V AC 0.078 A AC		80 mA	250 V	–3 V	fier and sup- pressor diode

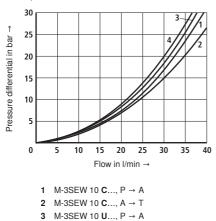
General information

- In order to switch the valve safely or maintain it in its spool position, the pressure situation must be as follows:
 P ≥ A ≥ T (for design reasons).
- The ports P, A and T (3/2 directional seat valve) as well as P, A, B and T (4/2 directional seat valve) are clearly determined according to their tasks. They must not be exchanged or closed. The flow is only permitted in the direction of the arrow.
- When the Plus-1 plate (4/2 directional function) is used, the following minimum operating values have to be observed: $p_{min} = 8 \text{ bar}; q_V > 3 \text{ l/min}.$
- The specified maximum flow must not be exceeded (if necessary, use a throttle insert for flow limitation)!

				Oper	ating pr	essure i	n bar	Flow
		Control spool symbol	Comment	Р	Α	В	т	in l/min
circuit	"U"		Pressure at P > A > T	420	420		100	40
3-way circuit			420	420		100	40	
2-way circuit (only for unloading)	"U"		Before switching from the initial position to the spool position, pressure must be applied to port A. Pressure at $A \ge T$		420		100	40
2-way c (only for ur	"C"		Pressure at A ≥ T		420		100	40
sircuit ssible in the of arrow)			Valve (symbol "U") in connection with Plus-1 plate P > A \ge B > T	420	420	420	100	40
4-way circuit (flow only possible in the direction of arrow)	"Y"		Valve (symbol "C") in connection with Plus-1 plate P > A \ge B > T	420	420	420	100	40

Performance limits (measured with HLP46, $\vartheta_{oil} = 40 \text{ °C} \pm 5 \text{ °C}$)

Important:


The switching power limits were established while the solenoids were at operating temperature, at 10% undervoltage and without tank preloading.

Characteristic curves (measured with HLP46, $\vartheta_{oil} = 40 \text{ °C} \pm 5 \text{ °C}$)

269

 $\Delta p - q_V$ characteristic curves – 3/2 directional seat value

4 M-3SEW 10 U..., A → T

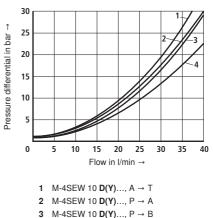
12

10

8

6

4

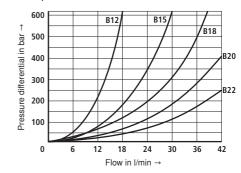

2

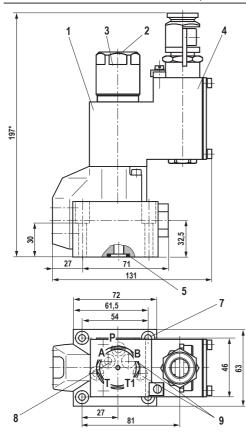
0

6 12 18 24 30 36 42

î

Pressure differential in bar



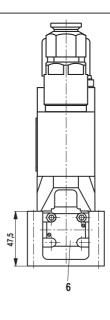

4 M-4SEW 10 D(Y)..., B → T

$\Delta p - q_{V}$ characteristic curves – check valve insert

Flow in I/min →

Dimensions: 3/2 directional seat valve (dimensions in mm)

* Plus 80 mm for detaching the solenoid coil


- 1 Solenoid coil
- 2 Concealed manual override "N9"
- 3 Mounting nut with hexagon SW32
- 4 Terminal box
- 5 Identical seal rings for ports A, B, T and T1 seal ring for port P
- 6 Name plate

7 Valve mounting screws

For reasons of stability, exclusively use the following valve mounting screws:

4 hexagon socket head cap screws ISO 4762-M6x40-10.9-flZn-240h-L

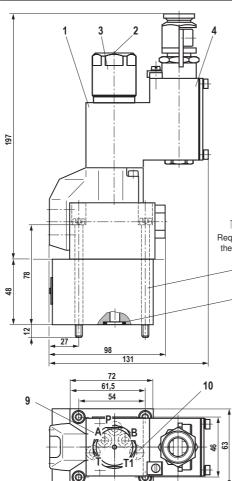
(friction coefficient 0.09 - 0.14 according to VDA 235-101) (must be ordered separately) Mat. no.: R913000058

Required surface quality of the valve contact surface

8 Porting pattern according to DIN 24340-A10 and ISO 4401-05-04-0-05

9 Important:

With 3/2 directional seat valves, ports B and T1 are designed as blind counterbore.

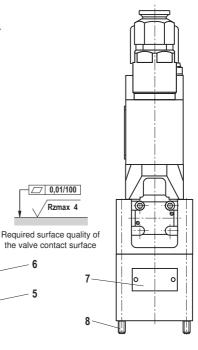

Subplates

G 66/01 FE/ZN (G3/8) G 67/01 FE/ZN (G1/2) with dimensions as in the data sheet 45054 (must be ordered separately)

Important:

Subplates are no components in the sense of directive 94/9/EC and can be used after the manufacturer of the overall system has assessed the risk of ignition.

The G...FE/ZN versions are free from aluminum and/or magnesium and galvanized.


Dimensions: 4/2 directional seat valve (dimensions in mm)

* Plus 80 mm for detaching the solenoid coil

27

81

- 1 Solenoid coil
- 2 concealed manual override "N9"
- 3 Mounting nut with hexagon SW32
- 4 Terminal box
- 5 Identical seal rings for ports A, B, T and T1 seal ring for port P
- 6 Plus-1 plate
- 7 Name plate

- 8 Valve mounting screws For reasons of stability, exclusively use the following valve mounting screws:
 - 4 hexagon socket head cap screws ISO 4762-M6x90-10.9-fIZn-240h-L (friction coefficient 0.09 - 0.14 according to VDA 235-101) (included in the scope of delivery)
- 9 Porting pattern according to DIN 24340-A10 and ISO 4401-05-04-0-05
- 10 Important

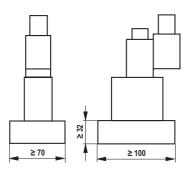
With 4/2 directional seat valves, port T1 is designed as blind counterbore.

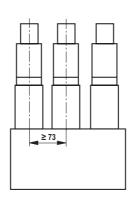
Subplates

G 66/01 FE/ZN (G3/8) G 67/01 FE/ZN (G1/2) with dimensions as in the data sheet 45054 (must be ordered separately)

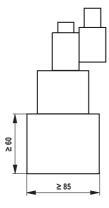
Important:

Subplates are no components in the sense of directive 94/9/EC and can be used after the manufacturer of the overall system has assessed the risk of ignition.


The G...FE/ZN versions are free from aluminum and/or magnesium and galvanized.


Installation conditions (dimensions in mm)

	Individual assembly	Bank assembly				
Dimensions of the subplate	Minimum dimensions Length \ge 100, width \ge 70, height \ge 32	Minimum cross-section Height \ge 60, width \ge 85				
Thermal conductivity of the subplate	≥ 38 W/mK (E	N-GJS-500-7)				
Minimum distance between the longitudi- nal valve axes	≥ 73 mm					


Schematic diagram

Individual assembly

Important:

Observe the "Special conditions for safe use" on page 7.

Bosch Rexroth AG Hydraulics Zum Eisengießer 1 97816 Lohr am Main, Germany Phone +49 (0) 93 52 / 18-0 documentation@boschrexroth.de www.boschrexroth.de © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Electric Drives and Controls

Hydraulics

Service

Rexroth Bosch Group

1/16

3/2 and 4/2 directional seat valves with solenoid actuation

RE 22045-XN-B2/08.12 Replaces: 07.10

Type M-.SED 10...XN...

Size 10 Component series 1X Maximum operating pressure 350 bar Maximum flow 40 l/min

> ATEX units For explosive areas

Part II Data sheet

Information on the explosion protection:

- Area of application in accordance with the Explosion Protection Directive 94/9/EC: II 3G; II 3D
- Type of protection of the valve solenoid
 Ex nA IIC T3 Gc according to EN 60079-15:2010 and
 Ex tc IIIC T140°C Dc IP65 according to EN 60079-31:2009

What you need to know about these operating instructions

These operating instructions apply to the explosion-proof version of Rexroth valves and consist of the following three parts:

- Part I General information 07010-X-B1
- Part II Data sheet 22045-XN-B2
- Part III Product-specific instructions 22045-XN-B3

Operating instructions 22045-XN-B0

You can find further information on the correct handling of Rexroth hydraulic products in our publication "General product information on hydraulic products" 07008.

273

Table of contents

Contents	Page
Features	2
Ordering code and scope of delivery	3
Function, section, control spool symbols	4
Technical data	6
Technical data, information on the explosion protection	7
Electrical connection	8
General information	9
Performance limits	9
Characteristic curves	10
Device dimensions	11
Installation conditions	15

Features

- Direct operated directional seat valve with solenoid actuation for proper use in explosive atmospheres
- Porting pattern according to ISO 4401-05-04-0-05 and NFPA T3.5.1 R2-D05
- Subplates available in FE/ZN version (see pages 11 to 14)
- Blocked connection tight in a leak-free form
- Safe switching also with longer standstill periods under pressure
- Wet-pin DC solenoids
- Solenoid coil rotatable by 90 °
- Electrical connection as individual connection with connector according to EN 175301-803, design A
- With manual override, optional

Hydraulics | Bosch Rexroth AG 3/16

3

Ordering code and scope of delivery

Γ.						1.1/2				-				- 1/		_			
	M	SED) 1	0	1	X//35	50	С	G2	4		(N	K	4/					
3 main ports 4 main ports Size	= 3 = 4	=	: 10													no co V =	ode =	Seal materi NBR sea FKM sea	als als
Main ports		3	4															Importar Observ	
Control spool sy	/mbols															cor		lity of seals wi raulic fluid use	
	} ₩ Þ	•	_	= UK = CK											no c P = B12 B15 B18 B20 B22	= = = =	With t, witho With ch Th Th Th Th Th	in the second se	ve ert im im im im
	W P	-	•	= D								x	N =	E	xplosi	on prot	For de Elec tection	nating connect tails see chapt trical connection "Non-sparking	ter on g",
	b b	_	•	= Y							N9 : no (Deta	ils see		pi With I	on the explosion rotection page manual overrice manual overrice	9 7 de
			Av/0	ilabla						G24 :	=						Dire	ect voltage 24	V
																	1		

= C

Solenoid, wet-pin

Included in the scope of delivery:

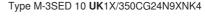
Valve operating instructions with declaration of conformity in part III

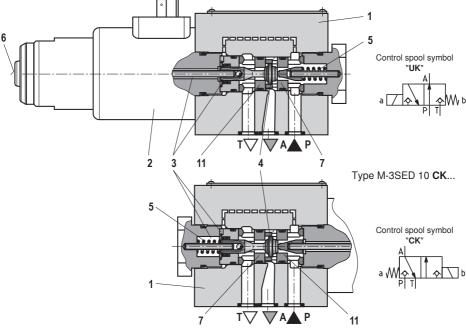
Function, section, control spool symbols: 3/2 directional seat valve

General:

The directional valve type M-.SED is a direct operated directional seat valve with solenoid actuation. It controls the start, stop and direction of flow and basically comprises a housing (1), the solenoid (2), the valve seats (7) and (11) and the control spool (4).

The manual override (6) allows for the switching of the valve without solenoid energization.


Basic principle:


The initial position of the valve (normally open "UK" or normally closed "CK") is determined by the arrangement of the spring (5). The chamber (3) behind the control spool (4) is connected to port P and sealed against port T. Thus, the valve is pressure-compensated in relation to the actuating forces (solenoid and spring).

By means of the control spool (4), the ports P, A and T can be loaded with the maximum operating pressure (350 bar) and the flow can be directed in both directions (see control spool symbols).

In the initial position, the control spool (4) is pressed onto the seat (11) by the spring (5), in spool position, it is pressed onto the seat (7) by the solenoid (2). The flow is blocked in a leak-free manner.

Seat valves can be used according to the control spool symbols and the related operating pressures and flows (see performance limits page 9).

Function, section, control spool symbols: 4/2 directional seat valve

With a sandwich plate, the **Plus-1 plate**, under the 3/2 directional seat valve, the function of a 4/2 directional seat valve is achieved.

Function of the Plus-1 plate:

Initial position:

The main valve is not operated. The spring (5) holds the control spool (4) on the seat (11). Port P is blocked and A connected to T. Apart from that, one control line is connected from A to the large area of the control spool (8), which is thus unloaded to the tank. The pressure applied via P now pushes the ball (9) onto the seat (10). Now, P is connected to B, and A to T.

Transition position:

When the main valve is operated, the control spool (4) is shifted against the spring (5) and pressed onto the seat (7). During this, port T is blocked, P, A, and B are briefly connected to each other.

Spool position:

P is connected to A. As the pump pressure acts via A on the large area of the control spool (8), the ball (9) is pressed onto the seat (12). Thus, B is connected to T, and P to A. The ball (9) in the Plus-1 plate has a "positive spool overlap".

Important:

To prevent pressure intensification in conjunction with differential cylinders, the annulus area of the cylinder must be connected to A.

The use of the Plus-1 plate and the seat arrangement offer the following options:

Control spool symbol "D"

Control spool symbol "Y"

10

9

8

Type M-4SED 10 Y1X/350CG24N9XNK4 1 5 7 2 11 1 Schematic illustration: Initial position 5 11 3/2 directional seat valve 8 10 9 12 12 Plus-1 plate

Function, section: Throttle insert, check valve insert

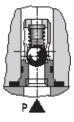
Throttle insert

The use of a throttle insert is required when due to prevailing operating conditions, flows can occur during the switching processes, which exceed the performance limit of the valve. Examples:

- Accumulator operation,
- Use as pilot control valve with internal pilot fluid tapping.

3/2 directional seat valve (see page 4) The throttle insert is inserted in port P of the seat valve.

4/2 directional seat valve (see page 5) The throttle insert is inserted in port P of the Plus-1 plate.



Check valve insert

The check valve insert allows free flow from P \rightarrow A and closes A \rightarrow P in a leak-free form.

3/2 directional seat valve (see page 4) The check valve insert is inserted in port P of the seat valve.

4/2 directional seat valve (see page 5) The check valve insert is inserted in port P of the Plus-1 plate.

Technical data

general				
Installation position	n		Any	
Ambient temperature range °C		-20 +50		
Storage temperatu	ire range	°C	+15 +30	
Admissible vibratio	on load		20 2000 Hz amplitude 0.05 g ² /Hz (10 g RMS)	
Weight	3/2 directional seat valve	kg	3.3	
	4/2 directional seat valve	kg	4.7	
Surface protection			Galvanically coated	

hydraulic

Maximum operating pressure bar	See table on page 9				
Maximum flow I/min	40				
Hydraulic fluid	Mineral oil (HL, HLP) according to DIN 51524 ¹); fast bio- degradable hydraulic fluids according to VDMA 24568 (see also data sheet 90221); HETG (rape seed oil) ¹); HEPG (polyglycols) ²); HEES (synthetic esters) ²); other hydraulic fluids on request, ignition temperature > 190 °C				
Hydraulic fluid temperature range °C	-20 +80 (for NBR seals) 3)				
	-15 +80 (for FKM seals) 3)				
Viscosity range mm ² /s	2.8 500				
Maximum admissible degree of contamination of the hydrau- lic fluid, cleanliness class according to ISO 4406 (c)	Class 20/18/15 4)				

1) Suitable for NBR and FKM seals

²⁾ Suitable **only** for FKM seals

³⁾ Observe the "Special conditions for safe use" on page 7.

⁴⁾ The cleanliness classes specified for the components must be adhered to in hydraulic systems. Effective filtration prevents faults and at the same time increases the life cycle of the components. For the selection of the filters see www.boschrexroth.com/filter

Technical data

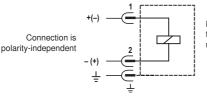
electric					
Voltage type		Direct voltage (DC)			
Nominal voltage		V	24		
Voltage tolerance %		%	±10		
Admissible residual ripple %		%	< 5		
Duty cycle / operating mode according to VDE 0580		100 % / S1 (continuous operation)			
Switching times according	On	ms	40 80		
to ISO 6403	Off	ms	10 25		
Switching frequency Hz		Hz	Max. 1		
Nominal power at ambient temperature 20 °C W		23			
Maximum power with 1.1 x nominal voltage and ambient temperature 20 °C W		28.8			
Protection class according to EN 60529		IP 65 ¹⁾			

¹⁾ If suitable mating connectors are used (protection class at least IP 65) and in case of appropriate assembly.

Information on the explosion protection

Area of application as per directive 94/9/EC	ll 3G	II3 D				
Type of protection of the valve solenoid according to EN 60079-15: 2010 / EN 60079-31: 2009	Ex nA IIC T3 Gc	Ex tc IIIC T140°C Dc IP65				
Maximum surface temperature ¹⁾ °C	140	140				
Type examination certificate Solenoid	BVS 12 ATEX E 062 X					
Type of protection Valve	c (EN 134	63-5: 2011)				
Special conditions for safe use	- Connection lines must be pa	ssed in a pull-relieved way.				
	 The valve is to be installed so that no impact stresses > 4 J can take effect. 					
	 In order to avoid dangers caused by static charging, the base and/or subplate on which the valve is to be fitted must be electrically conductive and included in the equipoten- tial bonding. 					
	 The valve solenoid must not generating processes. 	be installed close to charge-				
	- Dust layers with a thickness	> 50 mm are not admissible.				
	 Maximum hydraulic fluid temperature: In case of bank assembly, as long as only one soler is energized at a time, and in case of individual asse +80 °C In case of bank assembly when more than one sole is energized at a time: +65 °C 					
	- The maximum temperature of the valve casing surface is 110 °C. This has to be considered when selecting th connection cable and/or contact of the connection cable with the casing surface is to be prevented.					
Ambient temperature range °C	-20 +50					

···· · · · · · · · · · · · · ·	
Temperature at the connector of the valve solenoid °	C ≥ 100
Area of application as per directive 94/9/EC	II 3G; II 3D
Protection class in plugged condition	IP 65


¹⁾ Surface temperature > 50 °C, provide contact protection

Electrical connection

The valves are equipped with a plug-in connector according to EN 175301-803, design A.

Information on the suitability of mating connectors is available on page 7.

Circuit diagram

For protection of the valve solenoids, suitable measures are to be taken which limit the switch-off overvoltages to a maximum of 500 V.

Over-current fuse and switch-off voltage peak

Important:

A fuse appropriate for the solenoid's rated current (max. 3 x I_{rated} according to DIN 41571 and/or IEC 60127) or a protective motor switch with short-circuit and thermal instantaneous tripping must be connected to each valve solenoid as short-circuit protection. The cut-off capacity of the fuse must match or exceed the short-circuit current of the supply source. This fuse or protective motor switch may only be fitted outside the explosive area or must be of an explosion-proof design.

When an inductivity is switched off, a voltage peak results which may cause failures or damage in the connected control electronics.

Voltage data in the valve type code Nominal voltage Rated current Valve solenoid Valve solenoid Valve solenoid			Recommended pre-fuse characteristics medium time-lag according to DIN EN 60127-1: 2011			
G24	24 V DC	0.95 A DC	1 A			

3

General information

Seat valves can be used according to the control spool symbols and the related operating pressures and flows (see performance limits below).

In order to guarantee safe functioning, the following points must imperatively be observed:

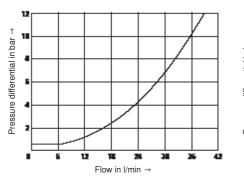
- Seat valves have negative spool overlap, i.e. leakage oil occurs during the switching process. This process takes, however, place within such a short time that it is irrelevant in nearly all applications.
- The specified maximum flow must not be exceeded (if necessary, use a throttle insert for the flow limitation)!

Plus-1 plate:

- When the Plus-1 plate (4/2 directional function) is used, the following lower operating values are to be observed: $p_{min} = 8 \text{ bar}, q_V > 3 \text{ l/min}.$
- The ports P, A, B and T are clearly determined according to the tasks. They must not be exchanged or closed!
- · Port T must always be connected.
- Pressure level and pressure distribution are to be observed!
- · The flow is only permitted in the direction of arrow!

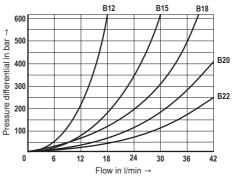
Performance limits (measured with HLP46, $\vartheta_{oil} = 40 \text{ °C} \pm 5 \text{ °C}$)

	Control spool symbol		Comment	Operating pressure in bar				Flow in l/min
				Р	Α	В	Т	in i/min
2-way circuit	"UK"		With 2/2 way circuits, port P or T must be closed - by the customer!	350	350		350	40
2-way	"СК"			350	350		350	40
3-way circuit	"UK"			350	350		350	40
3-way	"СК"			350	350		350	40
circuit issible in the of arrow)	"D"		3/2 directional valve (symbol "UK") in connec- tion with Plus-1 plate: $p_{\rm P} \ge p_{\rm A} \ge p_{\rm B} \ge p_{\rm T}$	350	350	350	P/A/B -40	40
4-way circuit (flow only possible in the direction of arrow)	"Y"		3/2 directional valve (symbol "CK") in connec- tion with Plus-1 plate: $p_{\rm P} \ge p_{\rm A} \ge p_{\rm B} \ge p_{\rm T}$	350	350	350	P/A/B -40	40

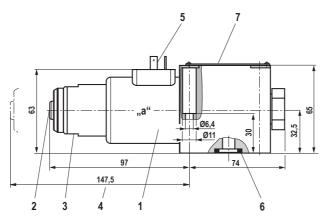

Important

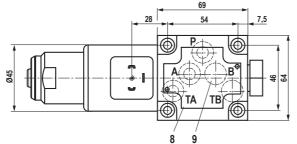
The switching power limits were established while the solenoids were at operating temperature, at 10 % undervoltage and without tank pre-loading. $\Delta p - q_{V}$ characteristic curves

Characteristic curves (measured with HLP46, $\vartheta_{oil} = 40 \text{ °C} \pm 5 \text{ °C}$)



Δp - $q_{\rm V}$ characteristic curve Check valve insert


 Δp - q_{\vee} characteristic curves Throttle insert


 $\Delta p - q_{V}$ characteristic curves

282

Device dimensions: 3/2 directional seat valve - design "UK" (dimensions in mm)

Required surface quality of the valve contact surface

- 1 Solenoid coil
- 2 Manual override "N9"
- 3 Mounting nut with double edge SW32
- 4 Space required to remove the solenoid coil
- 5 Plug-in connector according to EN 175301-803, design A
- 6 Identical seal rings for ports A, B, T Seal ring for port P
- 7 Name plate
- 8 Porting pattern according to ISO 4401-05-04-0-05 and NFPA T3.5.1 R2-D05
- 9 Important

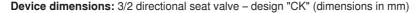
With 3/2 directional seat valves, ports B and TB are designed as blind counterbore

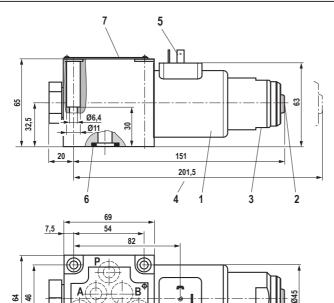
Valve mounting screws

For reasons of stability, exclusively use the following valve mounting screws:

4 hexagon socket head cap screws ISO 4762-M6x40-10.9-fIZn-240h-L (friction coefficient 0.09 - 0.14 according to VDA 235-101) (must be ordered separately)

Subplates


G 66/01 FE/ZN (G3/8) G 67/01 FE/ZN (G1/2) with dimensions as in the data sheet 45054


(must be ordered separately)

Important:

Subplates are no components in the sense of directive 94/9/EC and can be used after the manufacturer of the overall system has assessed the risk of ignition.

The G...FE/ZN versions are free from aluminum and/or magnesium and galvanized.

Required surface quality of the valve contact surface

- 1 Solenoid coil
- 2 Manual override "N9"
- 3 Mounting nut with double edge SW32
- 4 Space required to remove the solenoid coil

8 9

5 Plug-in connector according to EN 175301-803, design A

TΒ

(⊕

- 6 Identical seal rings for ports A, B, T Seal ring for port P
- 7 Name plate
- 8 Porting pattern according to ISO 4401-05-04-0-05 and NFPA T3.5.1 R2-D05
- 9 Important

With 3/2 directional seat valves, ports B and TB are designed as blind counterbore

Valve mounting screws

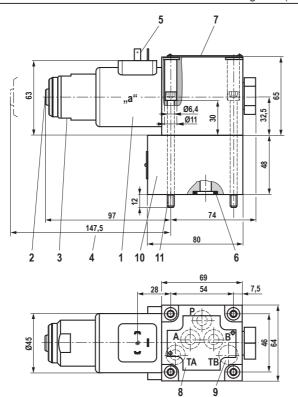
For reasons of stability, exclusively use the following valve mounting screws:

4 hexagon socket head cap screws ISO 4762-M6x40-10.9-fIZn-240h-L (friction coefficient 0.09 - 0.14 according to VDA 235-101) (must be ordered separately)

Subplates

G 66/01 FE/ZN (G3/8) G 67/01 FE/ZN (G1/2) with dimensions as in the data sheet 45054

(must be ordered separately)


Important:

Subplates are no components in the sense of directive 94/9/EC and can be used after the manufacturer of the overall system has assessed the risk of ignition.

The G...FE/ZN versions are free from aluminum and/or magnesium and galvanized.

284

Device dimensions: 4/2 directional seat valve - design "D" (dimensions in mm)

Required surface quality of the valve contact surface

- 1 Solenoid coil
- 2 Manual override "N9"
- 3 Mounting nut with double edge SW32
- 4 Space required to remove the solenoid coil
- 5 Plug-in connector according to EN 175301-803, design A
- 6 Identical seal rings for ports A, B, T Seal ring for port P
- 7 Name plate
- 8 Porting pattern according to ISO 4401-05-04-0-05 and NFPA T3.5.1 R2-D05
- 9 Important

With 4/2 directional seat valves, port TB is designed as blind counterbore

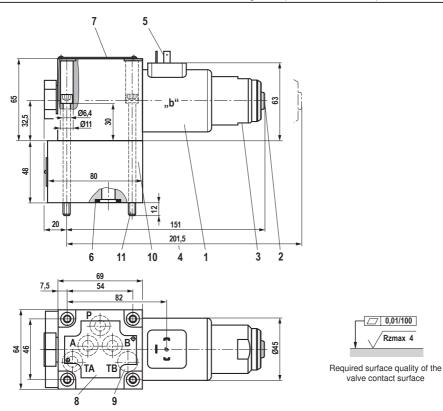
10 Plus-1 plate

11 Valve mounting screws For reasons of stability, exclusively use the following valve mounting screws:

4 hexagon socket head cap screws ISO 4762-M6x90-10.9-flZn-240h-L

(friction coefficient 0.09 - 0.14 according to VDA 235-101) (included in the scope of delivery)

Subplates


G 66/01 FE/ZN (G3/8) G 67/01 FE/ZN (G1/2)

with dimensions as in the data sheet 45054 (must be ordered separately)

Important:

Subplates are no components in the sense of directive 94/9/EC and can be used after the manufacturer of the overall system has assessed the risk of ignition.

The G...FE/ZN versions are free from aluminum and/or magnesium and galvanized.

Device dimensions: 4/2 directional seat valve - design "Y" (dimensions in mm)

- 1 Solenoid coil
- 2 Manual override "N9"
- 3 Mounting nut with double edge SW32
- 4 Space required to remove the solenoid coil
- 5 Plug-in connector according to EN 175301-803, design A
- 6 Identical seal rings for ports A, B, T Seal ring for port P
- 7 Name plate
- 8 Porting pattern according to ISO 4401-05-04-0-05 and NFPA T3.5.1 R2-D05
- 9 Important

With 4/2 directional seat valves, port TB is designed as blind counterbore

10 Plus-1 plate

11 Valve mounting screws For reasons of stability, exclusively use the following valve mounting screws: 4 hexagon socket head cap screws ISO 4762-M6x90-10.9-flZn-240h-L (friction coefficient 0.09 - 0.14 according to VDA 235-101) (included in the scope of delivery)

7 0,01/100 Rzmax 4

Subplates

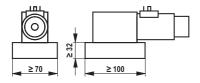
G 66/01 FE/ZN (G3/8) G 67/01 FE/ZN (G1/2)

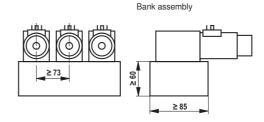
with dimensions as in the data sheet 45054 (must be ordered separately)

Important:

Subplates are no components in the sense of directive 94/9/EC and can be used after the manufacturer of the overall system has assessed the risk of ignition.

The G...FE/ZN versions are free from aluminum and/or magnesium and galvanized.


Installation conditions (dimensions in mm)


	Individual assembly	Bank assembly		
Subplate dimensions	Minimum dimensions	Minimum cross-section		
	Length \ge 100, width \ge 70, height \ge 32	Height \ge 60, width \ge 85		
Thermal conductivity of the subplate	≥ 38 W/mK (E	N-GJS-500-7)		
Minimum distance between the longitu- dinal valve axes	≥ 73 mm			

287

Schematic diagram

Individual assembly

Important:

With regard to the hydraulic fluid temperature, observe the "Special conditions for safe use" on page 7.

Bosch Rexroth AG Hydraulics Zum Eisengießer 1 97816 Lohr am Main, Germany Phone +49 (0) 93 52 / 18-0 documentation@boschrexroth.de www.boschrexroth.de © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Electric Drives and Controls

Hydraulics

Linear Motion and Assembly Technologies

Pneumatics

289

Service

Rexroth Bosch Group

RE 23177-XH-B2/11.12 Replaces: 04.12

1/12

4/3, 4/2 and 3/2 directional valves with wet-pin DC solenoids

Type WE 6 ../.B..X...

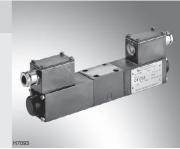
Size 6 Component series 5X Maximum operating pressure 210 bar Maximum flow 20 I/min

ATEX units For explosive areas

Part II Data sheet

Information on explosion protection:

- Area of application in accordance with the Explosion Protection Directive 94/9/EC: I M2; II 2G
- Type of protection of the valve solenoids: Ex ib I Mb / Ex ib IIC T6 Gb according to EN 60079-0:2009 / EN 60079-11:2007


What you need to know about these operating instructions

These operating instructions apply to the explosion-proof version of Rexroth valves and consist of the following three parts:

- Part I General information 07010-X-B1
- Part II Data sheet 23177-XH-B2
- Part III Product-specific instructions 23177-XH-B3

Operating instructions 23177-XH-B0

You can find further information on the correct handling of Rexroth hydraulic products in our publication "General product information on hydraulic products" 07008.

Table of contents

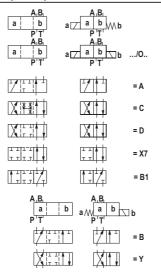
Contents	Page
Features	2
Ordering code and scope of delivery	3
Control spool symbols	3
Function, section	4
Technical data	5
Performance limits	9
Characteristic curves	9
Unit dimensions	10
Installation conditions	12

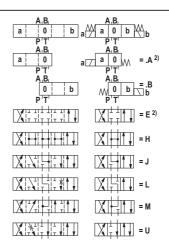
Features

- Direct operated directional spool valve with solenoid actuation for proper use in explosive atmospheres
- Porting pattern according to ISO 4401-03-02-0-05
- Subplates available in FE/ZN version (see page 10)
- Wet-pin DC solenoids
- Electrical connection optionally with:
 - · Individual connection with cable gland
 - 2 m connection line
 - Connector
- With manual override

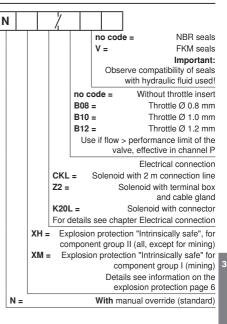
Ordering code and scope of delivery

_								
[WE	6		5X /		B	
3 main ports =	3							
4 main ports =	4							
Size 6		=	6					
Control spool symbol e.g. C, E, EA, EB etc. possible versions see		w						
Component series 50	to 59	9		= 5	x			
(50 to 59: unchanged connection dimension		llatior	and					
Spring return				= no	o code			
Without spring return					= 0			
High-power solenoid						= B		
wet-pin								
Solenoid, direct voltag	je 12	V						
Nominal power supply						= G1		
Nominal power supply						= G1		
Nominal power supply						= G1	2-19	
Depending on the ele	ctrica	l conr	nectio	n, see	page 7			


Important:


For possible combinations for the ordering code "Solenoid", "Electrical connection" and "Explosion protection" please refer to the table on page 7.

Included in the scope of delivery:


Valve operating instructions with declaration of conformity in part III

Control spool symbols

²⁾ Example: Control spool symbol E with spool position "a" → ordering code ..EA..

Function, section

Directional valves of type WE are solenoid operated directional spool valves. They control the start, stop and direction of a fluid flow.

The directional valves basically consist of housing (1), one or two solenoids (2), control spool (3), and one or two return springs (4).

In the de-energized condition, control spool (3) is held in the central position or in the initial position by the return springs (4) (except for impulse spool). The control spool (3) is actuated by wet-pin solenoids (2).

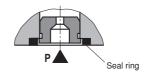
To ensure proper functioning, care must be taken that the pressure chamber of the solenoid is filled with oil.

The force of solenoid (2) acts via plunger (5) on control spool (3) and pushes the latter from its rest position to the required end position. This enables the necessary direction of flow from $P \rightarrow A$ and $B \rightarrow T$ or $P \rightarrow B$ and $A \rightarrow T$.

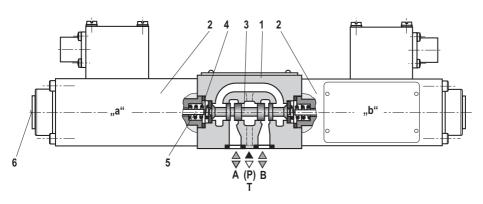
After solenoid (2) was de-energized, return spring (4) pushes control spool (3) back to its rest position.

A manual override (6) allows control spool (3) to be moved without solenoid energization.

Type 4WE 6.. 5X/O...X (only possible with symbols A, C and D)


This version is a directional valve with two spool positions and two solenoids without detent. In the de-energized condition, there is no defined spool position.

Important:


The tank line must not be allowed to run empty. With corresponding installation conditions, a pre-charge valve (pre-charging pressure approx. 2 bar) must be installed.

Throttle insert (valve type 4WE 6..5X/...X.../B..)

The use of a throttle insert is required when due to prevailing operating conditions, flows can occur during the switching processes, which exceed the performance limit of the valve. It is inserted in channel P of the directional valve.

Example: Type 4WE 6 E5X/.B.X.K20L/..

general			
Installation position			Any
Ambient temperature ra	ange	°C	-20 +50
Storage temperature ra	ange	°C	+15 +30
Admissible vibration loa	ad		20 2000 Hz amplitude 0.05 g ² /Hz (10 g RMS)
Weight		kg	2.6 (with 1 solenoid); 4.2 (with 2 solenoids)
Surface protection	Valve body		Galvanically coated
	Solenoid		Galvanically coated

hydraulic

Maximum surface temperature		°C	See information on the explosion protection, page 6
Maximum operating pressure	Port A, B, P	bar	210
	Port T	bar	100 With symbols A and B, port T must be used as leak-
			age oil connection if the operating pressure exceeds
			the admissible tank pressure.
Maximum flow		l/min	20
Hydraulic fluid			Mineral oil (HL, HLP) according to DIN 51524 1);
			fast bio-degradable hydraulic fluids according to VDMA 24568
			(see also data sheet 90221); HETG (rape seed oil) 1); HEPG
			(polyglycols) ²⁾ ; HEES (synthetic esters) ²⁾ ; flame-resistant
			hydraulic fluid HFC according to ISO 12922 3)
			Other hydraulic fluids upon request
			Ignition temperature > 130 °C
Hydraulic fluid temperature rang	e	°C	-20 +80 (NBR seals)
			-15 +50 (FKM seals)
Viscosity range		mm²/s	2.8 500
Maximum admissible degree of fluid - cleanliness class accordin		ne hydraulic	Class 20/18/15 ⁴⁾

¹⁾ Suitable for NBR and FKM seals

- 2) Suitable only for FKM seals
- ³⁾ Only in connection with NBR seals For more information, please ask our sales staff.
- ⁴⁾ The cleanliness classes specified for the components must be adhered to in hydraulic systems. Effective filtration prevents faults and at the same time increases the service life of the components. For the selection of the filters see www.boschrexroth.com/filter.

electric					
Nominal voltage		V	12		
Voltage type				Direct voltage (DC)	
Admissible residual ripple		%		< 5	
Voltage tolerance		%		±10	
Duty cycle / operating mode a	ccording to VDE 0580			100 % / S1 (DB)	
Information on the rated current in the ordering code			G12-12	G12-13	G12-19
Rated current		mA	120	130	190
Coil resistance with solenoid to	emperature 20 °C	Ω	89		59
Minimum current for achieving hydraulic switching power	the	mA	88	96	143
Switching times according	On	ms	14	45	105
to ISO 6403	Off	ms	8	0	100
Switch-off voltage peak Solenoid V			Max. –3		
Protection class according to I	EN 60529 ¹⁾		IP 65		

Information on explosion protection

Ordering code	G12-12		G1:	G12-19	
Ordering code	XM	XH	XM	ХН	XM
Area of application as per directive 94/9/EC	I M2	II 2G	I M2	II 2G	I M2
Type of protection valve solenoid according to EN 60079-0:2009 / EN 60079-11:2007	Ex ib I Mb	Ex ib IIC T6 Gb	Ex ib I Mb	Ex ib IIC T6 Gb	Ex ib I Mb
Maximum surface temperature 2) °C	80		8	80	
Temperature class	-	T6	-	T6	-
Type examination certificate Solenoid		BV	S 08 ATEX E ()23	
"IEC Certificate of Conformity" Solenoid		IEC	CEx BVS 07.00	008	
Type of protection Valve	c (EN 13463-5:2011)				
Special operating conditions for a safe application	In case of valves with two solenoids, maximally one of the solenoids ma be energized at a time.				olenoids may

1) With correctly installed electrical connection

²⁾ Surface temperature > 50 °C, provide contact protection

Information on explosion protection (continued)

Safety-related maximum values of the solenoids depending on the component group and the type of the electrical connection

Component group	I (mining)		II (all, o	except for n	nining)	
Ordering code for explosion protection	ХМ				ХН	
Ordering code for solenoid	G12-12	G12-13	G12-19	G12-12	G12-13	G12-19

Electrical connection CKL

Maximum voltage U _i	V DC		15	15		27	
Maximum current I _i	A		2	2		2	
Maximum input power P	W	Version not			Version not	3	Version not
Effective inner inductivity $L_i^{(1)}$	nH/m	available	820	820	available	820	available
Effective inner capacity $C_i^{(1)}$	pF/m		145	145		145	
Ambient temperature range	°C		-20+50	-20+50		-20+50	

Electrical connection Z2

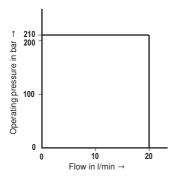
Maximum voltage U _i	V DC	15			27		
Maximum current I	А	2			2		
Effective inner inductivity L _i	nH	Neglect- able	Version not available	Version not available	Neglect- able	Version not available	Version not available
Effective inner capacity C _i	pF	Neglect- able	avallable	available	Neglect- able	available	
Ambient temperature range	°C	-20+50			-20+50		

Electrical connection K20L

-

N	Maximum voltage U	V DC			15	1		1
1	viaximum voltage 0	v DC	l i	۱ I	CI 13	1		1
N	Maximum current I _i	Α	L I	۱ I	2		1	ļ
E	Effective inner inductivity L _i	nH	Version not available	Version not	Neglect- able	Version not available	Version not available	Version not available
E	Effective inner capacity C _i	pF		avanable	Neglect- able	availabit	availabit	available
A	Ambient temperature range	°C		·	-20+50	1		l

¹⁾ Measured with connection line 2 x 0.75 mm², maximum length 10 m


Electrical connection

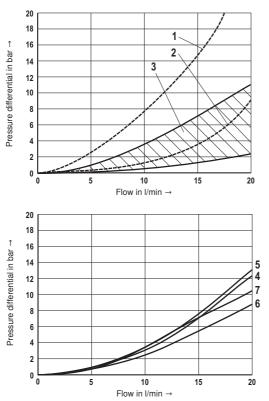
The type-examination tested valve solenoid of the valve is equipped with an electrical connection according to the following table. The electrical connection of the solenoid is polarity-independent.

Ordering code for the electri- cal connection	Type of connection Description	Circuit diagram	Ordering code for the sole- noid, availability
CKL	 Electrical connection via non- exchangeable, two-core connection line, blue Operating display via light emitting diode (LED), red 	- 12 v DC - 1 2 2 0,75 0 2 2 0,75 0	G12-13 (130 mA) G12-19 (190 mA)
	Connection line, two-core		
	Line cross-section mm ²	0.75 finely stranded	
	Line diameter mm	approx. 5.6	
	Length m	2	
Z2	 Electrical connection via 2-pole termi- nal in terminal box with cable gland without operating display 	(†) 12 V DC (_)+	G12-12 (120 mA)
	Cable gland		
	Threaded connection	M20x1.5	
	Line diameter mm	6.59.5 ¹⁾	
	Sealing	Outer sheath sealing	
	Connection terminal Solenoid		
	For line cross-section mm ²	0.75 1.5	
K20L	 Electrical connection via connector, 3-pole with pin contacts, type 845-11-1125-001, FCI/Souriau Operating display via light emitting diode (LED), red Suitable mating connector, type 845-11-8522-001, FCI/Souriau, must be ordered separately 	*(-) (120 30) (-)*	G12-19 (190 mA)

1) Larger diameters upon request

Performance limits (measured with HLP46, $\vartheta_{oil} = 40 \text{ °C} \pm 5 \text{ °C}$)

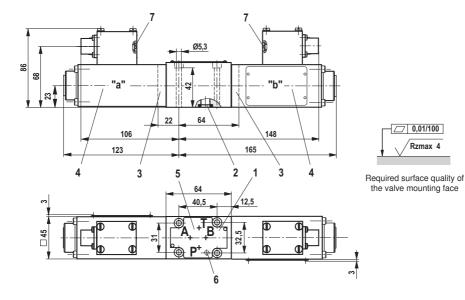
Important:


The specified switching power limits are valid for operation with two directions of flow (e.g. from P \rightarrow A and simultaneous return flow from B \rightarrow T).

Due to the flow forces acting within the valves, the admissible switching power limit may be considerably lower with only one direction of flow (e.g. from P \rightarrow A while port B is blocked)!

(In such cases, please consult us.)

The switching power limit was established while the solenoids were at operating temperature, at 10 % undervoltage and without tank pre-loading.



Characteristic curve selection			
Characteristic curves for direc- tion of flow			
P–A	P–B	A–T	B–T
1	1	2	2
3			
5	4	-	-
7	-	-	6
	Charac P–A 1	Characteristic c tion of P–A P–B 1 1 3	Characteristic curves for tion of flow P-A P-B A-T 1 1 2 3 3

3

Unit dimensions (dimensions in mm)

Type WE 6../.B.X.K20L/...

- 1 Name plate
- 2 Identical seal rings for ports A, B, P, T
- 3 Cover for valves with one solenoid
- 4 Valve solenoid
- 5 Porting pattern according to ISO 4401-03-02-0-05
- 6 Receiving hole for locating pin according to ISO 4401-03-02-0-05, (locating pin must be ordered separately, mat. no. R900005694)
- 7 Red LED for displaying the operating condition, or plug screw (see also page 11)

Valve mounting screws

For reasons of stability, exclusively use the following valve mounting screws:

4 hexagon socket head cap screws

ISO 4762-M5x50-10.9-flZn-240h-L

(friction coefficient 0.09 – 0.14 according to VDA 235-101) Mat. no. R913000064

(must be ordered separately)

Subplates

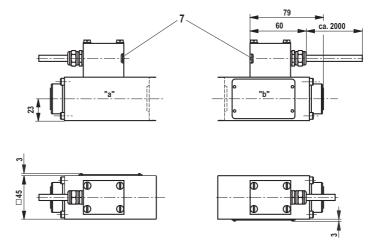
(without locating hole)

(with locating hole)

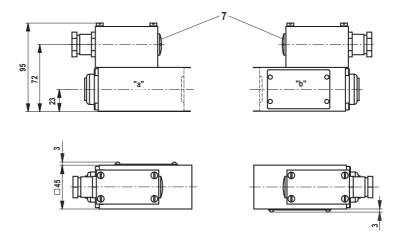
G 341/01 FE/ZN (G1/4) G 342/01 FE/ZN (G3/8) G 502/01 FE/ZN (G1/2) G 341/60 FE/ZN (G1/4) G 342/60 FE/ZN (G3/8) G 502/60 FE/ZN (G1/2)

with dimensions as in the data sheet 45052 (must be ordered separately)

Important:


Subplates are no components in the sense of directive 94/9/EC and can be used after the manufacturer of the overall system has assessed the risk of ignition.

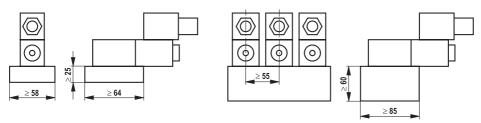
The G...FE/ZN versions are free from aluminum and/or magnesium and galvanized.


Unit dimensions (dimensions in mm)

Item explanations see page 10

Type WE 6../.B.X.CKL/... (readily assembled with 2 x 2 m connection line)

Type WE 6../.B.X.Z2/... (with terminal box and cable gland)


Installation conditions (dimensions in mm)

	Individual assembly	Bank assembly
Subplate dimensions	Minimum dimensions	Minimum cross-section
	Length \ge 64, width \ge 58, height \ge 25	Height \ge 60, width \ge 85
Heat conductivity of the subplate	≥ 38 W/mK (E	N-GJS-500-7)
Minimum distance between the longitu- dinal valve axes	≥ 55 mm	

Schematic diagram

Individual assembly

Bank assembly

Bosch Rexroth AG Hydraulics Zum Eisengießer 1 97816 Lohr am Main, Germany Phone +49 (0) 93 52 / 18-0 documentation@boschrexroth.de www.boschrexroth.de © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Electric Drives and Controls

Hydraulics

301

Service

1/14

4/3, 4/2 and 3/2 directional valves with DC solenoids

RE 23178-XD-B2/05.12 Replaces: 11.09

Type WE 6 ../.B..XD...

Size 6 Component series 6X Maximum operating pressure 315 bar Maximum flow 60 l/min

ATEX units For explosive areas

Part II Data sheet

Information on the explosion protection:

- Area of application in accordance with the Explosion Protection Directive 94/9/EC: I M2; II 2G
- Types of protection of the valve solenoid: Ex d I Mb / Ex d IIC T4 Gb according to EN 60079-0:2009 / EN 60079-1:2007

What you need to know about these operating instructions

These operating instructions apply to the explosion-proof version of Rexroth valves and consist of the following three parts:

- Part I General information 07010-X-B1
- Part II Data sheet 23178-XD-B2
- Part III Product-specific instructions 23178-XD-B3

Operating instructions 23178-XD-B0

You can find further information on the correct handling of Rexroth hydraulic products in our publication "General product information on hydraulic products" 07008.

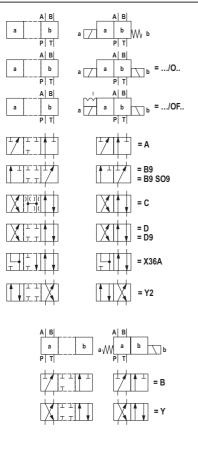
Table of contents

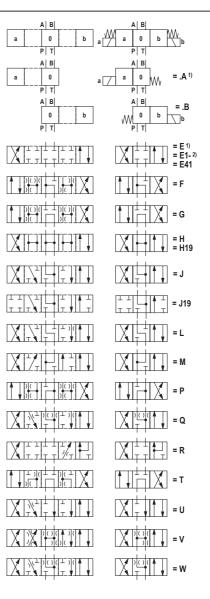
Contents	Page
Features	2
Ordering code and scope of delivery	3
Control spool symbols	4
Function, section	5
Technical data	6
Information on the explosion protection	7
Electrical connection	8
Performance limits	10
Characteristic curves	11
Unit dimensions	12
Installation conditions	13

Features

- Direct operated directional spool valve with solenoid actuation for proper use in explosive atmospheres
- Porting pattern according to ISO 4401-03-02-0-05
- Subplates available in FE/ZN version (see page 12)
- Wet-pin DC solenoids in hydraulic fluid
- Electrical connection with individual connection and cable gland
- With manual override, optional

Ordering code and scope of delivery




Included in the scope of delivery:

Valve operating instructions with declaration of conformity in part III

3

Control spool symbols

¹⁾ Example: Control spool E with spool position "a", ordering code ...EA..

²⁾ Symbol E1-: P – A/B pre-opening, Caution in conjunction with single-rod cylinders due to pressure intensification!

Function, section

Directional valves of type WE are solenoid operated directional spool valves. They control the start, stop and direction of a fluid flow.

The directional valves basically consist of housing (1), one or two solenoids (2), control spool (3), and one or two return springs (4).

In the de-energized condition, control spool (3) is held in the central position or in the initial position by the return springs (4) (except for impulse spools). The control spool (3) is actuated by wet-pin solenoids in hydraulic fluid (2).

To ensure proper functioning, care must be taken that the pressure chamber of the solenoid is filled with hydraulic fluid.

The force of solenoid (2) acts via plunger (5) on control spool (3) and pushes the latter from its rest position to the required end position. This enables the necessary direction of flow from P \rightarrow A and B \rightarrow T or P \rightarrow B and A \rightarrow T.

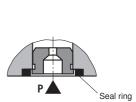
After solenoid (2) was de-energized, return spring (4) pushes control spool (3) back to its rest position.

An optional manual override (6) allows control spool (3) to be moved without solenoid energization.

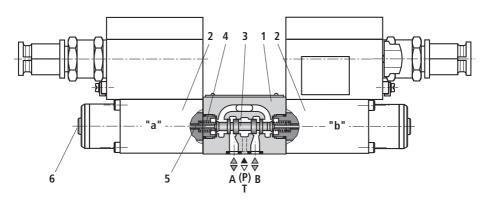
Type 4WE 6.. 6X/O...XD (only possible with symbols A, C and D)

This version is a directional valve with two spool positions and two solenoids without detent. In the de-energized condition, there is no defined spool position. Type 4WE 6.. 6X/OF... XD (impulse spool, only possible with symbols A, C and D)

This version is a directional valve with two spool positions, two solenoids and one detent. It alternately locks the two spools in position and the solenoid therefore needs not to be permanently energized.


Important:

Pressure peaks in the tank line to two or several valves can result in unintended spool movements in case of valves with detent! We therefore recommend that separate return lines be provided or a check valve installed in the tank line.


The tank line must not be allowed to run empty. With corresponding installation conditions, a pre-charge valve (pre-charging pressure approx. 2 bar) must be installed.

Throttle insert (type 4WE 6..6X/...XD../B..)

The use of a throttle insert is required when due to prevailing operating conditions, flows can occur during the switching processes, which exceed the performance limit of the valve. It is inserted in channel P of the directional valve.

Type 4WE 6 E6X/.B..NXDZ2/V

general				
Installation position		Any		
Ambient temperature ra	ange °C	-20 +80		
Storage temperature range °C		+15 +30		
Admissible vibration load		20 2000 Hz amplitude 0.05 g ² /Hz (10 g RMS)		
Weight	kg	5.3 (with 1 solenoid); 9.4 (with 2 solenoids)		
Surface protection	Valve body	Fe//ZnNi8//Cn//T0		
	Solenoid	Fe//ZnNi8//An//T0		

hydraulic

Maximum surface temperature °C		See information on the explosion protection on page 7	
Maximum operating pressure	Port P, A, B	bar	315
	Port T	bar	210 With symbols A and B, port T must be used as leak- age oil connection if the operating pressure exceeds the admissible tank pressure.
Maximum flow		l/min	60
Flow cross-section	with symbol Q		Approx. 6 % of the nominal cross-section
(spool position 0)	with symbol W		Approx. 3 % of the nominal cross-section
Hydraulic fluid		Mineral oil (HL, HLP) according to DIN 51524 $^{1)}$; fast bio-degradable hydraulic fluids according to VDMA 24568 (see also data sheet 90221); HETG (rape seed oil) $^{1)}$; HEPG (polyglycols) $^{2)}$; HEES (synthetic esters) $^{2)}$; flame-resistant hydraulic fluid HES (according to ISO 12922 $^{3)}$ Ignition temperature > 180 °C	
Hydraulic fluid temperature range °C		-20 +80 (NBR seals)	
		-15 +80 (FKM seals)	
Viscosity range mm ² /s		2.8 500	
Maximum permitted degree of contamination of the hydraulic fluid - cleanliness class according to ISO 4406 (c)		Class 20/18/15 4)	

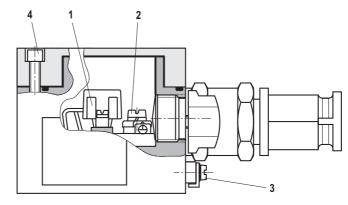
1) Suitable for NBR and FKM seals

- 2) Suitable only for FKM seals
- ³⁾ If HFC hydraulic fluid is used, the following parameters have to be complied with: Pressure at P, A, B max. 160 bar, at T max. 3 bar Ambient temperature 0... 36 °C Hydraulic fluid temperature max. 55 °C Duty cycle 60 % Only NBR seals are admissible. More information is available from our sales staff.
- ⁴⁾ The cleanliness classes specified for the components must be adhered to in hydraulic systems. Effective filtration prevents faults and at the same time increases the service life of the components. For the selection of the filters see www.boschrexroth.com/filter.

electric			
Voltage type			Direct voltage
Available voltages		V	24, 110
Voltage tolerance (nominal voltage)		%	±10
Admissible residual ripple		%	< 5
Duty cycle / operating mode according to VDE 0580			S1 (continuous operation)
Switching time according to ISO 6403	ON	ms	30 70
	OFF	ms	20 30
Switching frequency 1/h		1/h	up to 15000
Nominal power at ambient temperature 20 °C		W	13
Maximum power with 1.1 x nominal voltage and ambient temperature 20 °C		w	15.8
Protection class according to EN 60529 1)			IP 65

Information on the explosion protection

Area of application as per directive 94/9/EC	I M2; II 2G
Type of protection Valve	c (EN 13463-5:2011)
Maximum surface temperature 2 °C Temperature class	130 T4
Type of protection Solenoid according to EN 60079-0:2009 / EN 60079-1:2007	Ex d I Mb Ex d IIC T4 Gb
Type examination certificate Solenoid	BVS 03 ATEX E 300 X
Special operating conditions for a safe application	 In case of bank assembly, only one solenoid of all valves may be energized at a time.
	 In case of valves with two solenoids, maximally one of the solenoids may be energized at a time.
Ambient temperature range °C	-20 +80


1) With correctly installed electrical connection

2) Surface temperature > 50 °C, provide contact protection

Electrical connection

The type-examination tested valve solenoid of the valve is equipped with one terminal box and a type-examination tested cable entry.

The connection is polarity-independent.

Important

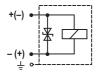
When establishing the electrical connection, the protective earthing conductor (PE $\frac{1}{2}$) has to be connected properly.

Properties of the connection terminals and mounting elements

Item	Function	Connectable line cross-section
1	Operating voltage connection	Single-wire max. 2.5 mm ²
		Finely stranded max. 2.5 mm ²
2	Connection for protective earthing conductor	Single-wire 0.75 2.5 mm ²
		Finely stranded 0.75 1.5 mm ²
3	Connection for potential equalization conductor	Single-wire 4 6 mm ²
		Finely stranded min. 4 mm ²
4	Screws for cover	-

Cable gland

Line diameter mm	912
Sealing	Outer sheath sealing


Connection line

Line type	Non-armored cables and lines (outer sheath sealing)
Temperature range °C	-20 > +110

Electrical connection

Circuit diagram

Direct voltage, polarity-independent

Overcurrent fuse and switch-off voltage peak

Important

A fuse appropriate for the solenoid's rated current (max. 3 x I_{rated} according to DIN 41571 and/or IEC 60127) or a protective motor switch with short-circuit and thermal instantaneous tripping must be connected to each valve solenoid as short-circuit protection. The cut-off capacity of this fuse must match or exceed the short-circuit current of the supply source.

This fuse or motor protection switch may only be fitted outside the explosive area or must be of an explosion-proof design. When inductivities are switched off, voltage peaks result which may cause failures in the connected control electronics. For this reason, the valve solenoids comprise a suppressor circuit which dampens this voltage peak to the voltage value shown in the table.

Voltage data in the valve type code	Nominal voltage valve solenoid	Rated current valve solenoid	Recommended pre-fuse charac- teristics medium time-lag according to DIN 41571	Maximum volt- age value upon switch-off	Suppressor circuit
G24	24 V DC	0.542 A DC	630 mA	–90 V	Suppressor diode
G110	110 V DC	0.118 A DC	125 mA	–390 V	bi-directional

Performance limits (measured with HLP46, $\vartheta_{nil} = 40 \text{ °C} \pm 5 \text{ °C}$)

Important

The specified switching power limits are valid for operation with two directions of flow (e.g. from P \rightarrow A and simultaneous return flow from B \rightarrow T).

Due to the flow forces acting within the valves, the admissible switching power limit may be considerably lower with only one direction of flow (e.g. from $P \rightarrow A$ while port B is blocked)!

(In such cases, please consult us.)

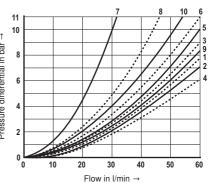
Flow in I/min →

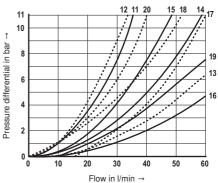
The switching power limits were established while the solenoids were at operating temperature, at 10 % undervoltage and without tank pre-loading.

Performance limits of the valves with DC solenoids

Charac- teristic curve 1 2 3 4 5 6 6 7 8 9 10 11 12 13 14	Control spool symbol A, B J, L, U V F, P A/O, A/OF G T R ²⁾ E Q, W D, C, Y, Y2 H M E1 ¹⁾ , D/OF, C/	315 4 4 4 4 4 4 4 4 4 4
15 16 17 18 19 20 21 22 23	OF, D/O, C/O B9 B9 SO9 H19 J19, P-A J19, A-T J19, B-T X36A D9 E41	$\begin{array}{c} 16 \\ 18 \\ 22 \\ 21 \\ 10 \\ 20 \\ 10 \\ 20 \\ 30 \\ 40 \\ 50 \\ 60 \\ 70 \\ 70 \\ 70 \\ 70 \\ 70 \\ 70 \\ 7$

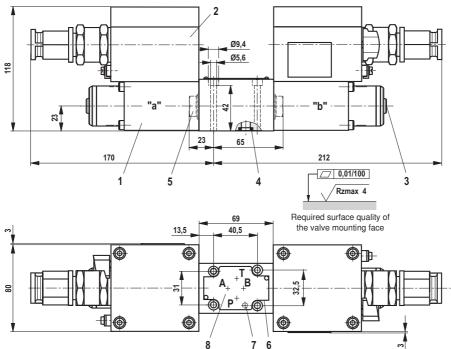
1) P-A/B pre-opening


2) Return flow from actuator to tank


Characteristic curves (measured with HLP46, $\vartheta_{oil} = 40 \text{ °C} \pm 5 \text{ °C}$ and p = 100 bar)

Δp - $q_{\rm V}$ characteristic curves

Characteristic	curve	selection
----------------	-------	-----------


Control	Direction of flow						
spool symbol	P – A	P – B	A – T	В – Т	B – A	P – T	
А, В	3	3	-	-	-	-	
С	1	1	3	1	-	-	
D, Y, Y2	5	5	3	3	-	-	
E	3	3	1	1	-	-	
F	1	3	1	1	-	-	
Т	10	10	9	9	-	8	
н	2	4	2	2	-	9	1
J, Q	1	1	2	1	-	-	
L	3	3	4	9	-	-	
М	2	4	3	3	-	-	
Р	3	1	1	1	-	-	
R	5	5	4	-	7	-	
V	1	2	1	1	-	-	
W	1	1	2	2	-	-	
U	3	3	9	4	-	-	
G	6	6	9	9	-	8	
B9	11	11	-	-	-	-	
B9 SO9	12	11	-	-	-	-	
H19	14	14	13	13	15	-	
J19	14	-	16	13	-	-	
X36A	17	-	18	19	-	-	
D9	8	20	8	15	-	-	
E41	20	20	8	8	-	-	

Unit dimensions (dimensions in mm)

Valve with manual override "N"

- 1 Solenoid
- 2 Terminal box
- 3 Manual override "N"
- 4 Identical seal rings for ports P, A, B, T
- 5 Plug screw for valves with one solenoid
- 6 Name plate
- 7 Receiving hole for locating pin according to ISO 4401-03-02-0-05, locating pin, mat. no. R900005694 (must be ordered separately)
- 8 Porting pattern according to ISO 4401-03-02-0-05

Valve mounting screws

For reasons of stability, exclusively use the following valve mounting screws:

4 hexagon socket head cap screws

ISO 4762-M5x50-10.9-flZn-240h-L

(friction coefficient 0.09 - 0.14 according to VDA 235-101)

Material no. R913000064 (must be ordered separately)

Subplates

(without locating hole)

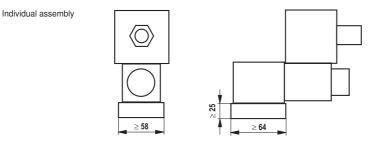
(with locating hole)

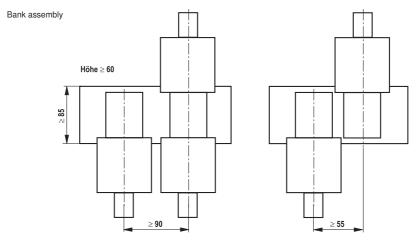
G 341/01 FE/ZN (G1/4) G 342/01 FE/ZN (G3/8) G 502/01 FE/ZN (G1/2) G 341/60 FE/ZN (G1/4) G 342/60 FE/ZN (G3/8) G 502/60 FE/ZN (G1/2)

with dimensions as in the data sheet 45052 (must be ordered separately)

Important:

Subplates are no components in the sense of directive 94/9/EC and can be used after the manufacturer of the overall system has assessed the risk of ignition.


The G...FE/ZN versions are free from aluminum and/or magnesium and galvanized.


Installation conditions (dimensions in mm)

	Individual assembly	Bank assembly		
Subplate dimensions	Minimum dimensions	Minimum cross-section		
	Length \ge 64, width \ge 58, height \ge 25	Height \geq 60, width \geq 85		
Heat conductivity of the subplate	≥ 38 W/mK (EN-GJS-500-7)			
Minimum distance between the longitu- dinal valve axes	See schematic diagram below			

313

Schematic diagram

Important:

In case of bank assembly, only one solenoid of all valves may be energized at a time.

Notes

Bosch Rexroth AG Hydraulics Zum Eisengießer 1 97816 Lohr am Main, Germany Phone +49 (0) 93 52 / 18-0 documentation@boschrexroth.de www.boschrexroth.de © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging. Hydraulics

Pneumatics

- P

Service

Rexroth Bosch Group

1/16

4/3, 4/2 and 3/2 directional valves with wet-pin DC or AC solenoids

RE 23178-XE-B2/09.13 Replaces: 11.09

Type WE 6 ../.E..XE...

Size 6 Component series 6X Maximum operating pressure 350 bar Maximum flow 70 I/min

> ATEX units For explosive areas

Part II Data sheet

Information on the explosion protection:

 Area of application in accordance with the Explosion Protection Directive 94/9/EC: II 2G

H7001

Actual product may differ

 Type of protection of the valve solenoid: Ex e mb IIC T4 Gb according to EN 60079-7:2007 / EN 60079-18:2009

What you need to know about these operating instructions

These operating instructions apply to the explosion-proof version of Rexroth valves and consist of the following three parts:

Part I General information 07010-X-B1

Part II Data sheet 23178-XE-B2

Part III Product-specific instructions 23178-XE-B3

Operating instructions 23178-XE-B0

You can find further information on the correct handling of Rexroth hydraulic products in our publication "General product information on hydraulic products" 07008.

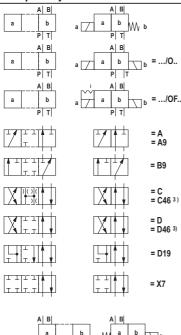
315

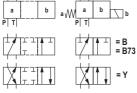
Table of contents

Contents	Page
Features	2
Ordering code and scope of delivery	3
Control spool symbols	4
Function, section	5
Technical data	6
Information on the explosion protection	7
Electrical connection	8
Performance limits	10
Characteristic curves	12
Dimensions	14
Installation conditions	15

Features

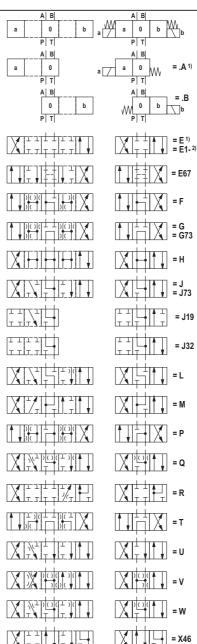
- Direct operated directional spool valve with solenoid actuation for proper use in explosive atmospheres
- Porting pattern according to ISO 4401-03-02-0-05
- Subplates available in FE/ZN version (see page 14)
- Wet-pin DC or AC solenoids
- Solenoid coil can be rotated by 90°
- Electrical connection with individual connection and cable gland
- With manual override, optional


Ordering code and scope of delivery


	· · · · ·						_	
WE 6	6X /∕	E		XE	Z2 /			
3 main ports = 3 4 main ports = 4 Size 6 = 6 Control spool symbol e.g. C, E, EA EB etc. Possible versions see page 4 Component series 60 to 69	, 					no co B08 : B10 :	ode = =	NBR seals FKM seals Important: compatibility of seals with hydraulic fluid used! Wthout throttle insert Throttle Ø 0.8 mm Throttle Ø 1.0 mm
(60 to 69: Unchanged installation a connection dimensions)	nd					B12 :	_ Use if flow >	Throttle Ø 1.2 mm performance limit of the ve, effective in channel P
Spring return Without spring return Without spring return with detent	= no code = O = OF				Z2 =	=	S	Electrical connection
High-power solenoid, wet-pin, with detachable solenoid c	oil	= E				for deta	ails see chap	and cable gland, oter Electrical connection
Direct voltage 24 V AC voltage 230, V 50/60 Hz For further ordering codes for other	r voltages,	= G24 = W230F	-	X	E = for deta			ection "increased safety", on the explosion protec- tion on page 7
see page 9 With manual override (standard)			= N					
Without manual override		= no	code					

Included in the scope of delivery:

Valve operating instructions with declaration of conformity in Part III $% \left({{\left| {{{\rm{B}}} \right|} \right|_{{\rm{B}}}} \right)$


Control spool symbols

- ¹⁾ **Example:** Control spool E with spool position "a", ordering code ..EA..
- ²⁾ Symbol E1-: P A/B pre-opening, caution in conjunction with differential cylinders due to pressure intensification!
- ³⁾ For valves with AC solenoids and detent, only C46/OF and D46/OF are admissible.

Other control spool variants upon request

Function, section

Directional valves of type WE are solenoid-actuated directional spool valves. They control the start, stop and direction of a fluid flow.

The directional valves basically consist of housing (1), one or two solenoids (2), control spool (3), and one or two return springs (4).

In the de-energized condition, the control spool (3) is held in the central position or in the initial position by the return springs (4) (except for impulse spools). The control spool (3) is actuated by wet-pin solenoids (2).

To ensure proper functioning, make sure that the pressure chamber of the solenoid is filled with oil.

The force of the solenoid (2) acts via the plunger (5) on the control spool (3) and pushes the latter from its rest position to the required end position. This enables the required direction of flow from $P \rightarrow A$ and $B \rightarrow T$ or $P \rightarrow B$ and $A \rightarrow T$.

After solenoid (2) was de-excitated, the return spring (4) pushes the control spool (3) back to its rest position.

An optional manual override (6) allows the control spool (3) to be moved without solenoid energization.

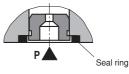
Type 4WE 6.. 6X/O...XE... (only possible with symbols A, C and D)

This version is a directional valve with two spool positions and two solenoids without detent. In the de-energized condition, there is no defined spool position. **Type 4WE 6.. 6X/OF... XE...** (impulse spool, only possible

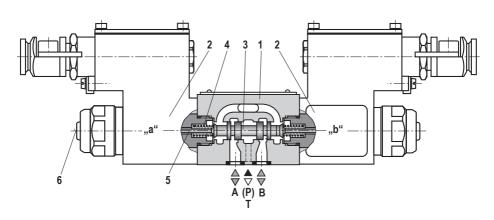
with symbols A, C and D) This version is a directional valve with two spool positions, two solenoids and one detent. It alternately locks the two spool positions and the solenoid therefore does not need to

Important:

be permanently energized.


Pressure peaks in the tank line to two or several valves can result in unintended control spool movements in case of valves with detent! We therefore recommend that separate return lines be provided or a check valve installed in the tank line.

The tank line must not be allowed to run empty. With corresponding installation conditions, a preload valve (preload pressure approx. 2 bar) must be installed.


Throttle insert (type 4WE 6..6X/...XE../B..)

The use of a throttle insert is required when, due to prevailing operating conditions, flows can occur during the switching processes, which exceed the performance limit of the valve.

It is inserted in channel P of the directional valve.

Type 4WE 6 E6X/.E..NXE...

general	
Installation position	Any
Ambient temperature range	-20 +70 ¹)
Storage temperature range	-20 +50
Admissible vibration load	20 2000 Hz amplitude 0.05 g ² /Hz (10 g RMS)
Weight	2.6 (with 1 solenoid); 4.0 (with 2 solenoids)
Surface protection	Galvanized coating

hydraulic

Maximum operating pressure	Port A, B, P	bar	350
	Port T	bar	210 With symbols A and B, port T must be used as leakage oil connection if the operating pressure exceeds the admissible tank pressure.
Maximum flow		l/min	70
Flow cross-section	with symbol Q		Approx. 6 % of the nominal cross-section
(spool position 0)	with symbol W		Approx. 3 % of the nominal cross-section
Hydraulic fluid		Mineral oil (HL, HLP) according to DIN 51524 ²); fast bio-degradable hydraulic fluids according to VDMA 24568 (see also RE 90221); HETG (rape seed oil) ²); HEPG (polyglycols) ³); HEES (synthetic esters) ³); flame-resistant hydraulic fluid HFC according to ISO 12922 ⁴). Other hydraulic fluids on request Ignition temperature > 180 °C	
Hydraulic fluid temperature range	ge	°C	-20 +80 (NBR seals)
			-15 +80 (FKM seals)
Viscosity range mm ² /s		2.8 500	
Maximum admissible degree of contamination of the hydrau- lic fluid, cleanliness class according to ISO 4406 (c)		Class 20/18/15 5)	

- ¹⁾ Observe the "Special conditions for safe use" on page 7.
- 2) Suitable for NBR and FKM seals
- 3) Suitable only for FKM seals
- $^{4)}$ Only in connection with NBR seals, max. admissible pressure 210 bar, Δp < 15 bar, hydraulic fluid temperature max. 60 °C
- More information is available from our sales staff.
- ⁵⁾ The cleanliness classes specified for the components must be adhered to in hydraulic systems. Effective filtration prevents faults and at the same time increases the life cycle of the components. For the selection of the filters see www.boschrexroth.com/filter.

electric				
Voltage type			Direct voltage	Alternating voltage 50/60 Hz
Available voltages		V	24, 48, 96, 110	110, 230
Voltage tolerance (nominal voltage)		%	±	10
Admissible residual ripple		%	< 5	-
Duty cycle/operating mode according to	VDE 0580		S1 (continuc	ous operation)
Switching time according to ISO 6403	ON	ms	30 55	40 80
	OFF	ms	10 15	40 50
Switching frequency		1/h	up to 15000	up to 7200
Nominal power at ambient temperature	20 °C	W		17
Maximum power with 1.1 x nominal volt ent temperature 20 °C	tage and ambi-	W	21	0.6
Protection class according to EN 60529		IP	66 ¹⁾	

321

1) If installed properly

Important:

Solenoids for AC voltage are DC solenoids with integrated rectifier

Information on the explosion protection

Area of application in accordance with the Explosion Protection Directive 94/9/EC	II 2G
Type of protection Valve	c (EN 13463-5: 2011)
Maximum surface temperature ²) °C (Temperature class)	135 °C (T4)
Type of protection Solenoid according to EN 60079-7:2007 / EN 60079-18:2009	Ex e mb IIC T4 Gb
Type examination certificate Solenoid	KEMA 02ATEX2240 X
"IECEx Certificate of Conformity" Solenoid	IECEx DEK 12.0068X
Special conditions for safe use	 In case of valves with two solenoids, maximally one of the solenoids may be energized at a time.
	 Simultaneously energizing several valves in bank as- sembly is possible if the ambient temperature does not exceed 60 °C.
	 In case of bank assembly, if only one of the solenoids is energized at a time, and during individual operation, the maximum ambient temperature may not exceed 70 °C.
	 The maximum temperature of the valve casing surface is 120 °C. This has to be considered when selecting the connection cable and/or contact of the connection cable with the casing surface is to be prevented.
Ambient temperature range °C	-20 +70 ³⁾

¹⁾ If the electrical connection is correctly installed

²⁾ Surface temperature > 50 °C, provide contact protection

3) Observe the "Special conditions for safe use"

Electrical connection

The type-examination tested valve solenoid of the valve is equipped with a terminal box and a type-tested cable gland. The connection is polarity-independent.

Solenoids to be connected to AC voltage are equipped with an integrated rectifier.

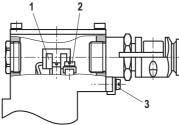
3

Properties of the connection terminals

When establishing the electrical connection, the protective earthing conductor (PE $\stackrel{-}{=}$) has to be connected properly.

Position	Function	Connectable line cross-section
1	Operating voltage connection	Single-wire 0.75 2.5 mm ²
		Finely stranded 0.75 1.5 mm ²
2	Connection for protective earthing conductor	Single-wire max. 2.5 mm ²
		Finely stranded max. 1.5 mm ²
3	Connection for potential equalization conductor	Single-wire 4 6 mm ²
		Finely stranded 4 mm ²

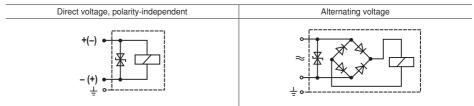
Cable gland


Important:

Type approval	II 2G Ex e IIC Gb
Threaded connection	M20 x 1.5
Protection class according to EN 60529	IP66 ¹⁾
Line diameter mm	911
Sealing	Outer sheath sealing

Connection line

Line type	Non-armored cables and lines (outer sheath sealing)
Temperature range °C	-30 > +110


1) If installed properly

Hydraulics | Bosch Rexroth AG 9/16

Electrical connection

Circuit diagrams

Over-current fuse and switch-off voltage peaks

Important:

Corresponding to the rated current, a fuse according to DIN 41571 and EN / IEC 60127 has to be connected ahead of every valve solenoid (max. $3 \times I_{rated}$).

The shut-off threshold of the fuse has to match the prospective short-circuit current of the supply source.

The prospective short-circuit current of the supply source may amount to a maximum of 1500 A.

This fuse may only be installed outside the explosive area or must be of an explosion-proof design.

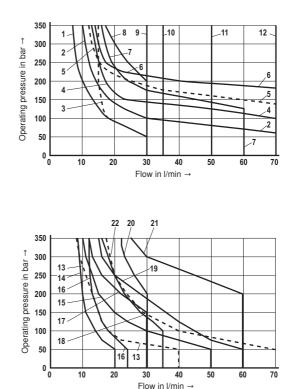
When inductivities are switched off, voltage peaks are the result which may cause faults in the connected control electronics. For this reason, the valve solenoids comprise an interference protection circuit which dampens this voltage peak to the voltage value shown in the table.

Voltage data in the valve type code	Nominal volt- age valve solenoid	Rated current valve solenoid	Rated current external miniature fuse: Medium time-lag (M) according to DIN 41571 and EN/IEC 60127	Rated voltage of exter- nal miniature fuse: Medium time-lag (M) according to DIN 41571 and EN/IEC 60127	Maximum voltage value upon switch-off	Interference protection circuit
G24	24 V DC	0.708 A DC	800 mA	250 V	–90 V	
G48	48 V DC	0.354 A DC	400 mA	250 V	–200 V	Suppressor
G96	G96 96 V DC 0.177 A DC		200 mA	250 V	–370 V	bi-directional
G110	110 V DC	0.155 A DC	200 mA	250 V	–390 V	
W110R	110 V AC	0.163 A AC	200 mA	250 V	–3 V	Bridge recti-
W230R	W230R 230 V AC 0.0		80 mA	250 V	–3 V	fier and sup- pressor diode

Performance limits (measured with HLP46, $\vartheta_{oil} = 40 \text{ °C} \pm 5 \text{ °C}$)

Important:

The specified switching power limits are valid for operation with two directions of flow (e.g. from P \rightarrow A and simultaneous return flow from B \rightarrow T).

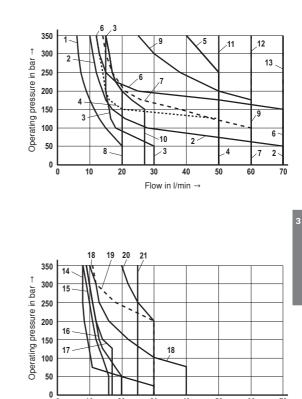

Due to the flow forces acting within the valves, the admissible switching power limit may be considerably lower with only one direction of flow (e.g. from P \rightarrow A while port B is blocked).

(In such cases, please consult us.)

The switching power limits were established while the solenoids were at operating temperature, at 10% undervoltage and without tank preloading.

Performance limits of the valves with DC solenoids "G24"

Character- istic curve	Control spool symbol					
1	A, B					
2	J32, L, U					
3	V					
4	D, C, Y					
5	Q, W					
6	E					
7	A/O, A/OF					
8	F, P					
9	Т					
10	G					
11	H, D/O					
12	E1 ¹⁾ , R ²⁾ , M					
13	A9 / B9					
14	E67					
15	J19, B-T					
16	B73					
17	X46					
18	J73					
19	J19, (A-T)					
20	G73					
21	X7					
22	J19 (P-A)					



1) P-A/B pre-opening

2) Return flow from actuator to tank

Performance limits of the valves with DC solenoids "G48", "G96" and "G110" as well as with AC solenoids "W110R" and "W230R" $\,$

Character- istic curve	Control spool symbol
1	A, B
2	J, L, U, Q, W
3	V
4	D, C, Y
5	C46/OF, D46/OF
6	E
7	A/O
8	F, P, T
9	R ²⁾
10	G
11	Н
12	M, D/O, C/O
13	E1 1)
14	B9
15	J32 (B-T)
16	J19, B-T
17	D19
18	J19, (A-T)
19	X7
20	G73
21	J32 (A-T)

30

40

Flow in I/min →

50

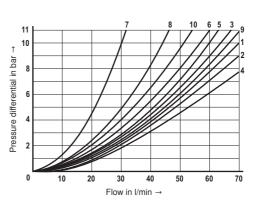
60

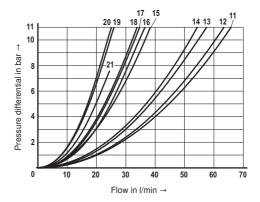
70

10

20

0

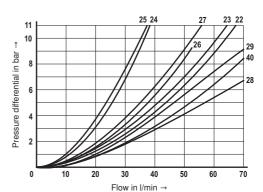

¹⁾ P–A/B pre-opening

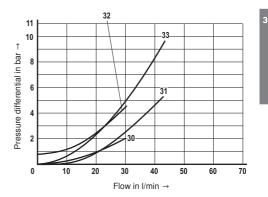

2) Return flow from actuator to tank

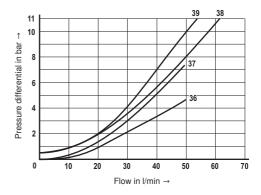
Δp - q_V characteristic curves

Characteristic curve selection

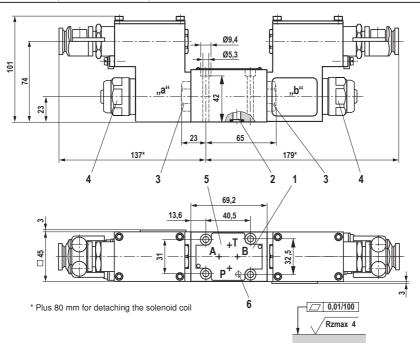
Control		Direction of flow											
spool symbol	P – A	P – B	A – T	B – T	B – A	P – T							
А, В	3	3	-	-	-	-							
C46, C	1	1	3	1	-	-							
D46, D, Y	5	5	3	3	-	-							
E	3	3	1	1	-	-							
F	1	3	1	1	-	-							
Т	10	10	9	9	-	8							
Н	2	4	2	2	-	9							
J, Q	1	1	2	1	-	-							
L	3	3	4	9	-	-							
М	2	4	3	3	-	-							
Р	3	1	1	1	-	-							
R	5	5	4	-	7	-							
V	1	2	1	1	-	-							
W	1	1	2	2	-	-							
U	3	3	9	4	-	-							
G	6	6	9	9	-	8							
G73	20	20	19	19	-	16							
E67	14	13	11	12	-	-							
B9	17	15	-	-	-	-							
B73	18	21	-	-	-	-							






Characteristic curves (measured with HLP46, $\vartheta_{oil} = 40 \text{ °C} \pm 5 \text{ °C}$ and p = 100 bar)

∆*p-q*_V characteristic curves (continued)


Characteristic curve selection										
Control	Direction of flow									
spool symbol	P – A	P – B	A – T	B – T	B – A	P – T				
J73	24	25	23	22	-	-				
J19	27	-	39	39	-	-				
X7	29	-	-	28	-	-				
X46	32	33	31	30	-	-				
J32	22	-	-	40	-	-				
D19	36	-	38	37	-	-				

Dimensions (dimensions in mm)

Required surface quality of the valve contact surface

- 1 Name plate
- 2 Identical seal rings for ports A, B, P, T
- 3 Plug screw for valves with one solenoid
- 4 Mounting nut with hexagon SW32 tightening torque $M_A = 4 + 1$ Nm
- 5 Porting pattern according to ISO 4401-03-02-0-05
- 6 Receiving hole for locating pin according to ISO 4401-03-02-0-05, locating pin, mat. no. R900005694 (must be ordered separately)

Valve mounting screws

For reasons of stability, exclusively use the following valve mounting screws:

4 hexagon socket head cap screws ISO 4762-M5x50-10.9-flZn-240h-L (friction coefficient 0.09 – 0.14 according to VDA 235-101)

Material no. R913000064

(must be ordered separately)

Subplates

(without locating hole) (with locating hole) (with locating hole) G 341/01 FE/ZN (G3/8) G 502/01 FE/ZN (G1/2) G 341/60 FE/ZN (G1/4) G 342/06 FE/ZN (G1/4) G 342/06 FE/ZN (G1/2)

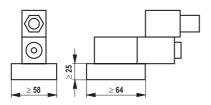
with dimensions as in the data sheet 45052 (must be ordered separately)

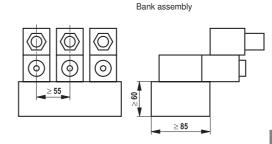
Important:

Subplates are no components in the sense of directive 94/9/EC and can be used after the manufacturer of the overall system has assessed the risk of ignition.

The G...FE/ZN versions are free from aluminum and/or magnesium and galvanized.

328


Installation conditions (dimensions in mm)


	Individual assembly	Bank assembly	
Subplate dimensions	Minimum dimensions	Minimum cross-section	
	Length \ge 64, width \ge 58, height \ge 25	Height \geq 60, width \geq 85	
Thermal conductivity of the subplate	≥ 38 W/mK (EN-GJS-500-7)		
Minimum distance between the longitu- dinal valve axes	≥ 55 mm		

329

Schematic diagram

Individual assembly

Important:

Observe the "Special conditions for safe use" on page 7.

Bosch Rexroth AG Hydraulics Zum Eisengießer 1 97816 Lohr am Main, Germany Phone +49 (0) 93 52 / 18-0 documentation@boschrexroth.de www.boschrexroth.de © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Electric Drives and Controls

Hydraulics

Pneumatics

331

Service

Replaces: 04.10

1/12

4/3, 4/2 and 3/2 directional valves with wet-pin DC solenoids

Type WE 6 ../.E..XN...

Size 6 Component series 6X Maximum operating pressure 350 bar Maximum flow 80 l/min

ATEX units For explosive areas

Part II Data sheet

Information on the explosion protection:

- Area of application in accordance with the Explosion Protection Directive 94/9/EC: II 3G; II 3D
- Type of protection of the valve solenoid
 Ex nA IIC T3 Gc according to EN 60079-15:2010 and
 Ex tc IIIC T140°C Dc IP65 according to EN 60079-31:2009

What you need to know about these operating instructions

These operating instructions apply to the explosion-proof version of Rexroth valves and consist of the following three parts:

- Part I General information 07010-X-B1
- Part II Data sheet 23178-XN-B2
- Part III Product-specific instructions 23178-XN-B3

Operating instructions 23178-XN-B0

You can find further information on the correct handling of Rexroth hydraulic products in our publication "General product information on hydraulic products" 07008.

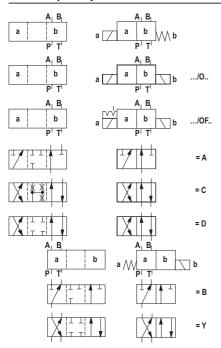
RE 23178-XN-B2/08.12

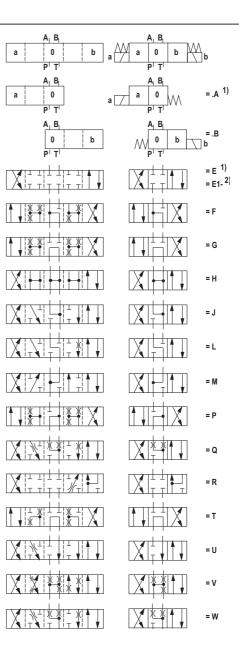
Table of contents

Contents	Page
Features	2
Ordering code and scope of delivery	3
Control spool symbols	4
Function, section	5
Technical data	6
Information on the explosion protection	7
Electrical connection	8
Performance limits	9
Characteristic curves	9
Device dimensions	10
Installation conditions	11

Features

- Direct operated directional spool valve with solenoid actuation for proper use in explosive atmospheres
- Porting pattern according to ISO 4401-03-02-0-05
- Subplates available in FE/ZN version (see page 10)
- Wet-pin DC solenoids
- Solenoid coil rotatable by 90 °
- Electrical connection as individual connection with connector according to EN 175301-803, design A
- With manual override, optional


Ordering code and scope of delivery


Γ	_	WE	6		6	sx/		E	G2	24	XN	1	(4 /					
3 main ports = 3 4 main ports = 4 Size Control spool symbol e.c. possible version see p Component series 60 (60 to 69: Unchanged connection dimension:	. C, age to 6	9	EB		= 6X									no (B08 B10	code = =	Obse s with h	NBR set FKM set Importat erve compatibility hydraulic fluid use ithout throttle ins Throttle Ø 0.8 n Throttle Ø 1.0 n	eals int: / of ed. sert
Spring return Without spring return Without spring return,			t	=	= no c	ode = 0 = OF								B12 ປະ	se if flow	lve, eff	Throttle Ø 1.2 n ormance limit of t fective in channe ctrical connecti	the el P
High-power solenoid, with detachable valve Direct voltage 24 V							= E	G	24				К4	=	Solenoid	For	ut mating connec details see chap lectrical connecti	oter
With manual override Without manual overri		ndard)						= n	= no co	N9 de	3	XN :	=	Ex	Deta	ails see	ion "Non-sparkin e information on t n protection page	the

Included in the scope of delivery:

Valve operating instructions with declaration of conformity in part III

Control spool symbols

- Example: Control spool E with spool position "a", ordering code ..EA..
- ²⁾ Control spool E1- : P → A/B pre-opening, Caution in conjunction with differential cylinders due to pressure intensification!

Other control spool variants upon request

Function, section

Directional valves of type WE are solenoid operated directional spool valves. They control the start, stop and direction of a fluid flow.

The directional valves basically consist of housing (1), one or two solenoids (2), control spool (3), and one or two return springs (4).

In the de-energized condition, control spool (3) is held in the central position or in the initial position by the return springs (4) (except for impulse spools). The control spool (3) is actuated by wet-pin solenoids in hydraulic fluid (2).

To ensure proper functioning, care must be taken that the pressure chamber of the solenoid is filled with hydraulic fluid.

The force of solenoid (2) acts via plunger (5) on control spool (3) and pushes the latter from its rest position to the required end position. This enables the necessary direction of flow from $P \rightarrow A$ and $B \rightarrow T$ or $P \rightarrow B$ and $A \rightarrow T$

After solenoid (2) was de-energized, return spring (4) pushes control spool (3) back to its rest position.

An optional manual override (6) allows control spool (3) to be moved without solenoid energization.

Type 4WE 6 ..6X/O...XN... (only possible with control spool symbols A, C and D)

This version is a directional valve with two spool positions and two solenoids without detent.

In the de-energized condition, there is no defined spool position.

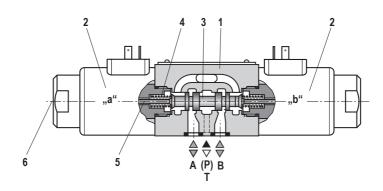
Type 4WE 6 ..6X/OF... XN... (impulse spool, only possible with control spool symbols A, C and D)

This version is a directional valve with two spool positions, two solenoids and one detent. It alternately locks the two spools in position and the solenoid therefore needs not to be permanently energized.

Important:

Pressure peaks in the tank line to two or several valves can result in unintended spool movements in case of valves with detent! We therefore recommend that separate return lines be provided or a check valve installed in the tank line.

The tank line must not be allowed to run empty. With corresponding installation conditions, a preload valve (preload pressure approx. 2 bar) must be installed.


Throttle insert (valve type 4WE 6 ..6X/...XN../B..)

The use of a throttle insert is required when due to prevailing operating conditions, flows can occur during the switching processes, which exceed the performance limit of the valve. It is inserted in channel P of the directional valve.

Type 4WE 6 E6X/...E..XNK4...

Technical data

general					
Installation positi	on	Any			
Ambient temperature range °C			-20 +50		
Storage tempera	ture range	°C	+15 +30		
Admissible vibrat	tion load		20 2000 Hz amplitude 0.05 g ² /Hz (10 g RMS)		
Weight	with 1 solenoid	kg	2.3		
	with 2 solenoids	kg	2.85		
Surface protectio	n		Galvanically coated		

hydraulic

Maximum operating pressure	Port A, B, P	bar	350			
	Port T	bar	210 With symbols A and B, port T must be used as leak- age oil connection if the operating pressure exceeds the admissible tank pressure.			
Maximum flow		l/min	80			
Flow cross-section	Control spool Q		Approx. 6 % of the nominal cross-section			
(spool position 0)	Control spool W		Approx. 3 % of the nominal cross-section			
Hydraulic fluid			Mineral oil (HL, HLP) according to DIN 51524 ¹); fast bio-degradable hydraulic fluids according to VDMA 24568 (see also RE 90221); HETG (rape seed oil) ¹); HEPG (polyglycols) ²); HEES (synthetic esters) ²); Flame- resistant hydraulic fluid HFC according to ISO 12922 ³ , other hydraulic fluids on request, ignition temperature > 190 °C			
Hydraulic fluid temperature rar	nge	°C	-20 +80 (for NBR seals) 4)			
			-15 +80 (for FKM seals) ⁴⁾			
Viscosity range		2.8 500				
Maximum permitted degree of fluid - cleanliness class accord		Class 20/18/15 5)				

1) Suitable for NBR and FKM seals

- ²⁾ Suitable **only** for FKM seals
- ³⁾ Only in connection with NBR seals, max. admissible pressure 210 bar, Δp < 15 bar, hydraulic fluid temperature max. 60 °C
- More information is available from our sales staff.
- ⁴⁾ Observe the "Special conditions for safe use" on page 7.
- ⁵⁾ The cleanliness classes specified for the components must be adhered to in hydraulic systems. Effective filtration prevents faults and at the same time increases the life cycle of the components. For the selection of the filters see www.boschrexroth.com/filter.

Technical data

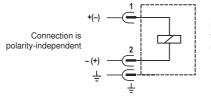
electric					
Voltage type			Direct voltage (DC)		
Nominal voltage		V	24		
Voltage tolerance		%	±10		
Admissible residual ripple		%	< 5		
Duty cycle / operating mode ac	cording to VDE 0580		100 % / S1 (continuous operation)		
Switching times according	On	ms	25 45		
to ISO 6403	Off	ms	10 25		
Switching frequency		1/h	up to 15000		
Nominal power at ambient temp	perature 20 °C	W	23		
Maximum power with 1.1 x nom and ambient temperature 20 °C		28.8			
Protection class according to E	N 60529		IP 65 ¹⁾		

¹⁾ If suitable mating connectors are used (protection class at least IP 65) and in case of appropriate assembly.

Information on the explosion protection

Area of application as per directive 94/9/EC	II 3G	II 3D			
Type of protection of the valve solenoid according to EN 60079-15: 2006 / EN 61241-1: 2007	Ex nA IIC T3 Gc	Ex tc IIIC T140°C Dc IP65			
Maximum surface temperature 1) °C	140	140			
Type examination certificate Solenoid	BVS 12 AT	EX E 062 X			
Type of protection Valve	c (EN 134	63-5:2011)			
Special conditions for safe use	- Connection lines must be pa	ssed in a pull-relieved way.			
	 The valve is to be installed s can take effect. 	o that no impact stresses > 4 J			
	 In order to avoid dangers ca base and/or subplate on whi be electrically conductive an tial bonding. 	ch the valve is to be fitted must			
	 The valve solenoid must not be installed close to charge- generating processes. 				
	- Dust layers with a thickness > 50 mm are not admissible.				
	 In case of valves with two solenoids, maximally one of the solenoids may be energized at a time. 				
	energized at a time, and in c +80 °C	s long as only one solenoid is			
	 The maximum temperature of the valve casing surface is 110 °C. This has to be considered when selecting the connection cable and/or contact of the connection cable with the casing surface is to be prevented. 				
Ambient temperature range °C	-20 +50				
Requirements on the mating connector					
Temperature at the connector of the valve solenoid °C	≥ 100				
Area of application as per directive 94/9/EC	II 3G; II 3D				

IP 65


Protection class in plugged condition

¹⁾ Surface temperature > 50 °C, provide contact protection

The valves are equipped with a plug-in connector according to EN 175301-803, design A.

Information on the suitability of mating connectors is available on page 7.

Circuit diagram

For protection of the valve solenoids, suitable measures are to be taken which limit the switch-off overvoltages to a maximum of 500 V.

Over-current fuse and switch-off voltage peak

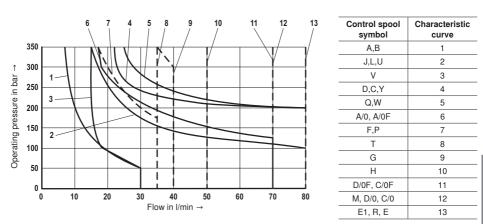
Important:

A fuse appropriate for the solenoid's rated current (max. 3 x I_{rated} according to DIN 41571 and/or IEC 60127) or a protective motor switch with short-circuit and thermal instantaneous tripping must be connected to each valve solenoid as short-circuit protection. The cut-off capacity of the fuse must match or exceed the short-circuit current of the supply source.

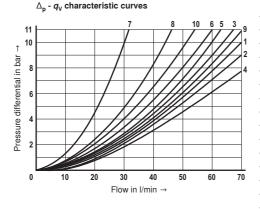
This fuse or protective motor switch may only be fitted outside the explosive area or must be of an explosion-proof design. When an inductivity is switched off, a voltage peak results which may cause failures or damage in the connected control electronics.

Voltage data in the	Nominal voltage	Rated current	Recommended pre-fuse characteristics medium time-lag according to DIN EN 60127-1: 2011
valve type code	Valve solenoid	Valve solenoid	
G24	24 V DC	0.95 A DC	1 A

Performance limits (measured with HLP46, the equation of the e

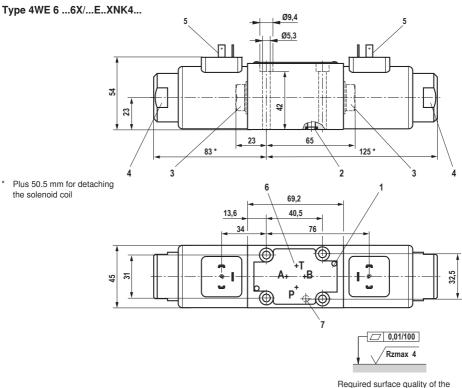

Important:

The specified switching power limits are valid for operation with two directions of flow (e.g. from P \rightarrow A and simultaneous return flow from B \rightarrow T).


direction of flow (e.g. from $P \rightarrow A$ while port B is blocked)! (In such cases, please consult us.)

Due to the flow forces acting within the valves, the admissible switching power limit may be considerably lower with only one

The switching power limit was established while the solenoids were at operating temperature, at 10 % undervoltage and without tank pre-loading.


Characteristic curve (measured with HLP46, $\vartheta_{oil} = 40 \text{ °C} \pm 5 \text{ °C}$)

Characteristic curve selection

Control spool	Direction of flow						
symbol	P – A	P – B	A – T	B – T	B – A	P – T	
А, В	3	3	-	-	-	-	
C46, C	1	1	3	1	-	-	
D46, D, Y	5	5	3	3	-	-	
E	3	3	1	1	-	-	
F	1	3	1	1	-	-	
т	10	10	9	9	-	8	
н	2	4	2	2	-	9	
J, Q	1	1	2	1	-	-	
L	3	3	4	9	-	-	
М	2	4	3	3	-	-	
Р	3	1	1	1	-	-	
R	5	5	4	-	7	-	
V	1	2	1	1	-	-	
W	1	1	2	2	-	-	
U	3	3	9	4	-	-	
G	6	6	9	9	-	8	

Device dimensions (dimensions in mm)

Required surface quality of the valve contact surface

1 Name plate

- 2 Identical seal rings for ports A, B, P, T
- 3 Plug screw for valves with one solenoid
- 4 Mounting nut with double edge SW32 Tightening torque $M_A = 8 + 1$ Nm
- 5 Plug-in connector according to EN 175301-803, design A
- 6 Porting pattern according to ISO 4401-03-02-0-05
- 7 Receiving hole for locating pin according to ISO 4401-03-02-0-05, (locating pin must be ordered separately, mat. no. R900005694)

Valve mounting screws

For reasons of stability, exclusively use the following valve mounting screws:

4 hexagon socket head cap screws ISO 4762-M5x50-10.9-flZn-240h-L (friction coefficient 0.09 – 0.14 according to VDA 235-101)

Material no. **R913000064** (must be ordered separately)

Subplates

(without locating hole)

(with locating hole)

G 341/01 FE/ZN (G1/4) G 342/01 FE/ZN (G3/8) G 502/01 FE/ZN (G1/2) G 341/60 FE/ZN (G1/4) G 342/60 FE/ZN (G3/8) G 502/60 FE/ZN (G1/2)

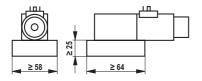
with dimensions as in the data sheet 45052 (must be ordered separately)

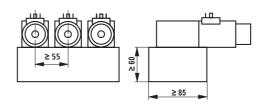
Important:

Subplates are no components in the sense of directive 94/9/EC and can be used after the manufacturer of the overall system has assessed the risk of ignition.

The G...FE/ZN versions are free from aluminum and/or magnesium and galvanized.

340


Installation conditions (dimensions in mm)


	Individual assembly	Bank assembly
Subplate dimensions	Minimum dimensions	Minimum cross-section
	Length \ge 64, width \ge 58, height \ge 25	Height \ge 60, width \ge 85
Thermal conductivity of the subplate	≥ 38 W/mK (E	N-GJS-500-7)
Minimum distance between the longitu- dinal valve axes	≥ 55	mm

341

Schematic diagram

Individual assembly

Bank assembly

Important:

With regard to the hydraulic fluid temperature, observe the "Special conditions for safe use" on page 7.

Bosch Rexroth AG Industrial Hydraulics Zum Eisengießer 1 97816 Lohr am Main, Germany Phone +49 (0) 93 52 / 18-0 documentation@boschrexroth.de

www.boschrexroth.de

© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Electric Drives and Controls

Hydraulics

Service

343

1/10

4/3, 4/2 and 3/2 directional valve with manual actuation

RE 22280-XC-B2/07.09

Type WMM 6...XC

Size 6 Component series 5X Maximum operating pressure 315 bar Maximum flow 60 l/min

ATEX devices For explosive areas

Part II Technical data sheet

Explosion protection information:

Area of application according to explosion protection directive and ignition protection type

- Area of application according to directive 94/9/EC IM2, II2G, II2D, II3G, II3D
- Ignition protection type of the valve: c (EN 13463-5:2004-03)

What you should know about these operating instructions

These operating instructions apply to Rexroth valves in explosion-proof design and consist of the following three parts:

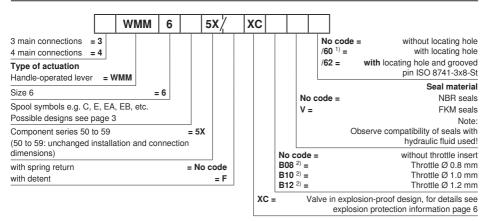
Part I General information RE 07010-X-B1

Part II Technical data sheet RE 22280-XC-B2

Part III Product-specific instructions RE 22280-XC-B3

RE 22280-XC-B0

Further information regarding the correct handling of hydraulic products of Rexroth is contained in our publication "General product information on hydraulic products" RE 07008.

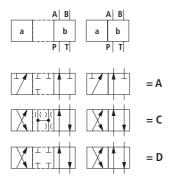

Table of contents

Contents	Page
Features	2
Ordering code and scope of delivery	2
Spool symbols	3
Types of actuation	4
Function, section	5
Technical data	6
Explosion protection information	6
Actuating force/torque	7
Characteristic curves	7
Performance limits	8
Unit dimensions	9

Features

- Direct operated directional spool valve for the intended use in explosive atmospheres
- Actuating elements:
- Handle-operated lever
- Porting pattern according to DIN 24340 form A (without locating hole)
- Porting pattern according to ISO 4401-03-02-0-05 (with locating hole)

Ordering code and scope of delivery


¹⁾ Grooved pin ISO 8741-3x8-St-A2C, material no. **R900005076** (separate order)

²⁾ Application in case of flow > performance limit of the valve, effective in the P channel.

Included in the scope of delivery:

Valve operating instructions with declaration of conformity in part III

Spool symbols

A B

а

a 0 b

b

b

0

PT

A B

PT

A B

P T

0 b

A B

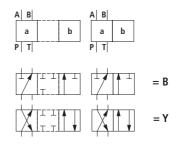
P T

A B

PT

A B

PT


0

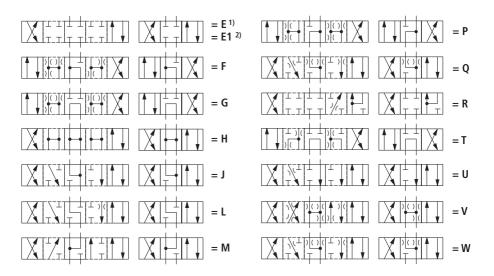
0

а

а

0

1) Example:


= .A 1)

= .B ¹⁾

- Spool E with spool position "a" \rightarrow ordering code .. EA..
- Spool E with spool position "b" \rightarrow ordering code .. EB..

²⁾ Symbol E1-: $P \rightarrow A/B$ pre-opening

Be careful because of the pressure intensification with singlerod cylinders!

345

Types of actuation

	Ordering code	Type of actuation	
Spool symbol	Actuation side	Detent	Handle-operated lever Type WMM 6XC
A, C, D,		/F	
В, Ү,			
		/F	
	"a" ¹⁾ = .A	/F	
E, E1, F, G, H,	"b" 1)	/F	
J, L M, P, Q, R, T, U,	= .B		
V, W		/F	
			A B A 0 b P T

1) See spool symbols page 3

Function, section

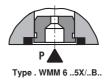
Valves of type WMM 6...XC are manually actuated directional spool valves.

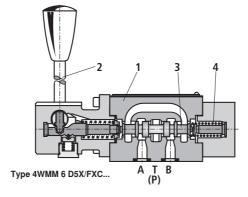
They control the start, stop and direction of a flow.

The directional valves basically consist of housing (1), an actuating element (2) (handle-operated lever), the control spool (3), and one or two return springs (4).

In the de-energized condition, control spool (3) is held in the central or initial position by the return springs (4).

By means of the actuating elements, the control spool (3) is pushed in the desired spool position.


Detent


Directional valves with handle-operated lever are optionally available as 2- or 3-position valves with detent. When using actuating elements with detent, each spool position can be fixed, depending on the valve type.

Throttle insert

347

The use of a throttle insert is required when due to prevailing operating conditions, flows can occur during the switching processes, that are higher than the performance limit of the valve. It is inserted in channel P of the directional valve.

Technical data

general	
Weight kg	ca. 1.4
Installation position	Any
Ambient temperature range °C	-30 +80 (NBR seals) -20 +80 (FKM seals)

hydraulic

Maximum operating	– Port A, B, P	bar	315	
pressure	– Port T	bar	100 With symbols A or B, port T must be used as leakage port if the operating pressure exceeds the admissible tank pressure, 2 bar minimum pre-load pressure required.	
Maximum flow		l/min	60	
Flow cross-section	– Spool symbol Q		6 % of nominal cross-section	
	 Spool symbol W 		3 % of nominal cross-section	
Hydraulic fluid			Mineral oil (HL, HLP) according to DIN 51524 ¹); quickly bio- degradable hydraulic fluids according to VDMA 24568 (also see RE 90221); HETG (rape seed oil ¹); HEPG (polyglycols) ²); HEES (synthetic ester) ²); HEC according to ISO 12922 ³); other hydraulic fluids upon request	
Hydraulic fluid temperature range °C		−30 +80 (NBR seals) −20 +80 (FKM seals)		
Viscosity range mm ² /s		s 2.8 500		
Maximum permitted degree of contamination of the hy- draulic fluid - cleanliness class according to ISO 4406 (c)		Class 20/18/15 4)		

Explosion protection information

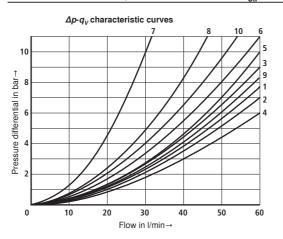
Area of application according to directive 94/9/EC	IM2; II2G; II2D; II3G; II3D
Ignition protection type Valve	c (EN 13463-5:2004-03)
Maximum surface temperature ⁵) °C Temperature class ⁵)	100 T4
Special conditions for a safe use	
Ambient temperature range °C	-20 +80

- 1) Suitable for NBR and FKM seals
- 2) Suitable only for FKM seals
- 3) Suitable only for NBR seals
- ⁴⁾ The cleanliness classes specified for the components must be adhered to in hydraulic systems. Effective filtration prevents malfunction and at the same time increases the service life of the components. For the selection of filters, see data sheets RE 50070, RE 50076, and RE 50081.

⁵⁾ The specified max. temperature or temperature class refers to the max. permitted fluid and ambient temperature. A max. pressure drop across the valve results in a surface temperature 20 K above the fluid temperature, i.e. application in T6 is possible if the fluid and ambient temperature is max. 60 °C.

Note:

The ignition temperature of the hydraulic fluid used must be 50 K higher than the surface temperature of the valve.


Actuating force/torque

		Type WMM 6XC
Maximum actuating torque	Ncm	_
Actuating force - without tank pressure, with/without detent	Ν	20
 with tank pressure 150 bar 	Ν	30

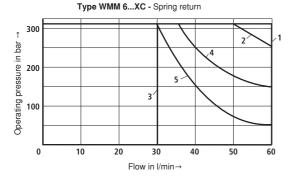
Calculation formula for actuating force at the roller plunger ($F_{\rm R}$) with tank pressure:

 $\boldsymbol{F}_{R} = \boldsymbol{F}_{w/o t \text{ pressure}} + \boldsymbol{p}_{T} \times 1.4 \text{ N/bar}$

Characteristic curves (measured with HLP46, $\vartheta_{oil} = 40 \degree C \pm 5 \degree C$)

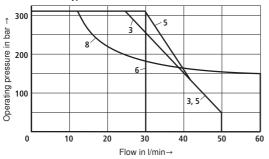
Spool	Flow direction				
symbols	P–A	P–B	A–T	B–T	
A	3	3	-	-	
В	3	3	-	-	
С	1	1	3	1	
D	5	5	3	3	
E	3	3	1	1	
F	1	3	1	1	
G	6	6	9	9	
Н	2	4	2	2	
J	1	1	2	1	
L	3	3	4	9	
М	2	4	3	3	
Р	3	1	1	1	
Q	1	1	2	1	
R	5	5	4	-	
Т	10	10	9	9	
U	3	3	9	4	
V	1	2	1	1	
W	1	1	2	2	
Y	5	5	3	3	

3

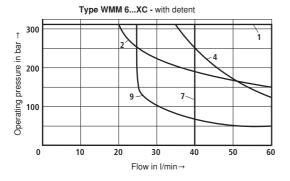

More characteristic curves:

7 Spool symbol "R" in spool position "b" (A \rightarrow B) 8 Spool symbols "G" and "T" in central position (P \rightarrow T)

Performance limits (measured with HLP46, $\vartheta_{oil} = 40 \degree C \pm 5 \degree C$)


The specified switching power limits are valid for operation with two directions of flow (e.g. from P to A and simultaneous return flow from B to T).

Due to the flow forces acting within the valves, the permissible switching power limits may be considerably lower with only one direction of flow (e.g. from P to A while port B is blocked)! In such cases, please consult us.

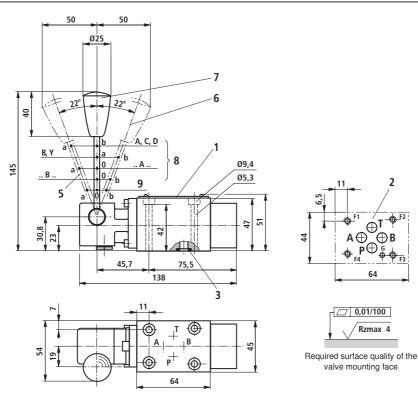


Characteristic curve	Spool symbol
1	E, E1, M, J, L, Q, U, W, C, D, Y, G, H, R
2	А, В
3	V
4	F, P
5	Т

Type	WMM	6XC -	with	detent
------	-----	-------	------	--------

Characteristic curve	Spool symbol
3	A, B
5	F
6	V
8	R

Characteristic curve	Spool symbol
1	E1, M, H, C, D, Y
2	E, J, Q, L, U, W
4	G, T
7	Р
9	Т


2

64

Rzmax 4

F2

Unit dimensions (dimensions in mm)

- 1 Nameplate
- 2 Porting pattern according to DIN 24340 form A (without locating hole), or ISO 4401-03-02-0-05 (with locating hole)
- 3 Identical seal rings for ports A, B, P, and T
- 5 Spool position "a"
- 6 Spool position "b"
- 7 Spool position "0", "a", and "b" (a and b with 2-position valves)
- 8 2-position valve
- 9 3-position valve

Valve mounting screws

For reasons of stability, only the following valve mounting screws may be used:

4 hexagon socket head cap screws ISO 4762-M5x50-10.9-flZn-240h-L (friction coefficient 0.09-0.14 according to VDA 235-101) Material no. R913000064 (must be ordered separately)

Bosch Rexroth AG Hydraulics Zum Eisengießer 1 97816 Lohr am Main, Germany Phone +49 (0) 93 52 / 18-0 Fax +49 (0) 93 52 / 18-23 58 documentation@boschrexroth.de © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Electric Drives and Controls

Hydraulics

Service

1/12

4/3, 4/2 and 3/2 directional valve with fluidic actuation

RE 22282-XC-B2/07.09

Type WP 6...XC, WH 6...XC

Size 6 Component series 6X (WP), 5X (WH) Maximum operating pressure 315 bar Maximum flow 60 l/min

> ATEX devices For explosive areas

Part II Technical data sheet

Explosion protection information:

Area of application according to explosion protection directive and ignition protection type

- Area of application according to directive 94/9/EC IM2, II2G, II2D, II3G, II3D
- Ignition protection type of the valve: c (EN 13463-5:2004-03)

What you should know about these operating instructions

These operating instructions apply to Rexroth valves in explosion-proof design and consist of the following three parts:

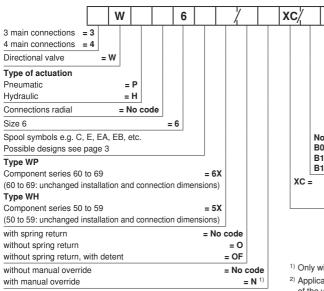
Part I General information RE 07010-X-B1

Part II Technical data sheet RE 22282-XC-B2

Part III Product-specific instructions RE 22282-XC-B3

RE 22282-XC-B0

Further information regarding the correct handling of hydraulic products of Rexroth is contained in our publication "General product information on hydraulic products" RE 07008.



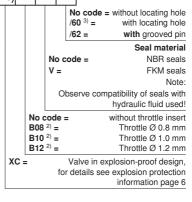

Features

Table of contents

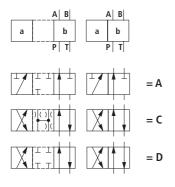
Contents Features	Page	 Direct operated directional spool valve for the intended use in explosive atmospheres
Ordering code and scope of delivery	2	 Actuating elements: Pneumatic (WP)
Spool symbols Types of actuation	3 4	Hydraulic (WH) Porting pattern according to DIN 24340 form A (without
Function, section	5	locating hole)
Technical data	6	 Porting pattern according to ISO 4401-03-02-0-05 (with
Explosion protection information	6	locating hole)
Characteristic curves	7	
Performance limits	8, 9	
Unit dimensions	10, 11	

Ordering code and scope of delivery

1) Only with pneumatic actuation "P"

²⁾ Application in case of flow > performance limit of the valve, effective in channel P.

³⁾ Grooved pin ISO 8741-3x8-St-A2C, Material no. R900005076 (separate order)


	Spool positions		Spool positions	
	2 pos.	3 pos.	Type WP	Type WH
No code	•	•	•	•
0	•		•	•
OF	•		•	•
• = Available				

Included in the scope of delivery:

Valve operating instructions with declaration of conformity in part III

354

Spool symbols

A B

0

PT

A B

PT

A B

0

PT

b

0 b

а

а

b

b

A B

PT

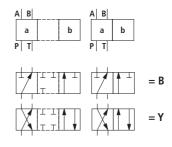
A B

PT

A B

PT

l

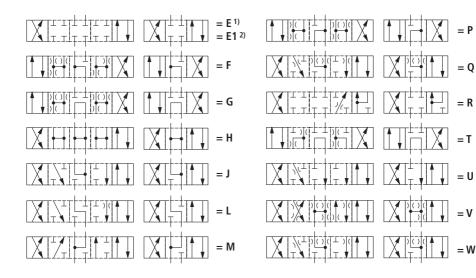

0

0

а

а

0


1) Example:

= .A 1)

= .B ¹⁾

- Spool E with spool position "a" \rightarrow ordering code ..EA..
- Spool E with spool position "b" \rightarrow ordering code .. EB..
- ²⁾ Symbol E1-: P \rightarrow A/B pre-opening

Be careful because of the pressure intensification with singlerod cylinders!

355

Types of actuation

Ordering code			Type of actuation		
Spool symbol	Actuation side	Spool return	P (pneumatic)	H (hydraulic)	
				$ \begin{array}{c c} A & B \\ \hline a & b \\ \hline P & T \\ \end{array} $	
A, C, D		/0		$ \begin{array}{c c} A & B \\ \hline a & a \\ \hline P & T \\ \end{array} $	
		/OF			
В, Ү			$\begin{array}{c c} A & B \\ a \\ W & a \\ P & - \\ P & T \\ \end{array} $	$ \begin{array}{c c} A & B \\ a \\ W & a \\ P & - \\ P & - \\ \end{array} $	
E, E1, F G, H	"a" ¹⁾ = .A				
J, L M, P Q, R "b" ¹⁾ = .B T, U	"b" ¹⁾ = .B				
V, W			$\begin{array}{c c c c c c c c c c c c c c c c c c c $	A B a 0 b P T	

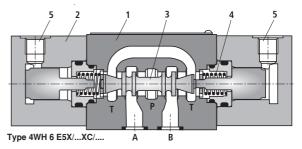
1) See spool symbols page 3.

Function, section

General

Valves of type WP 6...XC and WH 6...XC are fluidically actuated directional spool valves. They control the start, stop and direction of a flow.

The directional valves basically consist of housing (1), one or two actuating elements (2) (hydraulic, pneumatic actuating cylinder), the control spool (3), and one or two return springs (4). The control connections are arranged radially (type 4WP) (5). The bleeding connections (6) must be established and led to a place outside the explosive area.


In the de-energized condition, control spool (3) is held in the central or initial position by the return springs (4) (except for impulse spool).

By means of the actuating elements, the control spool (3) is pushed in the desired spool position.

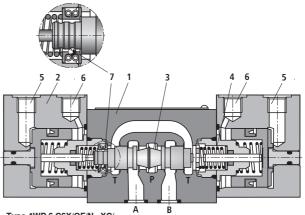
Type 4WP 6 E6X/...XC/...

357

Throttle insert

The use of a throttle insert is required when due to prevailing operating conditions, flows can occur during the switching processes that are higher than the performance limit of the valve.

It is inserted in channel P of the directional valve.


Without spring return, with detent, version ..OF/...

Directional valves with hydraulic or pneumatic actuation are also available as 2-spool position valve with detent (7). When using actuating elements with detent, each spool position can be fixed.

Without spring return, version ..O/ ..

When using actuating elements without spring return and without detent, there is no defined spool position in the deenergized condition.

Type 4WP 6 C6X/OF/N...XC/...

Technical data

general				
Valve type	9		WP	WH
Weight	 Valve with one actuating cylinder 	kg	approx. 1.8	approx. 2.0
	- Valve with two actuating cylinders	kg	approx. 2.0	approx. 2.2
Installation	n position		Any 1)	
Ambient temperature range °C		-30 +80 (NBR seals)		
			-20 +80 (FKM seals)	

hydraulic

Maximum operating pressure	– Port A B P	bar	315		
	– Port T	bar	160	admissible tank pressu	ating pressure exceeds the
Maximum flow		l/min	60		
Flow cross-section	 with spool symbol Q 		6%0	of nominal cross-section	
(Spool position 0)	 with spool symbol W 		3 % of nominal cross-section		
Minimum control pressure 8)		bar	4 (see	characteristic curve page 7)	6 to 10 > tank pressure 2)
Maximum control pressure 8)		bar		10	200
Control volume		cm ³		4.24	1.23
Hydraulic fluid			Mineral oil (HL, HLP) according to DIN 51524 ³⁾ ; quickly bio-degradable hydraulic fluids according to VDMA 24568 (see also RE 90221); HETG (rape seed oil) ³⁾ ; HEPG (polyglycols) ⁴⁾ ; HEES (synthetic esters) ⁴ ; HFC accord- ing to ISO 12922 ⁵⁾ ; other hydraulic fluids upon request		
Hydraulic fluid temperature range °C		°C		+80 (NBR seals) +80 (FKM seals)	· · · · ·
Viscosity range mm ² /s		2.8 to 500			
Maximum permitted degree of contamination of the hydraulic fluid - cleanliness class according to ISO 4406 (c)		Class	s 20/18/15 ⁶⁾		
Maximum switching frequency 1/h			7,200)	

Explosion protection information

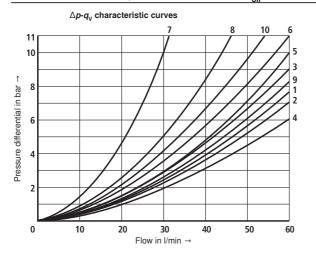
Area of application according to directive 94/9/EC	IM2; II2G; II2D; II3G; II3D
Ignition protection type Valve	c (EN 13463-5:2004-03)
Maximum surface temperature 7) °C	100
Temperature class 7)	T4
Special conditions for a safe use	
Ambient temperature range °C	-20 +80

1) With version ../O.. (A, C, and D): horizontal

- ²⁾ Performance limits depending on the minimum control pressure, see page 9
- 3) Suitable for NBR and FKM seals
- 4) Suitable only for FKM seals

5) Suitable only for NBR seals

- ⁶⁾ The cleanliness classes specified for the components must be adhered to in hydraulic systems. Effective filtration prevents faults and at the same time increases the service life of the components. For the selection of filters, see data sheets RE 50070, RE 50076, RE 50081.
- ⁷⁾ The specified max, temperature or temperature class refers to the max, permitted fluid and ambient temperature. A max, pressure drop across the valve results in a surface temperature 20 K above the fluid temperature, i.e. application in T6 is possible if the fluid and ambient temperature is max. 60 °C.

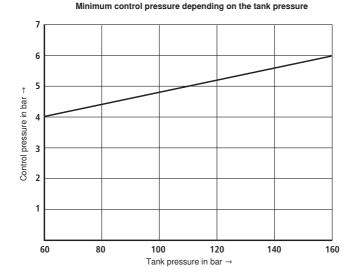

Note:

The ignition temperature of the hydraulic fluid used must be 50 K higher than the surface temperature of the valve.

⁸⁾ With type WP: Control air must be free from oil to the largest possible extent or the oil content in the control air must be clearly below the explosion limit.

Characteristic curves (measured with HLP46, $\vartheta_{oil} = 40 \degree C \pm 5 \degree C$)

359

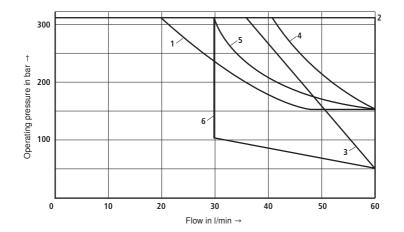

Spool		Flow direction							
symbols	P-A	P–B	A–T	B–T					
Α	3	3	-	-					
В	3	3	-	-					
С	1	1	3	1					
D	5	5	3	3					
E	3	3	1	1					
F	1	3	1	1					
G	6	6	9	9					
Н	2	4	2	2					
J	1	1	2	1					
L	3	3	4	9					
М	2	4	3	3					
Р	3	1	1	1					
Q	1	1	2	1					
R	5	5	4	-					
Т	10	10	9	9					
U	3	3	9	4					
V	1	2	1	1					
W	1	1	2	2					
Y	5	5	3	3					

More characteristic curves:

7 Spool symbol "R" in spool position "b" ($B \rightarrow A$)

8 Spool symbols "G" and "T" in central position (P \rightarrow T)

9 Spool symbol "H" in central position $P \rightarrow T$)

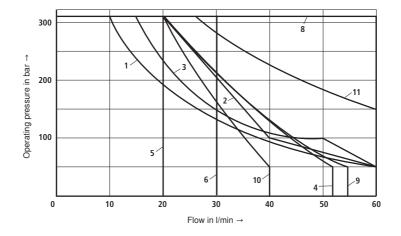

With a higher tank pressure, the minimum control pressure must be increased according to this diagram.

Performance limits: Type WP 6...XC (measured with HLP46, $\vartheta_{oil} = 40 \,^\circ\text{C} \pm 5 \,^\circ\text{C}$)

Due to the adhesive effect, the switching function of the valves depends on the filtration. For achieving the specified, admissible flow values, full flow filtration with 25 μm is recommended. The flow forces acting within the values also influence the flow performance.

With 4-directional valves, the specified flow data thus applies for the normal use with 2 flow directions (e.g. from P to A and simultaneous return flow from B to T).

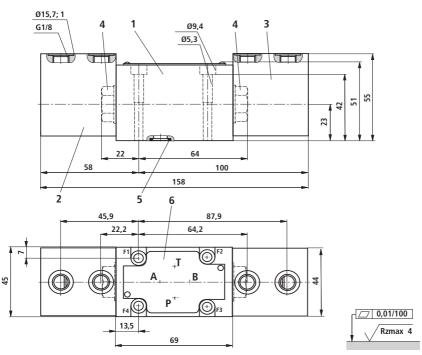
If there is only one direction of flow, the admissible flow may be considerably lower in critical cases (e.g. when using a 4-directional valve as 3-directional valve by blocking port A or B).


Character- istic curve	Spool symbol
1	A, B
2	A/O, C, C/O, D, D/O, E, E1-, G, H, J, L, M, Q, U, W, and Y
3	F, P
4	R
5	Т
6	V

Performance limits: Type WH 6...XC (measured with HLP46, ϑ_{oil} = 40 °C ± 5 °C)

Due to the adhesive effect, the switching function of the valves depends on the filtration. For achieving the specified, admissible flow values, full flow filtration with 25 μ m is recommended. The flow forces acting within the values also influence the flow performance.

With 4-directional valves, the specified flow data thus applies for the normal use with 2 flow directions (e.g. from P to A and simultaneous return flow from B to T).


If there is only one direction of flow, the admissible flow may be considerably lower in critical cases (e.g. when using a 4-directional valve as 3-directional valve by blocking port A or B).

Control pressure 6 bar > tank pressure						
Spring return	Characteris- tic curve	Spool symbol				
	1	A, B				
	2	C, D, Y				
"No code"	3	E, J, L, U, M, Q, V, W, E1-				
(with spring	4	F, P				
return)	5	Т				
	6	G, H				
	7	R				
/0	8					
/OF	ő	A, C, D				

Control pressure 10 bar > tank pressure						
Spring return	Characteris- tic curve	Spool symbol				
	1	A, B				
"No code"	8	C, D, Y, E, G, H, J, L, U, M, Q, V, W, E1-				
(with spring	9	F, P				
return)	10	R				
	11	Т				
/0	8	A, C, D				
/OF	0	A, C, D				

Unit dimensions: Type WP 6...XC (dimensions in mm)

Required surface quality of the valve mounting face

Œ

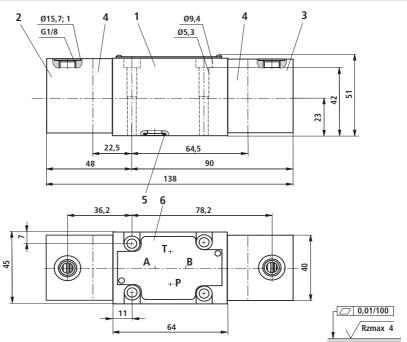
69

迎

AФ

F2

- 1 Valve with 2 spool positions and 2 actuating cylinders Valve with 3 spool positions and 2 actuating cylinders
- 2 Actuating cylinder "a"
- 3 Actuating cylinder "b"
- 4 Plug screw for valve with one actuating cylinder (2 spool positions)
- 5 Identical seal rings for ports A, B, P, T
- 6 Nameplate
- 7 Porting pattern according to DIN 24340 form A (without locating hole), or ISO 4401-03-02-0-05 (with locating hole)


Valve mounting screws

45

For reasons of stability, only the following valve mounting screws may be used: 4 hexagon socket head cap screws ISO 4762-M5x50-10.9-fIZn-240h-L (friction coefficient 0.09–0.14 according to VDA 235-101) Material no. R913000064 (must be ordered separately)

13,5

Unit dimensions: Type WH 6...XC (dimensions in mm)

Required surface quality of the valve mounting face

7

F2

- 1 Valve with 2 spool positions and 2 actuating cylinders Valve with 3 spool positions and 2 actuating cylinders
- 2 Actuating cylinder "a"
- 3 Actuating cylinder "b"
- 4 Cover for valve with one actuating cylinder (2 spool positions)
- 5 Identical seal rings for ports A, B, P, T
- 6 Nameplate
- 7 Porting pattern according to DIN 24340 form A (without locating hole), or ISO 4401-03-02-0-05 (with locating hole)

Valve mounting screws

45

For reasons of stability, only the following valve mounting screws may be used:

Ð

₽₫

64

4 hexagon socket head cap screws

ISO 4762-M5x50-10.9-flZn-240h-L

11

F1

AФ

(friction coefficient 0.09–0.14 according to VDA 235-101) Material no. R913000064 (must be ordered separately) Notes

 Bosch Rexroth AG

 Hydraulics

 Zum Eisengießer 1

 97816 Lohr am Main, Germany

 Phone +49 (0) 93 52 / 18-0

 Fax
 +49 (0) 93 52 / 18-23 58

 documentation@boschrexroth.de

www.boschrexroth.de

© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Electric Drives and Controls

Hydraulics

Linear Motion and Assembly Technologies

Pneumatics

Service

Rexroth Bosch Group

1/24

4/2 and 4/3 directional valves, internally pilot operated, externally pilot operated

Type H-4WEH...XD...

Sizes 10, 16, 25, 32 Component series 4X, 6X, 7X Maximum operating pressure 350 bar Maximum flow 1100 l/min

> ATEX units For explosive areas

Part II Data sheet

Information on the explosion protection:

- Area of application in accordance with the Explosion Protection Directive 94/9/EC: I M2, II 2G
- Type of protection of the valve solenoids: Ex d I Mb, Ex d IIC T4 Gb EN 60079-0:2009 / EN 60079-1:2007

Special features of seawater-resistant valves

- The external metal parts are galvanized or treated with an anti-corrosion agent.
- The conditional seawater resistance is defined by the "SO329" ordering code.

What you need to know about these operating instructions

These operating instructions apply to the explosion-proof version of Rexroth valves and consist of the following three parts:

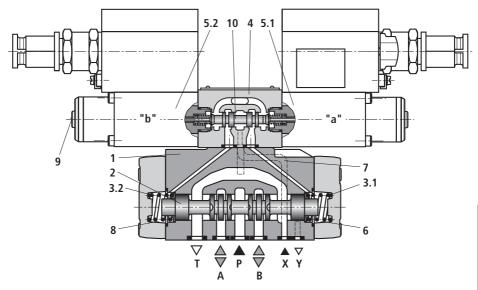
- Part I General information 07010-X-B1
- Part II Data sheet 24751-XD-B2
- Part III Product-specific instructions 24751-XD-B3

Operating instructions 24751-XD-B0

You can find further information on the correct handling of Rexroth hydraulic products in our publication "General product information on hydraulic products" 07008.

365

Table of contents


Contents	Page
Features	2
Function, section	3
Ordering code and scope of delivery	4
Control spool symbols	6
Pilot oil supply	9
Technical data	10
Electrical connection	13
Characteristic curves, performance limits	15
Switching time adjustment, pressure reducing valve,	
preload valve	19
Device dimensions	20

Features

- Valve to control the start, stop and direction of a flow, for intended use in explosive areas
- Electro-hydraulic actuation (WEH)
- For subplate mounting, porting pattern according to DIN 24340-A and ISO 4401, subplates available in FE/ZN version (see pages 20 to 23)
- Spring centering, spring end position or hydraulic end position
- Wet-pin DC solenoids
- Manual override
- Electrical connection as individual connection with cable gland (see page 13)
- Switching time adjustment, optional
- Preload valve in channel P of the main valve, optional

Function, section

Type H-4WEH 16...XD...

Directional valve type H-4WEH...

The valve type H-4WEH is a directional spool valve with electro-hydraulic actuation. It controls the start, stop and direction of a flow.

The directional valves basically consist of the main valve with housing (1), the main control spool (2), one or two return springs (3.1) and (3.2), as well as the pilot control valve (4) with one or two solenoids "a" (5.1) and/or "b" (5.2).

The main control spool (2) in the main valve is held in the zero or initial position by the springs or by means of pressurization. In the initial position, the two spring chambers (6) and (8) are connected with the tank in a depressurized form via the pilot control valve (4). The pilot control valve is supplied with pilot oil via the control line (7). Supply can be effected internally or externally (externally via port X).

Upon actuation of the pilot control valve, e.g. solenoid "a", the pilot control spool (10) is moved to the left and thus, the spring chamber (8) is pressurized with pilot pressure. The spring chamber (6) remains depressurized. The pilot pressure acts on the left side of the main control spool (2) and moves it against the spring (3.1). This connects ports P with B and A with T in the main valve.

When the solenoid is switched off, the pilot control spool returns into the initial position (except for impulse spool). The spring chamber (8) is unloaded to the tank.

The pilot oil from the spring chamber is displaced into channel Y via the pilot control valve.

The pilot oil supply and return can be effected internally or externally.

The manual override (9) allows control spool (10) to be moved without solenoid energization.

Ordering code and scope of delivery

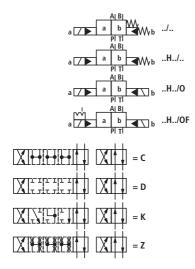
н	1-4 W	EH		1	6B		XD	Γ
Up to 350 bar = H								
4-way version	= 4							
Directional valve, electro-hydraulically actuated	= WEH							
Size								
Size 10		= 10						
Size 16		= 16						
Size 25		= 25						
Size 32		= 32						
Control spool return main valve		= no code						
By means of springs Hydraulically ¹⁾		= no code = H						
Control spool symbols, see page 6		- 11						
Component series 40 to 49 – size 10			= 4X					
(40 to 49: Unchanged installation and connection dime	ensions)		= 4A					
Component series 60 to 69 – size 25 (4W.H 25.) and s	,		= 6X					
(60 to 69: Unchanged installation and connection dime			_ •••					
Component series 70 to 79 - size 16			= 7X					
(70 to 79: Unchanged installation and connection dime	ensions)							
Control spool return in the pilot control valve with 2 s								
only possible with control spool C, D, K, Z and hydrau	ilic control s	spool return i	n the main					
Without spring return				= 0				
Without spring return with detent				= OF				
Pilot control valve with wet-pin solenoids,					_			
high-power valve (data sheet 23178-XD-B2)				= (
Direct voltage 24 V Direct voltage 110 V					= G24 = G110			
With manual override (standard)						= N		
Explosion protection "Pressure-resistant enclosure"							XD	
For details see information on the explosion protection	n, page 11							
Pilot oil supply external, pilot oil return external 2)						=	no cod	de
Pilot oil supply internal, pilot oil return external 3)							=	_
Pilot oil supply internal, pilot oil return internal ³⁾ Pilot oil supply external, pilot oil return internal ²⁾							= E	
							=	

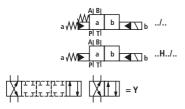
Included in the scope of delivery:

Valve operating instructions with declaration of conformity in part III

Explanation of the foot notes, see page 5

Ordering code and scope of delivery

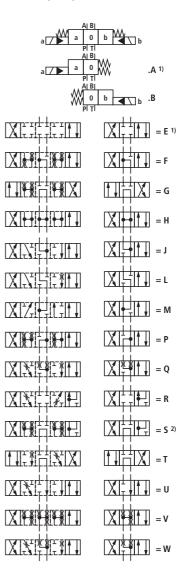

	Z2									
								Surface protection		
							SO329 =	Conditionally seawater-resistant, galvanized		
							no code =	Standard		
							ode =	NBR seals		
						V =		FKM seals		
								(other seals upon request)		
								Important Observe compatibility of seals with hydraulic fluid used!		
					no c D3 =	ode =		Without pressure reducing valve With pressure reducing valve ⁴⁾		
								Preload valve (not for size 10)		
					ode =	-		without preload valve		
				P4,5	=			With preload valve ($p_{\tilde{o}} = 4.5$ bar)		
								Throttle insert		
			B08	ode =				Without throttle insert Throttle Ø 0.8 mm		
			B10					Throttle Ø 1.0 mm		
			B12	=				Throttle Ø 1.2 mm		
			B15	=						Throttle Ø 1.5 mm
								Electrical connection		
	2	Z2 =						Solenoid with terminal box and cable gland,		
								for details see chapter Electrical connection		
7	coo =	ae =						Without switching time adjustment Switching time adjustment as supply control		
	- 2 =							Switching time adjustment as supply control		
-								ownorning time adjustment as discharge control		

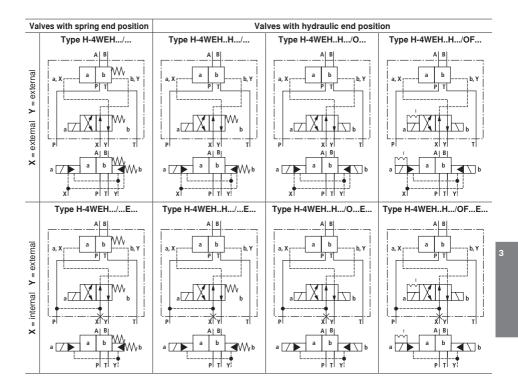

¹⁾ 2 spool positions (hydraulic end position): Only control spool C, D, K, Z, Y

- 2) Pilot oil supply X or pilot oil return Y external:
- Observe the maximum pilot pressure according to page 10!
- ³⁾ Pilot oil supply internal (version "ET" and "E"):
 - Observe the minimum pilot pressure according to page 10!
 - In order to prevent inadmissibly high pressure peaks, a throttle insert "B10" has to be provided in the P port of the pilot control valve (see page 9).
 - You must moreover provide the pressure reducing valve "D3".
- ⁴⁾ Only in connection with throttle insert "B10"

Control spool symbols

2 spool positions

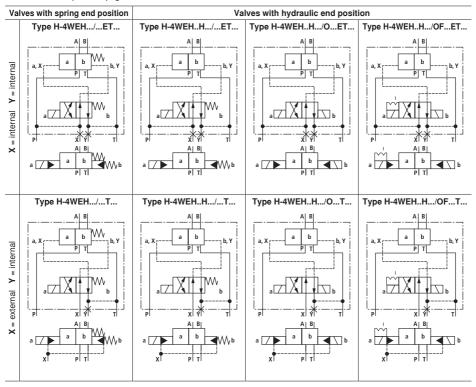


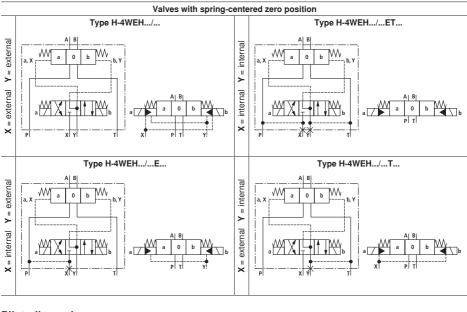

 Example: Control spool E with spool position "a" Order example: H-4WEH 16 EA7X/6EG24N9XDETSZ2B10..V..

2) Control spool S only for size 16

Other control spool variants upon request

3 spool positions




Control spool symbols for valves with 2 spool positions

Continuation, see next page

Control spool symbols for valves with 2 spool positions

Continuation from previous page

Control spool symbols for valves with 3 spool positions

Pilot oil supply

Type H-4WEH...

The pilot oil supply is effected **externally** via the X channel from a separate circuit.

The pilot oil return is effected **externally** via the Y channel into the tank.

Type H-4WEH...E...

The pilot oil supply is effected **internally** from the P channel of the main valve.

The pilot oil return is effected **externally** via the Y channel into the tank. In the subplate, port X is closed.

Type H-4WEH...ET...

The pilot oil supply is effected **internally** from the P channel of the main valve.

The pilot oil return is effected **internally** via the T channel into the tank. In the subplate, ports X and Y are closed.

Type H-4WEH...T...

The pilot oil supply is effected **externally** via the X channel from a separate circuit.

The pilot oil return is effected **internally** via the T channel into the tank. In the subplate, port Y is closed.

Throttle insert

Use of the throttle insert (2) is necessary if the pilot oil supply in the P channel of the pilot control valve (1) is to be limited. The throttle insert (2) is inserted in channel P of the pilot control valve (1).

- 1 Pilot control valve
- 2 Throttle insert
- 3 Seal ring
- 4 Main valve

Technical data

Installati	on position		Any; horizontal with valves with hydraulic control spool re- turn "H" and control spool C, D, K, Z or Y					
Ambient	temperature range		°C	-20 +80				
Storage	temperature range		°C	+15 +30				
Sizes				10	16	25	32	
Weight	Valve with one sole	noid	kg	11	13.5	22	39	
	Valve with two sole	noids, spring-centered	kg	14	16.5	25	42	
	Switching time adju	stment	kg	0.8				
	Pressure reducing	valve	kg	0.4				
Surface	Valve body	Pilot control valve		Galvanically coated				
protectio	n	Main valve		Standard: Painting, layer thickness max. 100 μ m SO329: Galvanically coated, Zn and passivated				
	Solenoid			Galvanically coated				

hydraulic

Sizes		Size	10	16	25	32			
Maximum operating	j pressure								
Ports P, A, B		bar	350						
Port T	with pilot oil return Y external	bar	250						
	with pilot oil return Y internal	bar		21	10				
Port Y	with pilot oil return external	bar		21	10				
Flow of the main va	lve	l/min	up to 160	up to 300	up to 650	up to 1100			
Maximum pilot pres	sure	bar	250 (with a hig valve is re	gher pilot pressu equired)	re, use of a pres	ssure reducing			
Minimum pilot press – with pilot oil supp spool D, K, E, J,	ly X external or internal (control								
3-spool position	on valve, spring-centered	bar	10	14	13	8.5			
2-spool position	on valve, spring end position	bar	10	14	13	10			
2-spool position	on valve, hydraulic end position	bar	7	14	8	5			
 with pilot oil supp (control spool C, 	ly X internal F, H, P, T, V, Z, S ¹⁾)	bar	6.5 ²⁾	4.5 ³⁾	4.5 ³⁾	4.5 ³⁾			
Pilot volume for swi	tching process								
3-spool position	on valve, spring-centered	cm ³	2.04	5.72	14.2	29.4			
2-spool position	on valve	cm ³	4.08	11.45	28.4	58.8			
Pilot volume for sho	ortest switching time	l/min	approx. 35	approx. 35	approx. 35	approx. 45			
Hydraulic fluid			degradable hyd also data shee (polyglycols) ⁵⁾ hydraulic fluid lic fluids on rec	, HLP) according draulic fluids acc t 90221), HETG , HEES (synthet HFC according t quest ature > 180 °C	cording to VDM/ (rape seed oil) tic esters) ⁵⁾ , flar	A 24568 (see ⁴⁾ , HEPG me-resistant			

Continuation and foot notes, see page 11

3

Technical data

hydraulic (continued)	
Hydraulic fluid temperature range °C	-20 +80 (NBR seals)
	-15 +80 (FKM seals)
Viscosity range mm ² /s	2.8 500
Maximum admissible degree of contamination of the hydraulic fluid, cleanliness class according to ISO 4406 (c)	Class 20/18/15 ⁷⁾

electric

Voltage type		Direct voltage
Available voltages	V	24, 110
Voltage tolerance (nominal voltage)	%	±10
Admissible residual ripple	%	< 5
Duty cycle / operating mode according to VDE 0580		S1 (continuous operation)
Switching time according to ISO 6403		See page 12
Switching frequency	1/h	up to 15000
Nominal power at ambient temperature 20 °C	W	13
Maximum power with 1.1 x nominal voltage and ambient temperature 20 °C	w	15.8
Protection class according to EN 60529		IP 65 with correctly installed connection line

Information on the explosion protection

Area of application as per directive 94/9/EC	I M2, II 2G
Type of protection Valve	c (EN 13463-5:2011)
Maximum surface temperature ⁸⁾ °C	130
Temperature class	T4
Type of protection Valve solenoid according to EN 60079-0:2009 / EN 60079-1:2007	Ex d I Mb Ex d IIC T4 Gb
Type examination certificate Solenoid	BVS 03 ATEX E 300 X
"IEC Certificate of Conformity" Solenoid	IECEx BVS 11.0091 X
Special conditions for safe use	 In case of bank assembly, only one solenoid of all valves may be energized at a time.
	 In case of valves with two solenoids, maximally one of the solenoids may be energized at a time.
Ambient temperature range °C	-20 +80

1) Control spool S only for size 16

- ²⁾ For control spools C, F, G, H, P, T, V, Z, an internal pilot oil supply without preload valve is only possible if the flow from P → T in the central position (for 3-spool position valve) or while crossing the central position (for 2-spool position valve) is so large that the pressure differential of P → T reaches a value of at least 6.5 bar.
- ³⁾ For control spools C, F, G, H, P, T, V, Z, S¹⁾ by means of preload valve (not size 10) or correspondingly high flow.
- ⁴⁾ Suitable for NBR and FKM seals
- ⁵⁾ Suitable **only** for FKM seals

- ⁶⁾ If HFC hydraulic fluid is used, the following parameters have to be complied with: Pressure at P, A, B max. 160 bar, at T max. 3 bar (with E, ET and T) and/or at X max. 160 bar and Y max. 3 bar Ambient temperature 0 ... 36 °C Hydraulic fluid temperature max. 55 °C Duty cycle 60 % Only NBR seals are admissible.
 - For more information, please ask our sales staff.
- ⁷⁾ The cleanliness classes specified for the components must be adhered to in hydraulic systems. Effective filtration prevents faults and at the same time increases the life cycle of the components. For the selection of the filters see www.boschrexroth.com/filter.
- ⁸⁾ Surface temperature > 50 °C, provide contact protection

Technical data

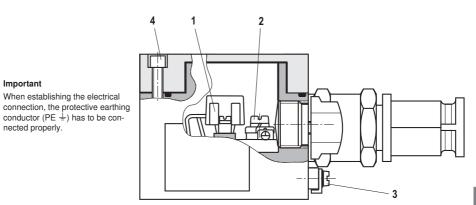
Switching times (= Contacting at the pilot control valve until start of opening of the control edge in the main valve and change in the control spool stroke by 95 %)

Pilot pressure		bar	70	250	Spring
			C	DN .	OFF
Size 10	without throttle insert	ms	50 70	50 70	30 40
	with throttle insert	ms	70 100	60 80	30 40
Size 16	without throttle insert	ms	60 90	50 70	60 90
	with throttle insert	ms	120 140	90 110	60 90
Size 25	without throttle insert	ms	80 110	60 80	110 140
	with throttle insert	ms	210 260	130 160	110 140
Size 32	without throttle insert	ms	90 140	80 110	150 170
	with throttle insert	ms	430 570	240 360	150 170

Important:

- The switching times are measured according to ISO 6403 with HLP46, $\vartheta_{oll} = 40$ °C ± 5 °C. With different oil temperatures, deviations are possible.
- The switching times increase by approx. 30 ms if the pressure reducing valve "D3" is used.
- The switching times have been determined under ideal conditions and may differ in the system, depending on the application conditions.

	The new creec could in zero position man control opeolo d, i and th									
Control spool Q	A – T, B – T	mm ²	13	32	78	83	78			
Control spool V	A – T, B – T	mm ²	13	32	73	83	73			
	P – A, P – B	mm ²	13	32	84	83	84			
Control spool W	A – T, B – T	mm ²	2.4	6	10	14	20			


Free flow cross-sections in zero position with control spools Q, V and W

Electrical connection

Important

nected properly.

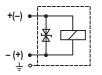
The type-examination tested valve solenoid of the valve is equipped with one terminal box and a type-tested cable entry. The connection is polarity-independent.

Properties of the connection terminals and mounting elements

Item	Function	Connectable line cross-section
1	Operating voltage connection	Single-wire max. 2.5 mm ²
		Finely stranded max. 2.5 mm ²
2	Connection for protective earthing conductor	Single-wire 0.75 2.5 mm ²
		Finely stranded 0.75 1.5 mm ²
3	Connection for potential equalization conductor	Single-wire 4 6 mm ²
		Finely stranded min. 4 mm ²
4	Screws for cover	-

Cable gland

Line diameter mm	912
Sealing	Outer sheath sealing


Connection line

Line type	Non-armored cables and lines (outer sheath sealing)
Temperature range °C	-20 > +110

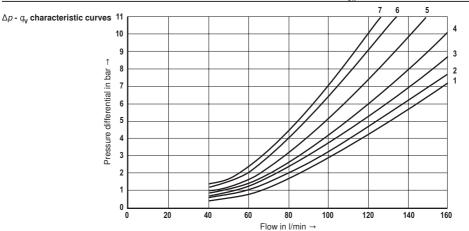
Electrical connection (continued)

Circuit diagram

Direct voltage, polarity-independent

Over-current fuse and switch-off voltage peak

Important


A fuse appropriate for the solenoid's rated current (max. 3 x I_{rated} according to DIN 41571 and/or IEC 60127) or a protective motor switch with short-circuit and thermal instantaneous tripping must be connected to each valve solenoid as short-circuit protection. The cut-off capacity of this fuse must match or exceed the short-circuit current of the supply source.

This fuse or motor protection switch may only be fitted outside the explosive area or must be of an explosion-proof design. When inductivities are switched off, voltage peaks result which may cause failures in the connected control electronics. For this reason, the valve solenoids comprise a suppression circuit which dampens this voltage peak to the voltage value shown in the table.

Voltage data in the valve type code	Nominal voltage Valve solenoid	Rated current Valve solenoid	Recommended pre-fuse charac- teristics medium time-lag according to DIN 41571	Maximum voltage value upon switch-off	Suppression circuit
G24	24 V DC	0.542 A DC	630 mA	–90 V	Suppressor diode
G110	110 V DC	0.118 A DC	125 mA	–390 V	bi-directional

3

Characteristic curves: Type H-4WEH 10... (measured with HLP46, \u00fc_{oil} = 40 °C ± 5 °C)

Characteristic	curve	selection
----------------	-------	-----------

Control		Spool p	osition		Control		Zero position	1
spool	P – A	P – B	A – T	B – T	spool	A – T	B – T	P – T
E, Y, D	2	2	4	5				
F	1	4	1	4	F	3	-	6
G, T	4	2	2	6	G, T	-	-	7
H, C	4	4	1	4	н	1	3	5
J, K	1	2	1	3				
L	2	3	1	4	L	3	-	-
М	4	4	3	4				
Р	4	1	3	4	Р	-	7	5
Q, V, W, Z	2	2	3	5				
R	2	2	3	-				
U	3	3	3	4	U	-	4	-

Performance limits: Type H-4WEH 10... (measured with HLP46, $\vartheta_{oil} = 40 \text{ °C} \pm 5 \text{ °C}$)

2- and 3-spool position valves

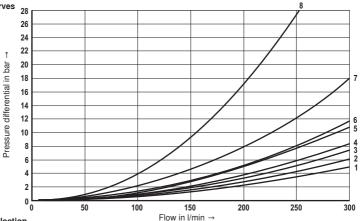
Maximum flow q_v in I/min

Control spool	Operating pressure p_{\max} in bar						
	200	250	315				
E, J, L, M, Q, R, U, V, W, C, D, K, Z, Y	160	160	160				
Н	160	150	120				
G, T	160	160	140				
F, P	160	140	120				

Important

The specified switching power limits are valid for operation with two directions of flow (e. g. P \rightarrow A and simultaneous return flow B \rightarrow T) in the ratio 1:1.

Due to the flow forces acting within the valves, the admissible switching power limit may be considerably lower with only one direction of flow (e. g. $P \rightarrow A$ while port B is blocked)!


(In such cases, please consult us!)

The switching power limit was established while the solenoids were at operating temperature, at 10 % undervoltage and without tank pre-loading.

P – T – – – 8

Characteristic curves: Type H-4WEH 16... (measured with HLP46, 0_{oil} = 40 °C ± 5 °C)

Characteristic curve selection

Control		Sp	ool posit	ion		Control		Spool position				
spool	P – A	P – B	A-T	B – T	P-T	spool	P – A	P – B	A – T	B – T		
E, Y, D	1	1	3	4	-	M, W	1	1	3	4	Γ	
F	1	1	5	4	-	R	1	1	3	-		
G, T	4	1	5	5	7	U	2	2	3	5	Γ	
H, C, Q, V, Z	1	1	5	6	-	S	3	3	3	-	Γ	
J, K, L	1	1	5	6	-							

Performance limits: Type H-4WEH 16... (measured with HLP46, 0_{oil} = 40 °C ± 5 °C)

2-spool position valve

Maximum flows qv in I/min

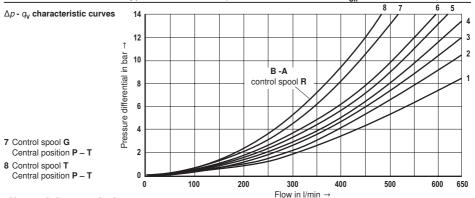
Control	Operating pressure <i>p</i> _{max} in bar									
spool	70	140	210	280	350					
X external, spring end position in the main valve (with p _{St min} = 12 bar)										
C, D, K, Y, Z	300	300	300	300	300					
X external, spring end position in the main valve 1)										
С	300	300	300	300	300					
D, Y	300	270	260	250	230					
к	300	250	240	230	210					
Z	300	260	190	180	160					
X external, hy	/draulic e	end posit	ion in the	e main va	lve					
HC, HD, HK, HZ, HY	300	300	300	300	300					

Important

See also "Important" page 15

3-spool position valve

Maximum flows q_v in I/min


Control	Operating pressure <i>p</i> _{max} in bar									
spool	70	140	140 210		350					
X external, spring centering in the main valve										
E, H, J, L, M, Q, U, W, R	300	300	300	300	300					
F, P	300	250	180	170	150					
G, T	300	300	240	210	190					
S	300	300	300	250	220					
V	300	250	210	200	180					

Important

- ¹⁾ If the specified flow values are exceeded, the function of the return spring is no longer guaranteed if the pilot pressure fails!
- With pilot oil supply X internal, you must always use a preload valve due to the negative overlap of the control spools F, G, H, P, T, S, C and HC.
- With control spools V, Z and HZ, the preload valve is not required for flows > 180 l/min.

3

Characteristic curves: Type H-4WEH 25... (measured with HLP46, ϑ_{oil} = 40 °C ± 5 °C)

Characteri	stic cu	rve se	ection	
Control			pool position P - B A - T B - T $1 1 3$ $4 3 3$	
spool	P – A	Р – В	A – T	B – T
E	1	1	1	3
F	1	4	3	3

1 2

3

4 4 3 4

2 2 3 5

2-spool position valve

G

н

J, Q

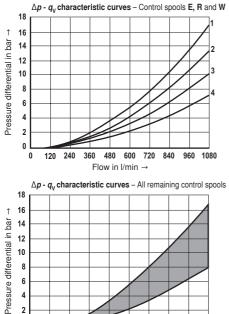
Control		Spool position			Control	5	Spool p	ositio	n
spool	P – A	P – B	A – T	B – T	spool	P – A	P – B	A – T	В – Т
L	2	2	3	3	U	4	1	1	6
М	4	4	1	4	V	2	4	3	6
Р	4	1	1	5	W	1	1	1	3
R	2	1	1	-	т	3	1	2	4

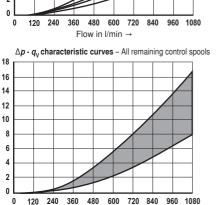
Performance limits: Type H-4WEH 25... (measured with HLP46, $\vartheta_{oil} = 40 \text{ °C} \pm 5 \text{ °C}$)

Maximum flow							
Control	Operating pressure <i>p</i> _{max} in bar						
spool	70	140	210	280	350		
X external, sp (with p _{St min} =		position	in the m	ain valve)		
C, D, K, Y, Z	700	700	700	700	650		
X external, sp	oring end	position	in the m	ain valve) ¹⁾		
С	700	700	700	700	650		
D, Y	700	650	400	350	300		
К	700	650	420	370	320		
Z	700	700	650	480	400		
X external, hy	/draulic e	end posit	ion in the	e main va	alve		
HC, HD, HK, HZ, HY	700	700	700	700	700		
HC/O HD/O HK/O HZ/O	700	700	700	700	700		
HC/OF HD/OF HK/OF HZ/OF	700	700	700	700	700		

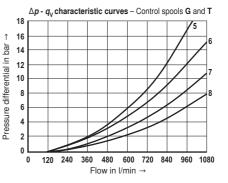
4

Important


See also "Important" page 15


3-spool posi Maximum flow					
Control	0	perating	pressure	p _{max} in b	ar
spool	70	140	210	280	350
X external, s	pring cer	ntering in	the mair	n valve	
E, L, M, Q, U, W,	700	700	700	700	650
G, T	400	400	400	400	400
F	650	550	430	330	300
Н	700	650	550	400	360
J	700	700	650	600	520
Р	650	550	430	330	300
V	650	550	400	350	310
R	700	700	700	650	580

Important


- 1) If the specified flow values are exceeded, the function of the return spring is no longer guaranteed if the pilot pressure fails!
- With pilot oil supply X internal, a preload valve has to be used for flows < 180 l/min due to the negative overlap of the control spools Z, HZ and V.
- With pilot oil supply X internal, you must always use a preload valve due to the negative overlap of the control spools C, HC, F, G, H, P and T.

Characteristic curves: Type H-4WEH 32... (measured with HLP46, to old of the state of the state

Flow in I/min →

Control	Spool position						
spool	P – A	P – B	A – T	B – T	B – A		
E	4	4	3	2	-		
R	4	4	3	-	1		
W	4	4	3	2	-		

Control	Spool position						
spool	P – A	P – B	A – T	B – T	P – T		
G	7	8	7	5	6		
Т	7	8	7	5	6		

Performance limits: Type H-4WEH 32... (measured with HLP46, 0_{nil} = 40 °C ± 5 °C)

2-spool	position	valve
Maximu	m flows o	. in l/min

Maximum now	/s <i>q_v</i> /// ///	THEFT						
Control	0	Operating pressure p _{max} in bar						
spool	70	140	210	280	350			
X external, sp (with p _{St min} =	0	position	in the m	ain valve	9			
C, D, K, Y, Z	1100	1040	860	750	680			
X external, sp	oring end	position	in the m	ain valve	¹⁾			
С	1100	1040	860	800	700			
D, Y	1100	1040	540	480	420			
К	1100	1040	860	500	450			
Z	1100	1040	860	700	650			
X external, hy	/draulic e	end posit	ion in the	e main va	alve			
HC, HD, HK,	1100	1040	960	750	690			

3-spool position valve ri .

waximum nov	vs q_v in i/	min					
Control	Operating pressure <i>p</i> _{max} in bar						
spool	70	140	210	280	350		
X external, s	pring cer	ntering in	the main	n valve			
E, J, L, M, Q, U, W, R	1100	1040	860	750	680		
G, T, H, F, P	900	900	800	650	450		
V	1100	1000	680	500	450		

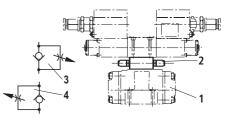
Important

- 1) If the specified flow values are exceeded, the function of the return spring is no longer guaranteed if the pilot pressure fails!
- · With pilot oil supply X internal, a preload valve has to be used for flows < 180 l/min due to the negative overlap of the control spools Z, HZ and V.
- · With pilot oil supply X internal, you must always use a preload valve due to the negative overlap of the control spools C, HC, F, G, H, P and T.

Important

See also "Important" page 15

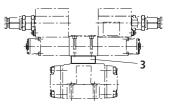
382


Switching time adjustment, pressure reducing valve, preload valve

Switching time adjustment "S/S2"

The switching time of the main valve (1) is influenced by using a twin throttle check valve (2), type Z2FS 6.

Symbol (3) shows the switching time adjustment "S" (supply control), symbol (4) shows the switching time adjustment "S2" (discharge control)



Pressure reducing valve "D3"

With the design internal pilot oil supply (ET or E) or external pilot oil supply and a pilot pressure of more than 250 bar, the valve must be ordered with a pressure reducing valve (3), type ZDR6PO, **and** a throttle insert "B10".

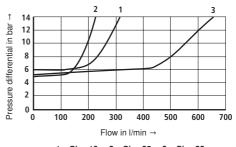
Ordering code: "B10..D3"

Type H-4WEH 10 ..4X/.../..D3

3

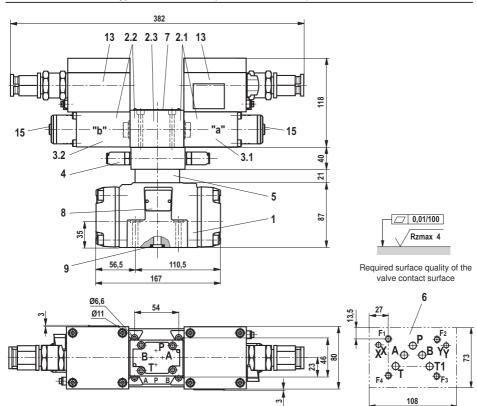
Preload valve "P4,5" (not for size 10)

In case of valves with depressurized circulation and internal pilot oil supply, a preload valve is necessary in the P channel of the main valve in order to build up the minimum pilot pressure.


Ordering code: "P4,5"

The pressure differential of the preload valve is to be added to the pressure differential of the main valve (see characteristic curves) to result in one total value.

The cracking pressure amounts to approx. 4.5 bar.


$\Delta p - q_{\vee}$ characteristic curve

(measured with HLP46, $\vartheta_{Oil} = 40 \text{ °C} \pm 5 \text{ °C}$)

1 = Size 16 2 = Size 25 3 = Size 32

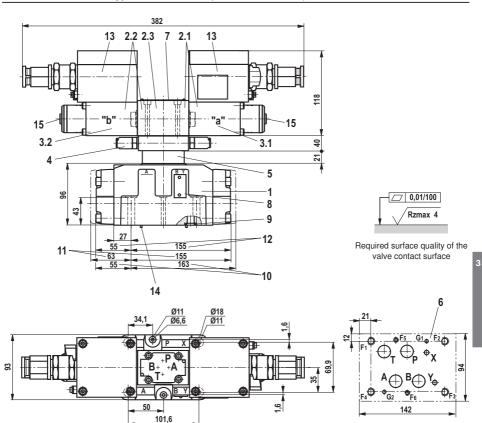
Device dimensions: Type H-4WEH 10... (dimensions in mm)

Subplates

- without ports X, Y G 534/01 FE/ZN (G3/4)
- with ports X, Y

G 535/01 FE/ZN (G3/4) G 536/01 FE/ZN (G1)

with dimensions as in the data sheet 45054 (must be ordered separately)


Item explanations and information on the subplates, see page 24

Valve mounting screws

For reasons of stability, exclusively use the following valve mounting screws:

4 hexagon socket head cap screws ISO 4762-M6x45-10.9-flZn-240h-L

(friction coefficient total: 0.09-0.14 according to VDA 235-101) (must be ordered separately) Device dimensions: Type H-4WEH 16... (dimensions in mm)

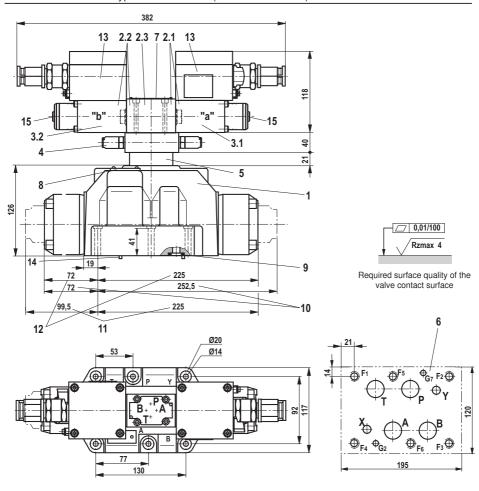
Subplates

G 172/01 FE/ZN (G3/4) G 172/02 FE/ZN (M27 x 2) G 174/01 FE/ZN (G1) G 174/02 FE/ZN (M33 x 2) G 174/08 FE/ZN (flange)

with dimensions as in the data sheet 45056 (must be ordered separately)

Item explanations and information on the subplates, see page 24

Valve mounting screws


For reasons of stability, exclusively use the following valve mounting screws:

4 hexagon socket head cap screws ISO 4762-M10x60-10.9-flZn-240h-L (friction coefficient total: 0.09-0.14 according to VDA 235-101)

2 hexagon socket head cap screws ISO 4762-M6x60-10.9-flZn-240h-L (friction coefficient total: 0.09-0.14 according to VDA 235-101) (must be ordered separately)

385

Device dimensions: Type H-4WEH 25... (dimensions in mm)

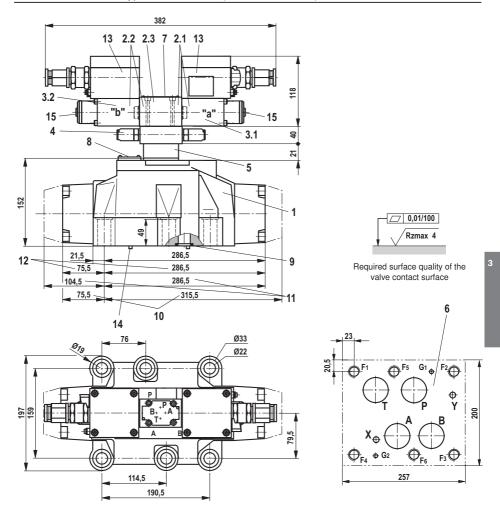
Subplates

G 151/01 FE/ZN (G1) G 154/01 FE/ZN (G1 1/4) G 154/08 FE/ZN (flange) G 156/01 FE/ZN (G1 1/2)

with dimensions as in the data sheet 45058 (must be ordered separately)

Item explanations and information on the subplates, see page 24

Valve mounting screws


For reasons of stability, exclusively use the following valve mounting screws:

6 hexagon socket head cap screws ISO 4762-M12x60-10.9-flZn-240h-L

(friction coefficient total: 0.09-0.14 according to VDA 235-101)

(must be ordered separately)

Device dimensions: Type H-4WEH 32... (dimensions in mm)

Subplates

G 157/01 FE/ZN (G1 1/2) G 157/02 FE/ZN (M48 x 2) G 158/10 FE/ZN (flange)

with dimensions as in the data sheet 45060 (must be ordered separately)

Item explanations and information on the subplates, see page 24

Valve mounting screws

For reasons of stability, exclusively use the following valve mounting screws:

6 hexagon socket head cap screws ISO 4762-M20x80-10.9-flZn-240h-L (triction coefficient total: 0.09-0.14 according to VDA 235-101)

(must be ordered separately)

Device dimensions: Item explanations and notice

Item explanations regarding the device dimensions on pages 20 to 23

- 1 Main valve
- 2 Pilot control valve type 4WE 6...XE according to technical data sheet 23178-XE-B2
- 2.1 Pilot control valve type 4WE 6 D... (1 solenoid "a") For main valves with Control spools C, D, K, Z Control spool HC, HD, HK, HZ
 - Pilot control valve type 4WE 6 JA... (1 solenoid "a") For main valves with control spools EA, FA, etc., spring return
- 2.2 Pilot control valve type 4WE 6 Y... (1 solenoid "b") For main valves with Control spool Y Control spool HY
 - Pilot control valve type 4WE 6 JB... (1 solenoid "b") For main valves with control spools EB, FB, etc., spring return
- 2.3 Pilot control valve type 4WE 6J... (2 solenoids) For main valves with 3 spool positions, spring-centered
- 3.1 Valve solenoid "a"
- 3.2 Valve solenoid "b"
- 4 Switching time adjustment, optional
- 5 Pressure reducing valve, optional

- 6 Processed valve contact surface Porting pattern according to: DIN 24340-A10 and ISO 4401-05-05-0-05 for size 10 DIN 24340-A16 and ISO 4401-07-07-0-05 for size 16 DIN 24340-A25 and ISO 4401-08-08-0-05 for size 25 DIN 24340-A32 and ISO 4401-10-09-0-05 for size 32
- 7 Name plate for the pilot control valve
- 8 Name plate for the complete valve
- 9 R-rings/O-rings
- 10 2-spool position valves with spring end position in the main valve (C, D, K, Z)
- **11** 2-spool position valves with spring end position in the main valve (Y)
- 12 3-spool position valves, spring-centered 2-spool position valves with hydraulic end position in the main valve
- 13 Terminal box
- 14 Locking pin
- 15 Manual override "N"

Important:

Subplates are no components in the sense of directive 94/9/EC and can be used after the manufacturer of the overall system has assessed the risk of ignition.

The G...FE/ZN versions are free from aluminum and/or magnesium and galvanized.

Bosch Rexroth AG Hydraulics Zum Eisengießer 1 97816 Lohr am Main, Germany Phone +49 (0) 93 52 / 18-0 documentation@boschrexroth.de www.boschrexroth.de © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Electric Drives and Controls

Hydraulics

Linear Motion and Assembly Technologies

Pneumatics

Service

1/24

4/2 and 4/3 directional valves, internally pilot operated, externally pilot operated

RE 24751-XE-B2/09.13 Replaces: 01.10

Type H-4WEH...XE...

Sizes 10, 16, 25, 32 Component series 4X, 6X, 7X Maximum operating pressure 350 bar Maximum flow 1100 l/min

ATEX units For explosive areas

Part II Data sheet

Information on the explosion protection:

 Area of application in accordance with the Explosion Protection Directive 94/9/EC: II 2G

H7097

Actual product may differ

 Type of protection of the valve solenoid: Ex e mb IIC T4 Gb according to EN 60079-7:2007 / EN 60079-18:2009

Special features of seawater-resistant valves

- The external metal parts are galvanized or treated with an anti-corrosion agent.
- The conditional seawater-resistance is defined by "SO329" in the ordering code.

What you need to know about these operating instructions

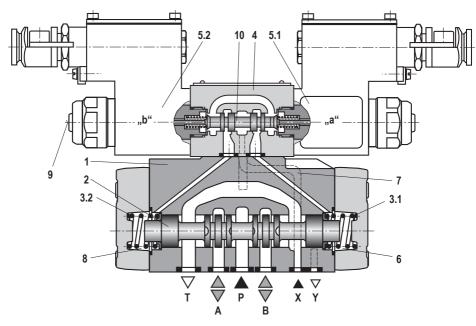
These operating instructions apply to the explosion-proof version of Rexroth valves and consist of the following three parts:

Part I General information 07010-X-B1

Part II Data sheet 24751-XE-B2 Part III Product-specific instructions 24751-XE-B3 Operating instructions 24751-XE-B0

You can find further information on the correct handling of Rexroth hydraulic products in our publication "General product information on hydraulic products" 07008.

389


Table of contents

Contents	Page
Features	2
Function, section	3
Ordering code and scope of delivery	4
Control spool symbols	6
Pilot oil supply	9
Technical data	10
Electrical connection	13
Characteristic curves, performance limits	15
Switching time adjustment, pressure reducing valve,	
preload valve	19
Dimensions	20

Features

- Valve to control the start, stop and direction of a flow, for proper use in explosive areas
- Electro-hydraulic actuation (WEH)
- For subplate mounting, porting pattern according to DIN 24340-A and ISO 4401, subplates available in FE/ZN version (see pages 20 to 23)
- Spring centering, spring end position or hydraulic end position
- Wet-pin DC or AC solenoids
- Solenoid coil can be rotated by 90°
- Manual override, optional
- Electrical connection as individual connection with cable gland
- Switching time adjustment, optional
- Preload valve in channel P of the main valve, optional

Type H-4WEH 16...XE...

Directional valves type H-4WEH...

The valve type H-4WEH is a directional spool valve with electrohydraulic actuation. It controls the start, stop and direction of a flow.

The directional valves basically consist of the main valve with housing (1), the main control spool (2), one or two return springs (3.1) and (3.2), as well as the pilot control valve (4) with one or two solenoids "a" (5.1) and/or "b" (5.2).

The main control spool (2) in the main valve is held in the zero or initial position by the springs or by means of pressurization. In the initial position, the two spring chambers (6) and (8) are connected with the tank in a depressurized form via the pilot control valve (4). The pilot control valve is supplied with pilot oil via the control line (7). Supply can be effected internally or externally (externally via port X).

Upon actuation of the pilot control valve, e.g. solenoid "a", the pilot control spool (10) is moved to the left and thus, the spring chamber (8) is pressurized with pilot pressure. The spring chamber (6) remains depressurized. The pilot pressure acts on the left side of the main control spool (2) and moves it against the spring (3.1). This connects ports P with B and A with T in the main valve.

When the solenoid is switched off, the pilot control spool returns into the initial position (except for impulse spool). The spring chamber (8) is unloaded to the tank.

The pilot oil from the spring chamber is displaced into channel Y via the pilot control valve.

The pilot oil supply and return can be effected internally or externally.

The manual override (9) allows control spool (10) to be moved without solenoid energization.

Ordering code and scope of delivery

H – 4	WEH				/	6E		X	Ε
Up to 350 bar = H									
4-way version = 4									
Directional valve, electro-hydraulically actuated = WE	-								
Size									
Size 10	= 10								
Size 16	= 16								
Size 25	= 25								
Size 32	= 32								
Control spool return main valve									
By means of springs	= no o								
Hydraulically 1)		= H] [
For control spool symbols, see page 6									
Component series 40 to 49 – size 10			=	= 4X					
(40 to 49: Unchanged installation and connection dimensions)									
Component series 60 to 69 – size 25 (4W.H 25.) and size 32			-	= 6X					
(60 to 69: Unchanged installation and connection dimensions) Component series 70 to 79 – size 16				- 7X					
(70 to 79: Unchanged installation and connection dimensions)			-	- / A					
Control spool return in the pilot control valve with 2 spool positi	one and 2	e olon	nide						
only possible with control spool C, D, K, Z and hydraulic control				n valve:					
Without spring return					0				
Without spring return with detent				= () F				
Pilot control valve with wet-pin solenoids									
High-power valve (RE 23178-XE-B2)					= 6	E			
Direct voltage 24 V						= G24			
AC voltage 230, V 50/60 Hz					=	W230R			
For further ordering codes for other voltages, see page 14							」		
Without manual override With manual override (standard)						= no	code = N		
Explosion protection "increased safety" For details see information on the explosion protection, page 1	1						=	XE	
Pilot oil supply external, pilot oil return external 2)							=	no co	oc
Pilot oil supply internal, pilot oil return external 3)									=
Pilot oil supply internal, pilot oil return internal 3)								=	E
Pilot oil supply external, pilot oil return internal ²⁾									=

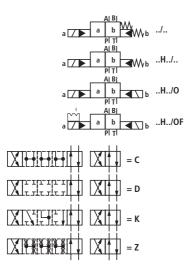
Included in the scope of delivery:

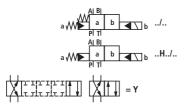
Valve operating instructions with declaration of conformity in Part III

Explanation of the footnotes, see page 5

Hydraulics | Bosch Rexroth AG 5/24

Ordering code and scope of delivery

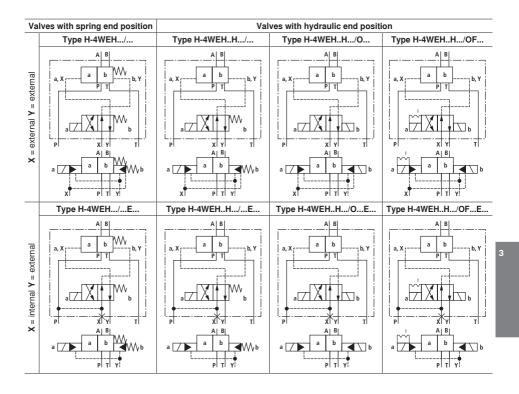

	Z2							
							SO329 =	Surface protection Conditionally seawater-resistant
							no code =	Standard
						no c V =	no code = V =	NBR seals FKM seals (other seals upon request)
								Important
								Observe compatibility of seals with hydraulic fluid used.
					no c D3 =	code = =		Without pressure reducing valve With pressure reducing valve 4/
					ode =			Preload valve (not for size 10) Without preload valve
			P4,5 =		With preload valve ($p_{\rm o}$ = 4.5 bar)			
			no code =					Throttle inser Without throttle inser
			B08 B10	_				Throttle Ø 0.8 mm Throttle Ø 1.0 mm
			B12 B15					Throttle Ø 1.2 mm Throttle Ø 1.5 mm
		_						Electrical connection
	Z	Z2 =						Solenoid with terminal box and cable gland, for details see chapter Electrical connection
	cod	de =						Without switching time adjustment
= 2	=							Switching time adjustment as supply contro Switching time adjustment as discharge contro


¹⁾ 2 spool positions (hydraulic end position): Only control spool C, D, K, Z, Y

- 2) Pilot oil supply X or pilot oil return Y external:
- Observe the maximum pilot pressure according to page 10.
- ³⁾ Pilot oil supply internal (version "ET" and "E"):
 - Observe the minimum pilot pressure according to page 10.
 - In order to prevent inadmissibly high pressure peaks, a throttle insert "B10" has to be provided in port P of the pilot control valve (see page 9).
 - You must moreover provide the pressure reducing valve "D3".
- ⁴⁾ Only in connection with throttle insert "B10"

Control spool symbols

2 spool positions

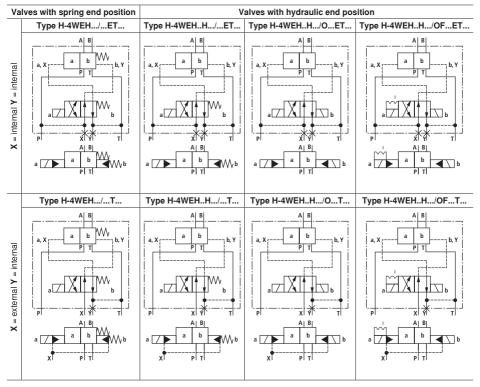

- Example: Control spool E with spool position "a" Order example: H-4WEH 16 EA7X/6EG24N9XEETSZ2B10..V..
- 2) Control spool S only for size 16

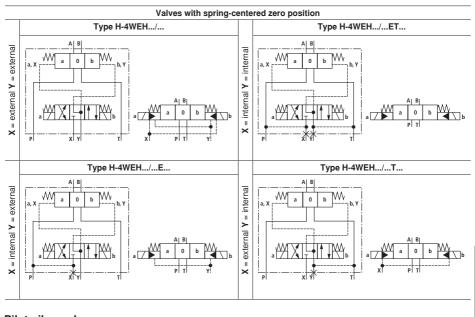
Other control spool variants upon request

AI BI a[**∕**₩ ₽₩ а 0 рГТ AB a 🖊 a 0 .A 1) PI TI AI BI 0 b ► .B l-I = E 1) Ļ = E19 = F I**↑** = G = H = J Ļ = L = M = P = Q = R = S ²⁾ Х = T = U XTH = V

= W

3 spool positions




Control spool symbols for valves with 2 spool positions

Continued on the next page

Control spool symbols for valves with 2 spool positions

Continuation from previous page

Control spool symbols for valves with 3 spool positions

Pilot oil supply

Type H-4WEH...

The pilot oil supply is effected **externally** via the X channel from a separate circuit.

The pilot oil return is effected **externally** via the Y channel into the tank.

Type H-4WEH...E...

The pilot oil supply is effected **internally** from the P channel of the main valve.

The pilot oil return is effected **externally** via the Y channel into the tank. In the subplate, port X is closed.

Type H-4WEH...ET...

The pilot oil supply is effected **internally** from the P channel of the main valve.

The pilot oil return is effected **internally** via the T channel into the tank. In the subplate, ports X and Y are closed.

Type H-4WEH...T...

The pilot oil supply is effected **externally** via the X channel from a separate circuit.

The pilot oil return is effected **internally** via the T channel into the tank. In the subplate, port Y is closed.

Throttle insert

Use of the throttle insert (2) is necessary if the pilot oil supply in the P channel of the pilot control valve (1) is to be limited. The throttle insert (2) is inserted in channel P of the pilot control valve (1).

- 1 Pilot control valve
- 2 Throttle insert
- 3 Seal ring
- 4 Main valve

genera									
Installation position			Any; horizontal with valves with hydraulic control spool return "H"						
				and control spo	and control spool C, D, K, Z or Y				
Ambient	temperature range	l.	-20 +70 ¹)						
Storage temperature range °C				-20 +50					
Sizes				10	16	25	32		
Weight	Valve with one solenoid			8.5	11	19	36.5		
	Valve with two so	Valve with two solenoids, spring-centered			12.5	20.5	39		
	Switching time ad	justment	kg	0.8					
	Pressure reducing	Pressure reducing valve			0.4				
Surface	Valve body Pilot control valve			Galvanized coating					
protectio	n	Main valve		Standard: Painting, layer thickness max. 100 µm					
				SO329: Galvanically coated, Zn and passivated					
	Solenoid			Galvanized coating					

hydraulic

Sizes		Size	10	16	25	32		
Maximum operating press		3120	10	10	25	32		
Ports P, A, B	sure	bar		35	50			
Port T	With pilot oil return Y external	bar	250					
	With pilot oil return Y internal	bar		21	10			
Port Y	With pilot oil return external	bar		21	10			
Flow of the main valve		l/min	Up to 160	Up to 300	Up to 650	Up to 1100		
Maximum pilot pressure	bar		gher pilot pressu e reducing valve					
 Minimum pilot pressure With pilot oil supply X e (control spool D, K, E, E 	xternal or internal E19, J, L, M, Q, R, U, W)							
3-spool position value	ve, spring-centered	bar	10	14	13	8.5		
2-spool position valv	ve, spring end position	bar	10	14	13	10		
2-spool position valv	ve, hydraulic end position	bar	7	14	8	5		
 With internal pilot oil supply (control spool C, F, H, P, T, V, Z, S²) 		bar	6.5 ³⁾	4.5 ⁴⁾	4.5 ⁴⁾	4.5 ⁴⁾		
Pilot volume for switching	process							
3-spool position valv	ve, spring-centered	cm ³	2.04	5.72	14.2	29.4		
2-spool position valv	/e	cm ³	4.08	11.45	28.4	58.8		
Pilot volume for shortest s	switching time	l/min	Approx. 35	Approx. 35	Approx. 35	Approx. 45		
Hydraulic fluid			degradable hyd (see also RE 9 (polyglycols) ⁶⁾ hydraulic fluid I fluids on reque	, HLP) according draulic fluids acc 0221), HETG (ra , HEES (synthet HFC according t st rature > 180 °C	cording to VDMA ape seed oil) ⁵⁾ , ic esters) ⁶⁾ , flan	24568 HEPG ne-resistant		
Hydraulic fluid temperatur	re range	°C	-20 +80 (NE	R seals)				
	•		-15 +80 (FK	M seals)				
Viscosity range		mm ² /s	2.8 500	,				
	ree of contamination of the according to ISO 4406 (c)	hydrau-	Class 20/18/15	5 8)				

Footnotes, see page 11

electric				
Voltage type		Direct voltage	Alternating voltage	
Available voltages	V	24, 48, 96, 110	110, 230	
Voltage tolerance (nominal voltage)	olerance (nominal voltage) % ±10			
Admissible residual ripple	%	< 5	-	
Duty cycle/operating mode according to VDE 0580		S1 (continuous operation)		
Switching time according to ISO 6403		see page 12		
Switching frequency	1/h	Up to 15000	Up to 7200	
Nominal power at ambient temperature 20 °C	W	17		
Maximum power with 1.1 x nominal voltage and ambient temperature 20 °C	W	20.6		
Protection class according to EN 60529		IP 66 ⁹⁾		

Important:

Solenoids for AC voltage are DC solenoids with integrated rectifier

Information on the explosion protection

Area of application in acc Explosion Protection Dire		II 2G			
Type of protection Valve		c (EN 13463-5:2011)			
Maximum surface tempe	rature ¹⁰⁾ °C	135			
Temperature class		T4			
Type of protection Valve EN 60079-7:2007 / EN 60	0	Ex e mb IIC T4 Gb			
Type examination certific	ate Solenoid	KEMA 02ATEX2240 X			
"IECEx Certificate of Cor	formity" Solenoid	IECEx DEK 12.0068X			
Ambient temperature ran	ge °C	-20 +70 ¹⁾			
Special conditions for	- In case of valves with two solenoi	ds, maximally one of the solenoids may be energized at a time.			
safe use	 Simultaneously energizing severa ture does not exceed 60 °C. 	I valves in bank assembly is possible if the ambient tempera-			
		one of the solenoids is energized at a time, and during indi- nbient temperature may not exceed 70 °C.			
	 The maximum temperature of the valve casing surface is 120 °C. This has to be considered when selecting the connection cable and contact of the connection cable with the casing surface is to be prevented. 				

- ¹⁾ Observe the "Special conditions for safe use" on page 11.
- 2) Control spool S only for size 16
- ³⁾ For control spools C, F, G, H, P, T, V, Z, an internal pilot oil supply without preload valve is only possible if the flow from P → T in the central position (for 3-spool position valve) or while crossing the central position (for 2-spool position valve) is so large that the pressure differential of P → T reaches a value of at least 6.5 bar.
- ⁴⁾ For control spools C, F, G, H, P, T, V, Z, S¹⁾ by means of preload valve (not size 10) or correspondingly high flow.
- 4) Suitable for NBR and FKM seals
- ⁵⁾ Suitable **only** for FKM seals

- ⁷⁾ Only in connection with NBR seals, max. admissible pressure 210 bar, Δp < 15 bar, hydraulic fluid temperature max. 60 °C. More information is available from our sales staff.
- ⁶⁾ The cleanliness classes specified for the components must be adhered to in hydraulic systems. Effective filtration prevents faults and at the same time increases the life cycle of the components.
 - For the selection of the filters see www.boschrexroth.com/filter.
- 9) With correctly installed electrical connection
- ¹⁰⁾ Surface temperature > 50 °C, provide contact protection

399

Switching times (= contacting at the pilot control valve until start of opening of the control edge in the main valve and change in the control spool stroke by 95 %)

Pilot pressure		bar	70	250	Spring	
		[C	N N	OFF	
Size 10	without throttle insert	ms	50 70	50 70	30 40	
	with throttle insert	ms	70 100	60 80	30 40	
Size 16	without throttle insert	ms	60 90	50 70	60 90	
	with throttle insert	ms	120 140	90 110	60 90	
Size 25	without throttle insert	ms	80 110	60 80	110 140	
	with throttle insert	ms	210 260	130 160	110 140	
Size 32	without throttle insert	ms	90 140	80 110	150 170	
	with throttle insert	ms	430 570	240 360	150 170	

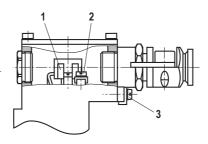
Important:

- The switching times are measured according to ISO 6403 with HLP46, ϑ_{oij} = 40 °C ± 5 °C. With different oil temperatures, deviations are possible.
- The switching times increase by approx. 30 ms if the pressure reducing valve "D3" is used.
- The switching times have been determined under ideal conditions and may differ in the system, depending on the application conditions.

Free flow cross-sections in zero position with control spools Q, V and W

Control spool Q	A – T, B – T	mm ²	13	32	78	83	78
Control spool V	A – T, B – T	mm ²	13	32	73	83	73
	P – A, P – B	mm ²	13	32	84	83	84
Control spool W	A – T, B – T	mm ²	2.4	6	10	14	20

Electrical connection


The type-examination tested valve solenoid of the valve is equipped with a terminal box and a type-tested cable gland.

The connection is polarity-independent.

Solenoids to be connected to AC voltage are equipped with an integrated rectifier.

Important

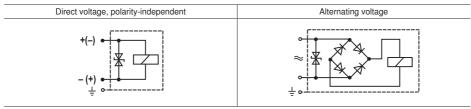
When establishing the electrical connection, the protective earthing conductor (PE $\stackrel{\perp}{=}$) has to be connected properly.

Properties of the connection terminals

Position	Function	Connectable line cross-section
1	Operating voltage connection	Single-wire 0.75 2.5 mm ²
		Finely stranded 0.75 1.5 mm ²
2	Connection for protective earthing conductor	Single-wire max. 2.5 mm ²
		Finely stranded max. 1.5 mm ²
3	Connection for potential equalization conductor	Single-wire 4 6 mm ²
		Finely stranded 4 mm ²

Cable gland

Type approval	II 2G Ex e IIC Gb
Threaded connection	M20 x 1.5
Protection class according to EN 60529	IP66 ¹⁾
Line diameter mm	911
Sealing	Outer sheath sealing


Connection line

Line type	Non-armored cables and lines (outer sheath sealing)
Temperature range °C	-30 > +110

1) If installed properly

Electrical connection

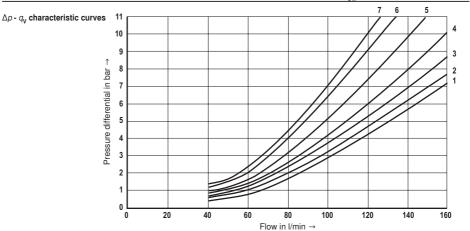
Circuit diagrams

Over-current fuse and switch-off voltage peaks

Important

Corresponding to the rated current, a fuse according to DIN 41571 and EN / IEC 60127 has to be connected ahead of every valve solenoid (max. 3 x I_{rated}).

The shut-off threshold of the fuse has to match the prospective short-circuit current of the supply source.


The prospective short-circuit current of the supply source may amount to a maximum of 1500 A.

This fuse may only be installed outside the explosive area or must be of an explosion-proof design.

When inductivities are switched off, voltage peaks are the result which may cause faults in the connected control electronics. For this reason, the valve solenoids comprise an interference protection circuit which dampens this voltage peak to the voltage value shown in the table.

Voltage data in the valve type code	Nominal volt- age valve solenoid	Rated cur- rent valve solenoid	Rated current external miniature fuse: Medium time-lag (M) according to DIN 41571 and EN/IEC 60127	Rated voltage of exter- nal miniature fuse: Medium time-lag (M) according to DIN 41571 and EN/IEC 60127	Maximum voltage value upon switch-off	Interference protection circuit
G24	24 V DC	0.708 A DC	800 mA	250 V	–90 V	
G48	48 V DC	0.354 A DC	400 mA	250 V	–200 V	Suppressor
G96	96 V DC	0.177 A DC	200 mA	250 V	–370 V	- diode bi-directional
G110	110 V DC	0.155 A DC	200 mA	250 V	–390 V	
W110R	110 V AC	0.163 A AC	200 mA	250 V	–3 V	Bridge recti-
W230R	W230R 230 V AC		80 mA	250 V	–3 V	fier and sup- pressor diode

Characteristic curves: Type H-4WEH 10... (measured with HLP46, \u00f3_{oil} = 40 °C ± 5 °C)

Characteristic curve selection

Control		Spool p	osition		Control	Zero position		
spool	P – A	P – B	A – T	B – T	spool	A – T	B – T	P – T
E, Y, D	2	2	4	5				
F	1	4	1	4	F	3	-	6
G, T	4	2	2	6	G, T	-	-	7
H, C	4	4	1	4	н	1	3	5
J, K	1	2	1	3				
L	2	3	1	4	L	3	-	-
М	4	4	3	4				
Р	4	1	3	4	Р	-	7	5
Q, V, W, Z	2	2	3	5				
R	2	2	3	-				
U	3	3	3	4	U	-	4	-

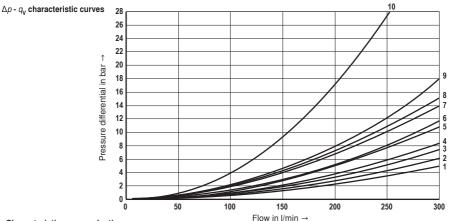
Performance limits: Type H-4WEH 10... (measured with HLP46, $\vartheta_{oil} = 40 \text{ °C} \pm 5 \text{ °C}$)

2- and 3-spool position valves

Maximum flow qv in I/min

Control spool	Operating pressure p_{\max} in bar					
	200	250	315			
E, J, L, M, Q, R, U, V, W, C, D, K, Z, Y	160	160	160			
Н	160	150	120			
G, T	160	160	140			
F, P	160	140	120			

Important


The specified switching power limits are valid for operation with two directions of flow (e.g. from P \rightarrow A and simultaneous return flow from B \rightarrow T) in the ratio 1:1.

Due to the flow forces acting within the valves, the admissible switching power limit may be considerably lower with only one direction of flow (e.g. from P \rightarrow A while port B is blocked or if there are simultaneous flows in different directions).

(In such cases, please consult us.)

The switching power limit was established while the solenoids were at operating temperature, at 10 % undervoltage and without tank preloading.

Characteristic curves: Type H-4WEH 16... (measured with HLP46, d_{oil} = 40 °C ± 5 °C)

Characteristic curve selection

Control	Spool position							
spool	P – A	P – B	A – T	B – T	P – T			
E, Y, D	1	1	3	4	-			
E19	-	6	8	7	-			
F	1	1	5	4	-			
G, T	4	1	5	5	9			
H, C, Q, V, Z	1	1	5	6	-			
J, K, L	1	1	5	6	-			

Control	Spool position								
spool	P – A	P – B	A – T	В – Т	P – T				
M, W	1	1	3	4	-				
R	1	1	3	-	-				
U	2	2	3	5	-				
S	3	3	3	-	10				

Performance limits: Type H-4WEH 16... (measured with HLP46, $\vartheta_{oil} = 40 \text{ °C} \pm 5 \text{ °C}$)

2-spool position valve

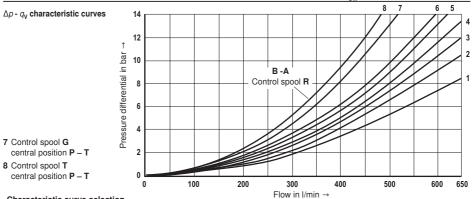
Maximum flows	q _v in l/mi	n								
Control spool	Ор	Operating pressure <i>p</i> _{max} in bar								
	70	140	210	280	350					
X external, spring end position in the main valve (with <i>p</i> _{St min} = 12 bar)										
C, D, K, Y, Z	300	300	300	300	300					
X external, spring end position in the main valve ¹⁾										
С	300	300	300	300	300					
D, Y	300	270	260	250	230					
К	300	250	240	230	210					
Z	300	260	190	180	160					
X external, hyd	raulic en	d positi	on in the	main va	lve					
HC. HD. HK.										

HC, HD, HK, HZ, HY	300	300	300	300	300	_

Important

See also "Important" page 15

3-spool position valve Maximum flows *a*. in I/min


Control spool	Operating pressure p_{\max} in bar								
	70	140	210	280	350				
X external, spring centering in the main valve									
E, E19, H, J, L, M, Q, U, W, R	300	300	300	300	300				
F, P	300	250	180	170	150				
G, T	300	300	240	210	190				
S	300	300	300	250	220				
V	300	250	210	200	180				

Important

- If the specified flow values are exceeded, the function of the return spring is no longer guaranteed if the pilot pressure fails.
- With pilot oil supply X internal, you must always use a preload valve due to the negative overlap of the control spools F, G, H, P, T, S, C and HC.
- With control spools V, Z and HZ, the preload valve is not required for flows > 180 l/min.

T ______3

Characteristic curves: Type H-4WEH 25... (measured with HLP46, $\vartheta_{oil} = 40 \text{ °C} \pm 5 \text{ °C}$)

|--|

Control	Spool position						
spool	P – A	P – B	A – T	В – Т			
E	1	1	1	3			
F	1	4	3	3			
G	3	1	2	4			
Н	4	4	3	4			
J, Q	2	2	3	5			

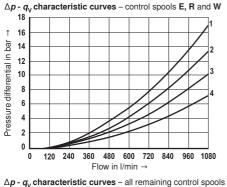
ontrol	Spool position			Control		Spool position			
spool	P – A	P – B	A – T	B – T	spool	P – A	P – B	A – T	В – '
L	2	2	3	3	U	4	1	1	6
М	4	4	1	4	V	2	4	3	6
Р	4	1	1	5	W	1	1	1	3
R	2	1	1	-	Т	3	1	2	4

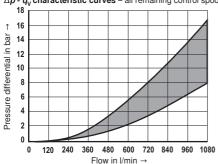
3-spool position valve

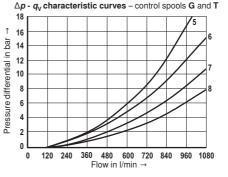
Performance limits: Type H-4WEH 25... (measured with HLP46, ϑ_{oil} = 40 °C ± 5 °C)

2-spool position valve Maximum flows q _v in I/min									
Control	O	pressure p _{max} in bar							
spool	70	140	210	280	350				
	X external, spring end position in the main valve (with $p_{\text{St min}} = 13 \text{ bar}$)								
C, D, K, Y, Z	700	700	700	700	650				
X external, spring end position in the main valve ¹⁾									
С	700	700	700	700	650				
D, Y	700	650	400	350	300				
К	700	650	420	370	320				
Z	700	700	650	480	400				
X external, h	ydraulic	end posi	tion in th	e main va	alve				
HC, HD, HK, HZ, HY	700	700	700	700	700				
HC/O HD/O HK/O HZ/O	700	700	700	700	700				
HC/OF HD/OF HK/OF HZ/OF	700	700	700	700	700				

Important


See also "Important" page 15


Maximum flow	vs q_v in I/	min							
Control	Operating pressure <i>p</i> _{max} in bar								
spool	70	140	210	280	350				
X external, spring centering in the main valve									
E, L, M, Q, U, W,	700	700	700	700	650				
G, T	400	400	400	400	400				
F	650	550	430	330	300				
н	700	650	550	400	360				
J	700	700	650	600	520				
Р	650	550	430	330	300				
V	650	550	400	350	310				
R	700	700	700	650	580				


Important

- ¹⁾ If the specified flow values are exceeded, the function of the return spring is no longer guaranteed if the pilot pressure fails.
- With pilot oil supply X internal, a preload valve has to be used for flows < 180 l/min due to the negative overlap of the control spools Z, HZ and V.
- With pilot oil supply X internal, you must always use a preload valve due to the negative overlap of the control spools C, HC, F, G, H, P and T.

Characteristic curves: Type H-4WEH 32... (measured with HLP46, to old of the state of the state

Control	Spool position							
spool	P – A	P – B	A – T	B – T	B – A			
E	4	4	3	2	-			
R	4	4	3	-	1			
W	4	4	3	2	-			

Control	Spool position							
spool	P – A	P – B	A – T	B – T	P – T			
G	7	8	7	5	6			
Т	7	8	7	5	6			

	Performance limits: Type H-4WEH 32	(measured with HLP46, $\vartheta_{oil} = 40 \text{ °C} \pm 5 \text{ °C}$)
--	------------------------------------	--

2-spool	nosition	valve
2-5p001	position	valve

Maximum flows $q_{ m v}$ in l/min										
Control	O	Operating pressure <i>p</i> _{max} in bar								
spool	70	140	210	280	350					
X external, spring end position in the main valve (with p _{St min} = 10 bar)										
C, D, K, Y, Z	1100	1040	860	750	680					
X external, s	X external, spring end position in the main valve ¹⁾									
С	1100	1040	860	800	700					
D, Y	1100	1040	540	480	420					
к	1100	1040	860	500	450					
Z	1100	1040	860	700	650					
X external, hydraulic end position in the main valve										
HC, HD, HK, HZ, HY	1100	1040	860	750	680					

Important

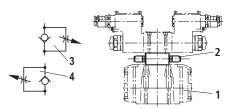
See also "Important" page 15

Maximum flows q_v in I/min Control Operating pressure p_{max} in bar spool 70 140 210 280 350 X external, spring centering in the main valve E. J. L. M. 680 1100 1040 860 750 Q, U, W, R G, T, H, F, P 900 900 800 650 450 680 450 v 1100 1000 500

Important

3-spool position valve

- ¹⁾ If the specified flow values are exceeded, the function of the return spring is no longer guaranteed if the pilot pressure fails.
- With pilot oil supply X internal, a preload valve has to be used for flows < 180 l/min due to the negative overlap of the control spools Z, HZ and V.
- With pilot oil supply **X internal**, you must always use a preload valve due to the negative overlap of the control spools C, HC, F, G, H, P and T.

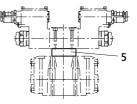

Switching time adjustment, pressure reducing valve, preload valve

Switching time adjustment "S/S2"

The switching time of the main valve (1) is influenced by using a twin throttle check valve (2), type Z2FS 6.

Symbol (3) shows the switching time adjustment "S" (supply control), symbol (4) shows the switching time adjustment "S2" (discharge control)

Type H-4WEH 10 ..4X/...S or S2



Pressure reducing valve "D3"

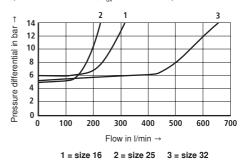
With the design internal pilot oil supply (ET or E) or external pilot oil supply and a pilot pressure of more than 250 bar, the valve must be ordered with a pressure reducing valve (5), type ZDR6PO, **and** a throttle insert "B10".

Ordering code: "B10..D3"

Type H-4WEH 10 ..4X/.../..D3

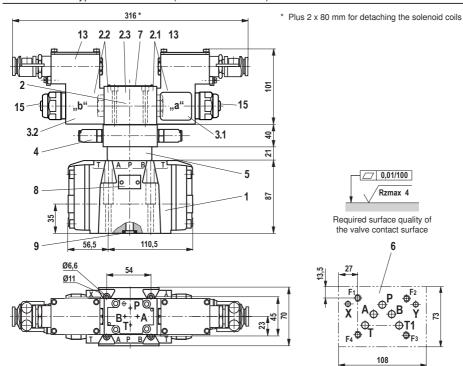
Preload valve "P4,5" (not for size 10)

In case of valves with depressurized circulation and internal pilot oil supply, a preload valve is required in the P channel of the main valve in order to build up the minimum pilot pressure.


Ordering code: "P4,5"

The pressure differential of the preload valve is to be added to the pressure differential of the main valve (see characteristic curves) to result in one total value.

The cracking pressure amounts to approx. 4.5 bar.


$\Delta p - q_{v}$ characteristic curve

(measured with HLP46, $\vartheta_{oil} = 40 \text{ °C} \pm 5 \text{ °C}$)

F₂

2

Dimensions: Type H-4WEH 10... (dimensions in mm)

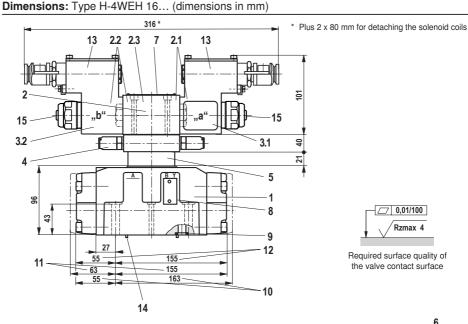
Subplates

· without ports X, Y

• with ports X, Y

G 534/01 FE/ZN (G3/4) G 535/01 FE/ZN (G3/4) G 536/01 FE/ZN (G1)

with dimensions as in the data sheet 45054 (must be ordered separately)

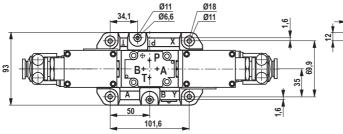

Item explanations and information on the subplates, see page 24

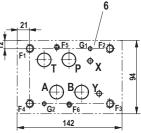
Valve mounting screws

For reasons of stability, exclusively use the following valve mounting screws:

4 hexagon socket head cap screws ISO 4762-M6x45-10.9-flZn-240h-L (friction coefficient total: 0.09-0.14 according to VDA 235-101)

(must be ordered separately)




409

Required surface quality of the valve contact surface

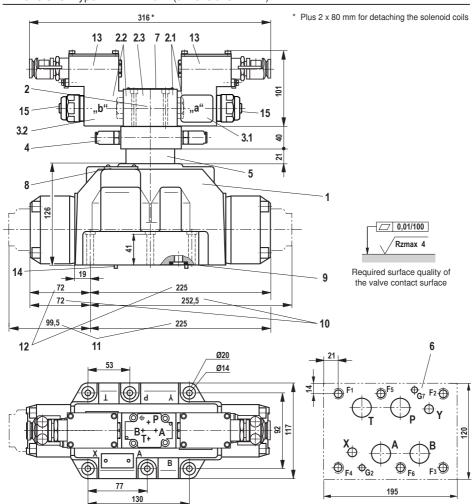
3

Subplates

G 172/01 FE/ZN (G3/4) G 172/02 FE/ZN (M27 x 2) G 174/01 FE/ZN (G1) G 174/02 FE/ZN (M33 x 2) G 174/08 FE/ZN (flange)

with dimensions as in the data sheet 45056 (must be ordered separately)

Item explanations and information on the subplates, see page 24


Valve mounting screws

For reasons of stability, exclusively use the following valve mounting screws:

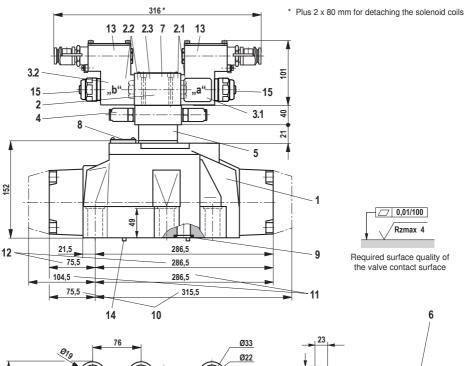
4 hexagon socket head cap screws ISO 4762-M10x60-10.9-flZn-240h-L (friction coefficient total: 0.09-0.14 according to VDA 235-101)

2 hexagon socket head cap screws ISO 4762-M6x60-10.9-flZn-240h-L (friction coefficient total: 0.09-0.14 according to VDA 235-101)

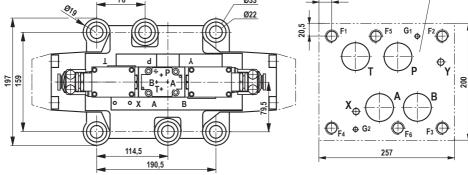
(must be ordered separately)

Dimensions: Type H-4WEH 25... (dimensions in mm)

Subplates


G 151/01 FE/ZN (G1) G 154/01 FE/ZN (G1 1/4) G 154/08 FE/ZN (flange) G 156/01 FE/ZN (G1 1/2)

with dimensions as in the data sheet 45058 (must be ordered separately)


Valve mounting screws

For reasons of stability, exclusively use the following valve mounting screws: 6 hexagon socket head cap screws ISO 4762-M12x60-10.9-flZn-240h-L (friction coefficient total: 0.09-0.14 according to VDA 235-101) (must be ordered separately)

Item explanations and information on the subplates, see page 24

Dimensions: Type H-4WEH 32... (dimensions in mm)

Subplates

G 157/01 FE/ZN (G1 1/2) G 157/02 FE/ZN (M48 x 2) G 158/10 FE/ZN (flange) with dimensions as in the data sheet 45060 (must be ordered separately)

Item explanations and information on the subplates, see page 24

Valve mounting screws

For reasons of stability, exclusively use the following valve mounting screws:

6 hexagon socket head cap screws ISO 4762-M20x80-10.9-flZn-240h-L (friction coefficient total: 0.09-0.14 according to VDA 235-101)

(must be ordered separately)

Dimensions: Item explanations and notice

Item explanations regarding the unit dimensions on pages 20 to 23

- 1 Main valve
- 2 Pilot control valve type 4WE 6...XE according to data sheet 23178-XE-B2
- 2.1 Pilot control valve type 4WE 6 D... (1 solenoid "a") for main valves with Control spools C, D, K, Z Control spool HC, HD, HK, HZ
 - Pilot control valve type 4WE 6 JA... (1 solenoid "a") for main valves with control spools EA, FA, etc., spring return
- 2.2 Pilot control valve type 4WE 6 Y... (1 solenoid "b") for main valves with Control spool Y Control spool HY
 - Pilot control valve type 4WE 6 JB... (1 solenoid "b") for main valves with control spools EB, FB, etc., spring return
- 2.3 Pilot control valve type 4WE 6J... (2 solenoids) for main valves with 3 spool positions, spring-centered
- 3.1 Valve solenoid "a"
- 3.2 Valve solenoid "b"
 - 4 Switching time adjustment, optional
 - 5 Pressure reducing valve, optional
 - 6 Machined valve contact surface

Porting pattern according to: DIN 24340-A10 and ISO 4401-05-05-0-05 for size 10 DIN 24340-A16 and ISO 4401-07-07-0-05 for size 16 DIN 24340-A25 and

ISO 4401-08-08-0-05 for size 25 DIN 24340-A32 and ISO 4401-10-09-0-05 for size 32

- 7 Name plate for the pilot control valve
- 8 Name plate for the complete valve
- 9 R-rings/O-rings

Bosch Rexroth AG Hydraulics Zum Eisengießer 1 97816 Lohr am Main, Germany Phone +49 (0) 93 52 / 18-0 documentation@boschrexroth.de www.boschrexroth.de

- 10 2-spool position valves with spring end position in the main valve (C, D, K, Z)
- 11 2-spool position valves with spring end position in the main valve (Y)
- 12 3-spool position valves, spring-centered 2-spool position valves with hydraulic end position in the main valve
- 13 Terminal box
- 14 Locking pin
- 15 Manual override, optional

Important:

Subplates are no components in the sense of directive 94/9/EC and can be used after the manufacturer of the overall system has assessed the risk of ignition.

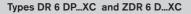
The G...FE/ZN versions are free from aluminum and/or magnesium and galvanized.

© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Electric Drives and Controls

Hydraulics

Pneumatics


Service

1/12

Pressure-reducing valves, directly operated

RE 26564-XC-B2/06.09 Replaces: 12.05

Nominal size 6 Unit series 5X (DR 6...) and 4X (ZDR 6...) Maximum operating pressure, primary 315 bar (DR 6... and ZDR 6...) Maximum flow rates 60 I/min (DR 6...) and 50 I/min (ZDR 6...)

ATEX units For potentially explosive atmospheres

Part II Technical Data Sheet

Information on explosion protection:

Range of application in accordance with the Explosion Protection Directive and type of protection

- Range of application as per Directive 94/9/EG IM2, II2G
- Type of protection of valve: c (EN 13463-5:2004-03)

What you need to know about these Operating Instructions

These Operating Instructions apply to the explosion-proof version of Rexroth valves, and consist of the following three parts:

Part I General Information RE 07010-X-B1

Part II Technical Data Sheet RE 26564-XC-B2

Part III Product-specific Instructions RE 26564-XC-B3

RE 26564-XC-B0

You can find further information on the correct handling of Rexroth hydraulic products in our publication "General Product Information on Hydraulic Products", RE 07008.

413

Overview of Contents

Contents	Page	
Features	2	
Ordering data and scope of delivery	3	
Function, sectional diagram, symbols, DR 6 DPXC	4	
Function, sectional diagram, symbols, ZDR 6 DXC	5	
Technical data	6	
Information on explosion protection	6	
Characteristic curves, DR 6 DPXC	7	
Characteristic curves, ZDR 6 DXC	8	
Unit dimensions, DR 6 DPXC	9	
Unit dimensions, ZDR 6 DXC	10	

Features

- For subplate mounting type Typ DR6DP...XC

- Position of ports to DIN 24340-A6 (standard)
- and ISO 4401-03-02-0-05
- 5 pressure stages
- Setting element in the form of a rotary knob
 Optional non-return valve, see ordering data
- Optional non return valve, see ordening data
- As modular valve type Typ ZDR6DP...XC
 - Position of ports to DIN 24340-A6, without locating bore (standard) and ISO 4401-03-02-0-05 with locating bore (order code .../60)
 - · 4 pressure stages
 - · Setting element in the form of a rotary knob
 - Optional non-return valve, see ordering data

Ordering data and scope of delivery

DR 6	DP 1 -5	x/	Y	>		V
Directly operated pressure-reducing valve, nominal size 6, as subplate- mounted valve						V = FKM seals Note: Take compatibility of seals and
Setting element					20	pressure fluid into account!
Rotary knob Unit series 50 to 59 (50 to 59: installation and connection	= 1 = 5X				XC =	 Valve in explosion-proof design, see information on explosion protection, page 6, for details
dimensions unchanged)				No M =	code =	With non-return valve
Maximum secondary pressure						
25 bar	-	25	Y :	-		Internal control oil supply
75 bar	=	75				External leakage oil return
150 bar	=	150				
210 bar	=	210				
315 bar ¹⁾	=	315				

1) Without non-return valve

Included in scope of delivery:

Valve operating instructions with Declaration of Conformity in Part III

ZDR 6	D		1 -4	x/	1	1	X	c			
Directly operated pressure- reducing valve, nominal size 6, as modular valve										No code = /60 =	Without locating bore With locating bore
Pressure reduction									No c	code =	NBR-seals
in channel A2 in channel B2 $^{1) (2)}$ in channel P1 $^{1) (2)}$	= A = B = P								V =	Take co	FKM-seals Note: ompatibility of seals and
Setting element		_								pres	sure fluid into account!
Rotary knob		= 1						XC =	=	Valve in	explosion-proof design,
Unit series 40 to 49 (40 to 49: installation and connectior	า	-	= 4X						see	information (on explosion protection, page 6, for details
dimensions unchanged)							No c	ode =	-		With non-return valve
Maximum secondary pressure											possible with pressure
25 bar			=	25			м =				eduction in channel A2) Vithout non-return valve
75 bar 150 bar 210 bar				75 150 210		Y =					ternal control oil supply ternal leakage oil return

1) Without non-return valve

 $^{2)}$ See functional description of "DP" and "DB" versions on page 5

Included in scope of delivery:

Valve operating instructions with Declaration of Conformity in Part III

415

Function, sectional diagram, DR 6 DP...XC

The DR 6 DP...XC type valve is a directly operated pressurereducing valve in subplate-mounted design. It is a 3-way version, i.e. it limits the pressure of the secondary circuit.

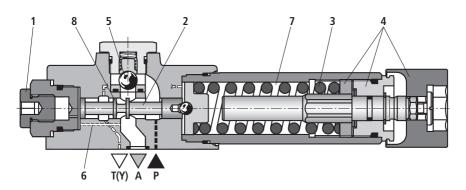
It is used to reduce system pressure.

The secondary pressure is set by means of the setting element (4).

In the initial position, the valve is open. Pressure fluid can flow from channel P to channel A unimpeded. The pilot line (6) also makes the pressure in channel A available to the piston surface area opposite the compression spring (3). If the pressure in channel A exceeds the value set at the compression spring (3), the control piston (2) moves into the control position and keeps the set pressure in channel A at a constant level.

The control signal and control oil arrive internally from channel A via the pilot line (6).

If the pressure in channel A continues to increase due to external forces being exerted on the load, the control piston (2) is pushed even harder against the compression spring (3).


This causes channel A to be connected to the tank via the metering edge (8) on the control piston (2). In this way, the amount of pressure fluid that flows to the tank ensures that the pressure cannot rise any further.

The leakage oil from the spring chamber (7) is always returned externally via channel T (Y).

An optional non-return valve (5) may be installed to ensure a free return flow from channel A to channel P.

A gage connection (1) enables the secondary pressure to be monitored (see page 9 for connection dimensions).

Type DR 6 DP1-5X/...XCYV

Symbols, DR 6 DP...XC

"YM" version

Internal control oil supply External leakage oil return Without non-return valve

"Y" version

Internal control oil supply External leakage oil return With non-return valve

Function, sectional diagram, ZDR 6 D...XC

The ZDR 6 D...XC type valve is a directly operated pressurereducing valve in modular design. It is a 3-way version, i.e. it limits the pressure of the secondary circuit.

It is used to reduce system pressure. The pressure-reducing valve basically consists of a housing (1), a control piston (2), a compression spring (3), a setting element (4) and an optional non-return valve.

The secondary pressure is set by means of the setting element (4).

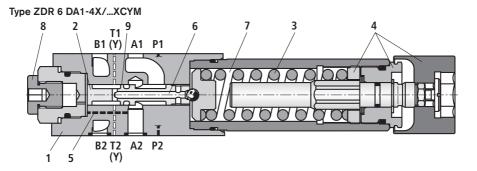
"DA" version

In the initial position, the valve is open. Pressure fluid can flow from channel A1 to channel A2 unimpeded. The pilot line (5) also makes the pressure in channel A2 available to the piston surface area opposite the compression spring (3). If the pressure in channel A2 exceeds the value set at the compression spring (3), the control piston (2) moves into the control position and keeps the set pressure in channel A2 at a constant level. The control signal and control oil arrive internally from channel A2 via the pilot line (5).

If the pressure in channel A2 continues to increase due to external forces being exerted on the load, the control piston (2) is pushed even harder against the compression spring (3). This causes channel A2 to be connected to the tank via the metering edge (9) on the control piston (2). In this way, the amount of pressure fluid that flows to the tank ensures that the pressure cannot rise any further. The leakage oil from the spring chamber (7) is always returned externally to channel T(Y) via the bore (6). A gage connection (8) enables the secondary pressure to be monitored (see page 10 for connection dimensions).

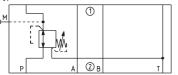
A non-return valve to ensure a free flow from channel A2 to A1 can only be inserted in the "DA" version

"DP" and "DB" versions


In the DP version, the pressure is reduced in channel P1. The control signal and control oil come internally from channel P1.

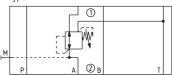
In the DB version, the pressure in channel P1 is reduced, but the control oil is derived internally from channel B.

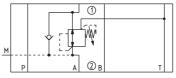
Note:


417

In the DB version, care must be taken to ensure that the pressure in channel B does not exceed the set pressure when the directional control valve is in the P to A switching position. Otherwise, the pressure will be reduced in channel A.

Symbols, ZDR 6 D...XC




Type ZDR 6 DB...YM...

Type ZDR 6 DA...YM..

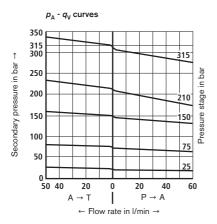
Type ZDR 6 DA...Y...

General			
Installation position		Optional	
Ambient temperature range	°C	−20 … +80 (FKM-seals) −30 … +80 (NBR-seals)	
Storage temperature range	°C	−20 … +80 (FKM-seals) −30 … +80 (NBR-seals)	
Weight	kg	1.2	
Surface protection	Standard	Paint, layer thickness max. 100 µm	

Hydraulic

Valve type	DR 6 DPXC	ZDR 6 DXC			
Maximum operating pressure, primary	315 315				
Maximum secondary pressure ¹⁾	25 / 75 / 150 / 210 / 315 25 / 75 / 150 / 210				
Maximum counter pressure Port T(Y)	bar	50	160		
Maximum flow rate	l/min	60	50		
Pressure fluid		Mineral oil (HL, HLP) to DIN 51 other pressure fluids available of Ignition temperature > 180 °C			
Pressure fluid temperature range	°C	-20 +80 (FKM-seals) -30 +80 (NBR-seals)			
Viscosity range	mm²/s	10 800			
Maximum permissible degree of contamination of pressure fluid Purity class to ISO 4406 (c)		Class 20/18/15 2)			

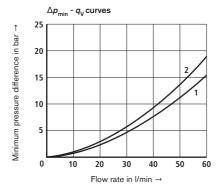
Information on explosion protection

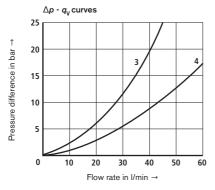

Range of application as per Directive 94/9/EG	IM2, II2G
Type of protection of valve	c (EN 13463-5:2004-03)
Maximum surface temperature ³⁾ °C	125
Temperature class	T4

¹⁾ In order to prevent the maximum permitted secondary pressure from being exceeded, it must be checked with a suitable measuring instrument if it is altered.

- ²⁾ The purity classes stated for the components must be complied with in hydraulic systems. Effective filtration prevents problems and also extends the service life of components. For a selection of filters, see Technical Data Sheets RE 50070, RE 50076 and RE 50081.
- ³⁾ As high surface temperatures may occur, European standards ISO 13732-1 and EN 982 on the prevention of accidental contact must be observed.

Characteristic curves, DR 6 DP...XC (measured with HLP46, $\vartheta_{oil} = 40 \text{ °C} \pm 5 \text{ °C}$)

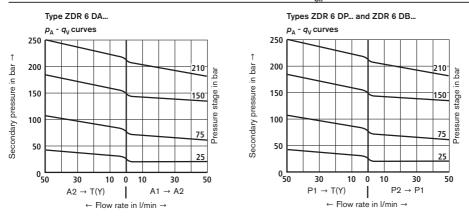

419

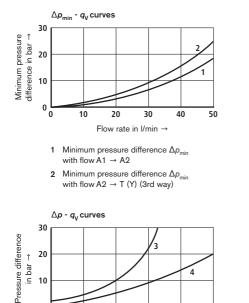


Note:

When the pressure is set lower, the curve shape still corresponds to the pressure stage

The curves for the pressure relief function apply to an initial pressure of 0 in the overall flow range!




- 1 Minimum pressure difference Δp_{min} with flow P \rightarrow A
- 2 Minimum pressure difference Δp_{min} with flow A \rightarrow T (Y)

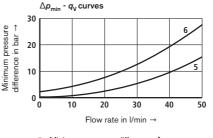
- **3** Pressure difference Δ*p* with flow via non-return valve only
- 4 Pressure difference Δp with flow via non-return valve and fully open control cross-section

Characteristic curves, ZDR 6 D...XC (measured with HLP46, the source of the state of the source of t

When the pressure is set lower, the curve shape still corresponds to the pressure stage. The curves for the pressure relief function apply to an initial pressure of 0 in the overall flow range!

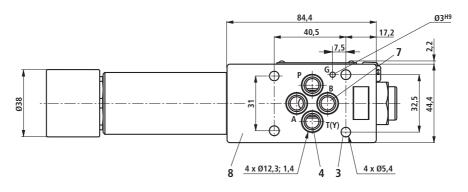
0

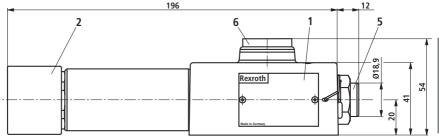
10


20

Flow rate in I/min →

30


40

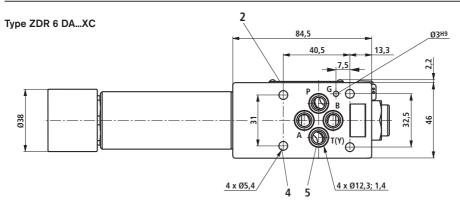

50

- 5 Minimum pressure difference Δp_{min} with flow P2 \rightarrow P1
- 6 Minimum pressure difference Δp_{min} with flow P1 \rightarrow T (Y) (3rd way)
- Pressure difference Δp with flow A2 → A1 via non-return valve only
- 4 Pressure difference Δp with flow A2 \rightarrow A1 via non-return valve and fully open control cross-section

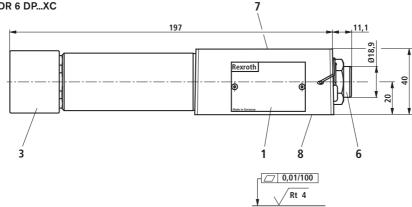
Unit dimensions, DR 6 DP...XC (in mm)

Required surface quality of mating component

- 1 Nameplate
- 2 Setting element "1", additionally with hexagon socket SW19 for manual override
- 3 Valve mounting bores
- 4 Same seals for ports A, B, P and T (Y)
- 5 Gage connection G1/4, 12 deep, hexagon socket SW6
- 6 With non-return valve
- 7 Port B without function
- 8 Position of ports to DIN 24340-A6, without locating bore (standard) Position of ports to ISO 4401-03-02-0-05, with locating bore


Valve fastening bolts

In order to ensure a secure connection, use only the following valve fastening bolts: 4 hexagon socket head cap screws ISO 4762-M5x50-10.9-fl2n-240h-L


(coefficient of friction 0.09-0.14 to VDA 235-101)

(must be ordered separately, also see RE 26564-XC-B3, section 9.1, Available accessories)

Unit dimensions, ZDR 6 D...XC (in mm)

Type ZDR 6 DB...XC and Type ZDR 6 DP...XC

- 1 Nameplate, ZDR 6 DB... or ZDR 6 DP...
- 2 Nameplate, ZDR 6 DA...
- 3 Setting element "1", additionally with hexagon socket SW19 for manual override
- 4 Valve mounting bores
- 5 Same seals for ports A, B, P, T (Y)
- 6 Gage connection G1/4, 12 deep, hexagon socket SW6
- Position of ports to ISO 4401-03-02-0-05, with locating bore
 Position of ports to DIN 24340-A6, without locating bore (standard)
- 8 Position of ports to ISO 4401-03-02-0-05, with locating bore

Valve fastening bolts

In order to ensure a secure connection, use only the following valve fastening bolts: 4 hexagon socket head cap screws ISO 4762-M5x...-10.9-ft2n-240h-L

(coefficient of friction 0.09-0.14 to VDA 235-101)

Required surface quality

of mating component

(must be ordered separately, also see RE 26564-XC-B3, section 9.1, Available Accessories)

423

Notes

Bosch Rexroth AG Hydraulics Zum Eisengießer 1 97816 Lohr am Main, Germany Telefon +49 (0) 93 52 / 18-0 Telefax +49 (0) 93 52 / 18-23 58 documentation@boschrexroth.de www.boschrexroth.de

© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

425

Linear Motion and

Service

Rexroth **Bosch Group**

1/12

Pressure relief valve, pilot operated

Hydraulics

Type DB...5X/...XC

Electric Drives and Controls

Nominal sizes (NG) 10, 20, 30 Unit series 5X Maximum operating pressure 350 bar

> ATEX units For potentially explosive atmospheres

Part II Technical Data Sheet

E

Information on explosion protection:

Range of application in accordance with the Explosion Protection Directive and type of protection

- Range of application as per Directive RL 94/9/EG IM2, II2G, II2D
- Type of protection of valve: c (EN 13463-5:2001-01)

What you need to know about these Operating Instructions

These Operating Instructions apply to the explosion-proof version of Rexroth valves, and consist of the following three parts:

- General Information RE 07010-X-B1 Part I
- Part II Technical Data Sheet RE 25802-XC-B2
- Part III Product-specific Instructions RE 25802-XC-B3

Mat. No. R901155669

You can find further information on the correct handling of Rexroth hydraulic products in our publication "General Product Information for Hydraulic Products", RE 07008.

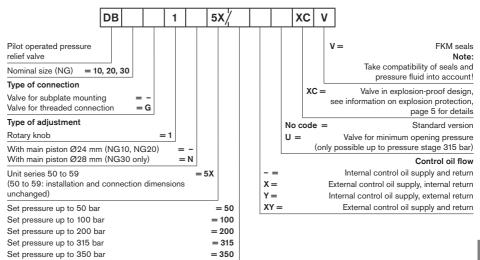
RE 25802-XC-B2/01.07

Assembly Technologies Pneumatics

Overview of Contents

Contents	Page
Features	2
Ordering data and scope of delivery	3
Function, sectional diagram, symbols	4
Technical data	5
Information on explosion protection	5
Characteristic curves	6, 7
Unit dimensions	810
Solenoid-operated relief	11, 12

Features


 For subplate mounting, mounting hole configuration to: ISO 6264-AR-06-2-A (NG10), ISO 6264-AS-08-2-A (NG20), ISO 6264-AT-10-2-A (NG30)

- For threaded connection
- Type of adjustment: rotary knob
- 5 pressure stages
- Subplates (see page 10)

Note:

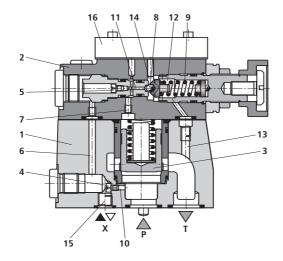
By adding an additional type 3WE 6... spool-type directional control valve, you can expand the valve in such a way that it can feature solenoid-operated relief (see pages 11 and 12).

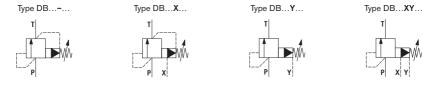
Ordering data and scope of delivery

Included in scope of delivery:

Valve operating instructions

Function, sectional diagram, symbols


DB type valves are pilot operated pressure relief valves and are used to limit the operating pressure. They basically consist of the main valve (1) with main piston cartridge (3), the pilot valve (2) and the sealing plate (16).


The available pressure in channel P acts on the main piston (3). At the same time, the pressure is applied to the spring-loaded end of the main piston (3) and to the ball (8) in the pilot valve (2) via the control lines (6) and (7), which are equipped with nozzles (4). If the pressure in channel P rises above the value set at the spring (9), the ball (8) opens against the spring (9). The signal that triggers this arrives internally from channel P vial the control lines (10) and (6). The pressure fluid at the spring-loaded end of the main piston (3) now flows through

Type DB 10...XC...

the control line (7), nozzle hole (11) and ball (8) into the spring chamber (12). From here, it is conveyed to the tank internally via control line (13) in the DB...Y... type valve, and externally via control line (14) in the DB...Y... type valve. The nozzles (4) and (5) lead to a drop in pressure at the main piston (3), so that the connection from channel P to channel T is now free. The pressure fluid now flows from channel P to channel T, and the set operating pressure is maintained.

The pressure relief valve can be relieved from pressure or switched to a different pressure (second pressure stage) via the port "X" (15).

Note:

Hydraulic counter pressures in port T with an internal control oil return or in port Y with an external control oil return are added in the ratio of 1:1 to the response pressure of the valve that is set in the pilot control. Example:

Pressure setting of valve through spring pre-tension (item 12) in the pilot valve/setting unit. $p_{spring} = 200 \text{ bar}$

Hydraulic counter pressure in port T with internal control oil return $p_{\text{hydraulic}} = 50 \text{ bar}$

=> response pressure = $p_{\text{spring}} + p_{\text{hydraulic}} = 250 \text{ bar}$

Gener	al					
Nominal	size			NG10	NG20	NG30
Installatio	on position			Optional		
Ambient	temperature range		°C	-20+80		
Storage	temperature range		°C	-20+80		
Weight	Subplate mounting	– DB	kg	2.6	3.5	4.4
	Threaded connection	– DBG	kg	5.3	5.1	4.8
Surface	protection		Standard	Paint, layer thickness	s max. 100 µm	

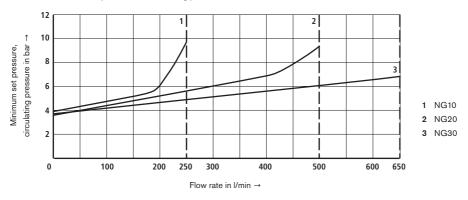
429

Hydraulic

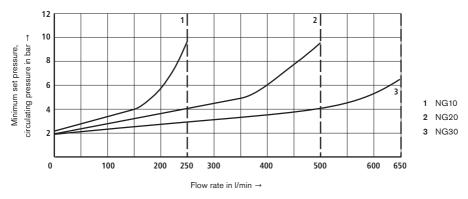
Maximum working	– Ports P, X	bar	350				
pressure	– Port T	bar	315				
Maximum counter	– Port Y (DB)	bar	315				
pressure	 Ports Y, T (with spool-type directional control valve) 	bar	bar See Technical Data Sheets listed in table on page 11				
Maximum set pressure	1)	bar	50; 100; 200; 315; 3	350			
Minimum set pressure	1)		Dependent on flow ra	ate (see characteristic	curves on page 6)		
Maximum flow rate	 Subplate mounting 	l/min	250	500	650		
	- Threaded connection	l/min	250	500	650		
Pressure fluid		pressure fluids to VD		RE 90221),			
Pressure fluid temperature range °C			-20+80				
Viscosity range		mm ² /s	s 10800				
Maximum permissible of pressure fluid Purity cla	degree of contamination of ass to ISO 4406 (c)	Class 20/18/15 2)					

Information on explosion protection

Range of application as per Directive RL 94/9/EG	IM2, II2G	II2D
Type of protection of valve	c (EN 13463-5:2001-01)	c (EN 13463-5:2001-01)
Maximum surface temperature ³⁾ °C	-	115
Temperature class	T4	-
Degree of protection	-	IP 65


¹⁾ In order to prevent the maximum permitted response pressure from being exceeded in the system, it must be checked with a suitable measuring instrument during the setting process.

- ²⁾ The purity classes stated for the components must be complied with in hydraulic systems. Effective filtration prevents problems and also extends the service life of components. For a selection of filters, see Technical Data Sheets RE 50070, RE 50076 and RE 5008.
- ³⁾ As high surface temperatures may occur, European standards EN 563 and EN 982 on the prevention of accidental contact must be observed.

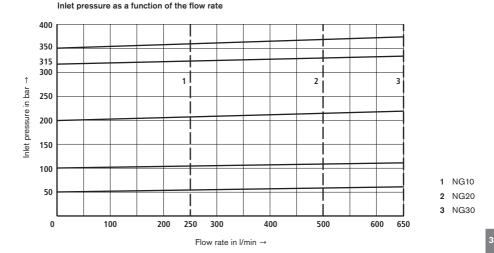

Characteristic curves (measured with HLP46, $\vartheta_{oil} = 40 \text{ °C} \pm 5 \text{ °C}$)

Standard version

Minimum set pressure and circulating pressure as a function of the flow rate 1)

Version "U"

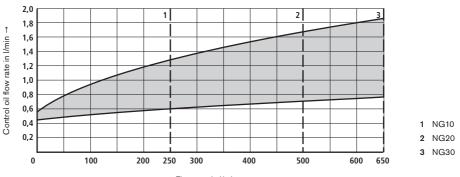
Minimum set pressure and circulating pressure as a function of the flow rate 1)


Important!

The characteristic curves were measured with **external**, **non-pressurized control oil return**.

If the control oil return is internal, the inlet pressure increases by the amount of outlet pressure at port T.

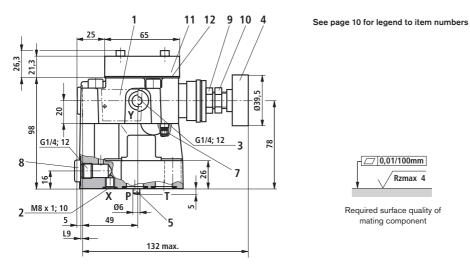
¹⁾ The curves apply to outlet pressure p_T = 0 over the entire flow range!


Characteristic curves (measured with HLP46, $\vartheta_{oil} =$ 40 °C ± 5 °C)

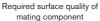
431

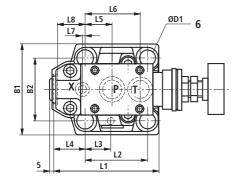
Important:

The characteristic curves were measured with **external**, **non-pressurized control oil return**. If the control oil return is internal, the inlet pressure increases by the amount of outlet pressure at port T.



Control oil flow rate


Flow rate in I/min \rightarrow


Unit dimensions: Subplate mounting (nominal dimensions in mm)

Type DB.-...XC...

____ 0,01/100mm Rzmax 4

Тур	L1	L2	L3	L4	L5	L6	L7	L8	L9	B1	B2	ØD1
DB 10	91	53.8	22.1	27.5	22.1	47.5	0	25.5	2	78	53.8	14
DB 20	116	66.7	33.4	33.3	11.1	55.6	23.8	22.8	10.5	100	70	18
DB 30	147.5	88.9	44.5	41	12.7	76.2	31.8	20	21	115	82.6	20

Unit dimensions: Threaded connection (nominal dimensions in mm)

Type DB.G...XC...

8

D1

G1/2

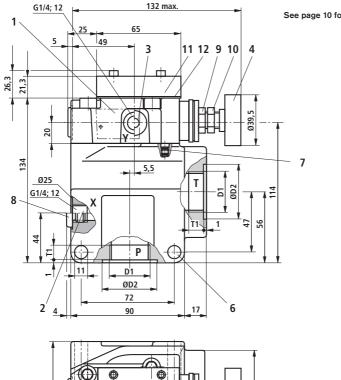
G3/4

G1

G1 1/4

G1 1/2

Туре


DB 10 G

DB 15 G

DB 20 G

DB 25 G

DB 30 G

۲

T1

14

16

18

20

22

ØD2

34

42

47

58

65

220

See page 10 for legend to item numbers

Unit dimensions: Legend to item numbers

- 1 Nameplate
- 2 Port X for external control oil supply
- 3 Port Y for external control oil return
- 4 Type of adjustment "1"
- 5 Dowel pin
- 6 Valve mounting bore
- 7 Not present with internal control oil return
- 8 Test port
- 9 Lock nut (SW17)
- 10 Lock nut (SW17)
- 11 Cover plate
- 12 Sealing plate

Subplates as per Technical Data Sheed RE 45064 (order separately)

Valve type	Туре	Mat. no.
DB 10	G 546/01 FE/ZN (G1/2)	R901156999
DB 20	G 409/01 FE/ZN (G1)	R901018328
DB 30	G 411/01 FE/ZN (G1 1/2)	R900580254

Valve fastening bolts for subplate-mounted valves (order separately)

In order to ensure a secure connection, use only the following valve fastening bolts:

- Type DB 10
 4 x ISO 4762-M12x50-10.9-flZn-240h-L (coefficient of friction μ_{tot} = 0.09-0.14)
 Material No. R913000283
- Type DB 20
 4 x ISO 4762-M16x50-10.9-flZn-240h-L (coefficient of friction μ_{tot} = 0.09-0.14) Material No. R913000378
- Type DB 30
 4 x DIN 912-M18x50-10.9
 Material No. R900002245

Valve fastening bolts for threaded connection valves on request:

- 2 x M10 x ...
 - (see unit dimensions on page 9, item 6)

Solenoid-operated relief

With the addition of a type 3WE 6... spool-type directional control valve, the valve can be converted in such a way that it is capable of being electrically switched to non-pressurized circulation (main piston relieved of pressure).

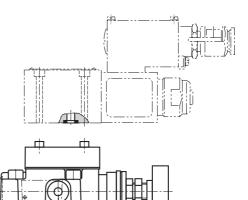
Before adding a 3WE 6... spool-type directional control valve to a DB...5X/...XC pilot operated pressure relief valve, check whether the category and safety class resulting from this combination still satisfy the requirements of the potentially explosive atmosphere in which the valve is to be used.

The spool-type directional control valves for the conversion and the resulting categories and safety classes are set out in the table below.

Important notes:

435

- The relief function with directional control valve must not be used for safety functions!
- During assembly, please note the operating instructions that are supplied with the spool-type directional control valves.
- Modification or conversion of valves without the use of the operating instructions is not permitted.
- Before assembly, identify all parts by means of their nameplates.


The spool-type directional control valve determines the category to Directive 94/9/EG:

Spool-type directional control valve	Category to 94/9/EG	Technical Data Sheet					
3WE 65X/XH	IM2; II2G	RE 23177-XH-B2					
3WE 66X/XD	IM2; II2G	RE 23178-XD-B2					
3WE 66X/XE	II2G	RE 23178-XE-B2					
3WE 66X/XN II3G; II3D RE 23178-XN-B2							
Example:							
DB5X/XC plus 3WE 66X/XN ¹⁾ results in suitability for use in category II3G; II3D							

¹⁾ When selecting a valve, please also note the possible switching versions on page 12.

Example: Addition of a 3WE 6...6X/...XE spool-type directional control valve

The assembly of the directional control valve (removal of sealing plate) is described in RE 25802-XC-B3, section 3.4.

Solenoid-operated relief (continued)

Switching versions

For each type of control oil supply of a DB valve, two switching versions are possible for solenoid-operated relief:

- Closed without current
- Open without current

The choice of piston for the 3WE 6... spool-type directional control valve is determined by the required switching version.

Bosch Rewroth AG Hydraulics Zum Eisengießer 1 97816 Lohr am Main, Germany Telefon +49 (0) 93 52 / 18-0 Telefax +49 (0) 93 52 / 18-23 58 documentation@boschrewroth.de www.boschrewroth.de © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

437

.

Pneumatics

Service

Rexroth Bosch Group

1/16

RE 25010-XC-B2/06.09 Replaces: 09.08

Safety valves, directly operated

Type DBDH...1X/...XC...E

Electric Drives

and Controls

Nominal size (NG) 4...30 Unit series 1X

> Safety valves for potentially explosive atmospheres

Part II Technical Data Sheet

Information on safety:

Range of application as type-tested valve in accordance with the Pressure Equipment Directive 97/23/EG

Information on explosion protection:

Range of application in accordance with the Explosion Protection Directive and type of protection

- Ranges of application as per Directive 94/9/EG: IM2, II2G, II2D
- Type of protection of valve: c (EN 13463-5:2004-03)

What you need to know about these Operating Instructions

These Operating Instructions apply to the explosion-proof version of Rexroth valves, and consist of the following three parts:

- Part I General Information RE 07010-X-B1
- Part II Technical Data Sheet RE 25010-XC-B2
- Part III Product-specific Instructions RE 25010-XC-B3

RE 25010-XC-B0

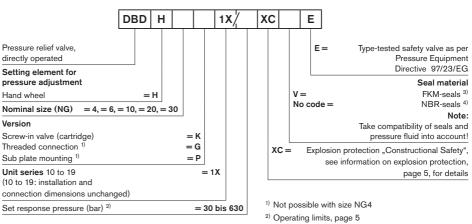
You can find further information on the correct handling of Rexroth hydraulic products in our publication "General Product Information on Hydraulic Products", RE 07008.

.

Hydraulics

Linear Motion and

Assembly Technologies


Overview of Contents

Contents	Page
Features	2
Ordering data and scope of delivery	3
Component identification mark	3
Function, sectional diagram, symbol	4
Technical data	5
Information on explosion protection	5
Characteristic curves for maximum permitted flow rate	6
Important information for operation in accordance with	
the Pressure Equipment Directive 97/23/EG	7
Characteristic curves with back pressure in the flow line	8 11
Unit dimensions	12 16

Features

- As ATEX units in accordance with Directive 94/9/EG for ranges of application: IM2, II2G, II2D
- As type-tested safety valves in accordance with Pressure Equipment Directive 97/23/EG
- As screw-in valve (cartridge)
- For threaded connection
- For sub plate mounting
- Adjustment with hand wheel

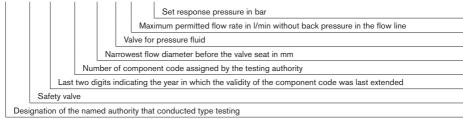
Ordering data and scope of delivery

³⁾ All pressure stages possible

⁴⁾ Pressure stages < 315 bar possible

Included in scope of delivery:

Valve operating instructions with Declaration of Conformity in Part III


Note:

Not all combinations of the above type codes are available.

Component identification mark

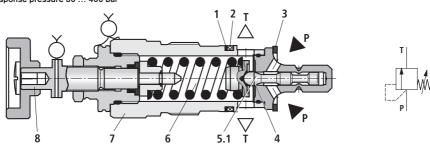
Type-tested safety valves have a component code, which is composed of elements that are always the same, the meaning of which is described to **example** below:

TÜV . SV . 03 - 390 . 4,5 . F . 30 . 500

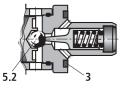
Function, sectional diagram, symbol

Valves of the type DBDH...1X/...XC...E are type-tested, directly operated pressure relief valves which conform to the Pressure Equipment Directive 97/23/EG. They are employed for reducing system pressure and are intended for use as safety valves.

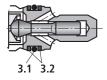
When the preset response pressure is exceeded in the P duct, the valves react and connect the P and T ducts internally. The valves are available in different versions: as screw-in valve "K" for screwing into blocks, as a valve with threaded connection "G", or as a valve for subplate mounting "P" ("G" and "P" are not possible with size NG4).


The screw-in valve itself, which is used in all versions, basically consists of the sleeve (7), spring (6), cone (5.1, response pressure up to 400 bar) or ball (5.2, response pressure 405 bar and over), valve seat (4) and setting element (8).

The spring presses the cone (5.1) or the ball (5.2) against the valve seat (4). The response pressure is factory-set to a fixed value using the setting element, then the valve is sealed.


Example illustration with symbol:

Screw-in valve DBDH 10 K1X/...XC...E Response pressure 30 ... 400 bar The P duct is connected to the system. The pressure predominating in the system acts on the cone or the ball. If the pressure in the P duct rises above the value set by the pretension of the spring, the cone or the ball lifts up from the valve seat against the spring force, and connects the P and T ducts. The pressure fluid flows out of the P duct into the T duct. Design measures limit the maximum possible lift of the cone.


The valves are available with graduated response pressures (in 5 bar increments). The valve spring can be relieved of tension using the hand wheel, and the response pressure can be reduced from the factory setting without having to remove the seal. To do this, please refer to Part III of the Operating Instructions, RE 25010-XC-B3, section 5.3.

Response pressure 405 ... 630 bar (ball poppet valve NG10)

Screw-in valve type Typ DBDH 4 K1X/...XC...E Response pressure 60 ... 500 bar

Р	P duct
т	T duct
1, 2	O-rings on valve body
3	Axial or radial sealing of single seal
3.1, 3.2	Sealing elements of axial or radial seal of multiple seal
4	Valve seat
5.1	Valve cone
5.2	Valve ball
6	Spring
7	Sleeve
8	Hand wheel setting element

Technical data

General		
Installation position		Optional
Ambient temperature range	°C	-20 … +80 (FKM-seals) -30 … +80 (NBR-seals)
Storage temperature range	°C	-20 +80 (FKM-seals) -30 +80 (NBR-seals)
Dimensions, weight		See "Unit dimensions" from page 12
Surface protection for versions "G" and "P"		Paint, layer thickness max. 100 µm
Degree of protection to EN 60529:1991+A1:2000		IP 65

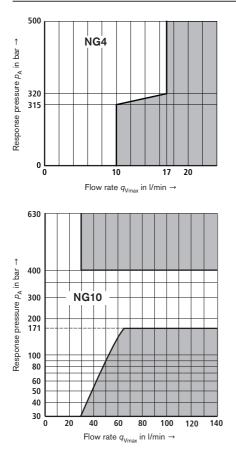
Hydraulic

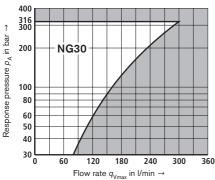
(measured at a viscosity of $v = 32 \text{ mm}^2/\text{s}$ and a pressure fluid temperature of 40° C)

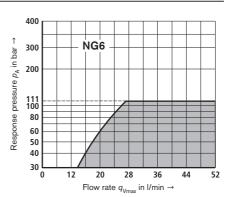
Set response pressure	bar	See last number of component identification mark
Maximum back pressure in flow line	bar	See page 8 11 "Characteristic curves with back pressure in the flow line"
Maximum flow rate	l/min	See penultimate number of component identification mark and page 6 onwards, "Characteristic curves for maximum permitted flow rate"
Pressure fluid		Mineral oil (HL, HLP) to DIN 51524, other pressure fluids available on request Ignition temperature > 180 °C
Pressure fluid temperature range When used as a safety valve	°C	-15 +60 ¹⁾
Viscosity range When used as a safety valve	mm²/s	12 230 ¹⁾
Maximum permitted degree of contamination of pressure fluid purity class to ISO 4406 (c)		Class 20/18/15

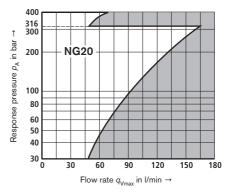
Operating limits

NG	Response pressure p_A in bar	Max. flow rate <i>q</i> _{Vmax} in I/min			
4	60 315	10			
4	320 500	17			
6, 10, 20, 30	See characteristic curves and last number of component identification mark	See characteristic curves and last number of component identification mark			


Information on explosion protection


Range of application as per Directive 94/9/EG	IM2, II2G	IM2, II2D	
Type of protection of valve	c (EN 13463-5:2004-03)	c (EN 13463-5:2004-03)	
Maximum surface temperature °C Temperature class	125 T4	114 -	
Degree of protection	-	IP 65	
Special conditions for safe use	The screw-in valve (cartridge) must not be painted!		


¹⁾ If the valve is not employed as a safety valve in accordance with Pressure Equipment Directive 97/23/EG, the temperature of the pressure fluid must not exceed +80 °C, the viscosity must not exceed 800 mm²/s.


441

Characteristic curves for maximum permitted flow rate

Note:

Value pairs that are **located in the gray areas** of the characteristic curves **cannot** be achieved with the valve!

The characteristic curves presented here apply solely to a back pressure of 0 bar in the flow line.

Important information for operation in accordance with the Pressure Equipment Directive 97/23/EG

 Before you order a type-tested safety valve, please note that at the desired response pressure p, the maximum permitted flow rate q_{vmx} of the safety valve is greater than the maximum possible flow rate of the system/accumulator which the valve is intended to protect.

With this in mind, please note the appropriate regulations.

- In accordance with Pressure Equipment Directive 97/23/EG, the system pressure may not increase due to the flow rate by more than 10 % of the set response pressure (see component code). The maximum permitted flow rate q_{vex} specified in the component code must not be exceeded. Flow lines from safety valves must exit safely. It must not be possible for fluid to collect in the flow system (see AD2000, code of practice A2).

Essential notes for use!

- The response pressure specified in the component code is factory-set at a flow rate of 2 l/min.
- The maximum permitted flow rate specified in the component code applies to applications without back pressure in the flow line (port T).
- If the seal on the safety valve is removed, the valve no longer conforms to the Pressure Equipment Directive!
- The requirements of the Pressure Equipment Directive and the AD2000 code of practice A2 must be observed!
- We strongly recommend that type-tested safety valves are secured by means of wiring and sealing to the housing/block (bore hole available in setting element), to prevent their unauthorized removal from the screw-in housing/block.

Note

The rising flow rate causes the system pressure to increase by the amount of the back pressure in the flow line (port T). Note AD2000 code of practice A2, item 6.3. In order to ensure that this rise in system pressure due to the flow rate does not exceed 10 % of the set response pressure, the permitted flow rate must be reduced as a function of the back pressure in the flow line (port T) (see pages 8 to 11).

Characteristic curves NG4 with back pressure in the flow line

As far as possible, the valve should basically be operated with no back pressure in the flow line. If there is back pressure in the flow line, the maximum possible flow rate is reduced. There is a relationship between the maximum permitted back pressure $p_{\rm T}$ in the flow line and the flow rate $q_{\rm VP}$ which can be seen in the characteristic curves below.

The curves for intermediate response pressure values that are not shown below must be calculated by means of interpolation.

When the flow rate is around zero, the maximum permitted back pressure ρ_{T} is 10 % of the respective response pressure. As the flow rate increases, the maximum permitted back pressure ρ_{T} decreases.

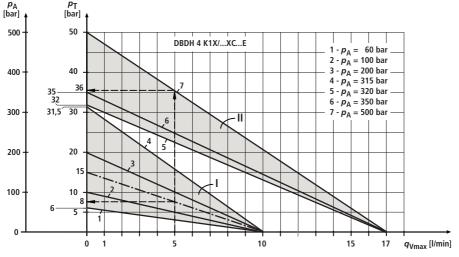


Diagram for determining the maximum permitted back pressure p_T in the flow line at port T of the valve as a function of the flow rate q_{Vmax} for DBDH 4K1X/...XC...E valves with different response pressures p_A .

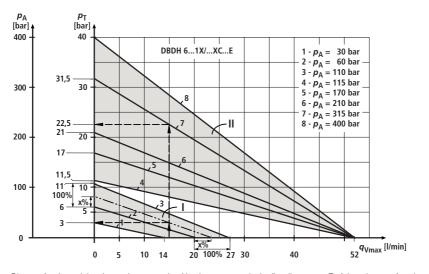
- *p*_A Response pressure in bar
- p_T Maximum permitted back pressure in the flow line (port T) in bar
- $q_{\rm Vmax}$ Max. maximum flow rate in l/min
- Interpolation area I, for DBDH 4K1X/...XC...E valves with response pressure $p_A = 60 \dots 315$ bar and maximum flow rate $q_{Vmax} = 10$ l/min
- II Interpolation area II, for DBDH 4K1X/...XC...E E valves with response pressure p_A = 320 ... 500 bar and maximum flow rate q_{Vmax} =17 l/min

Interpolation of intermediate values from the diagram

- 1. Enter the 1/10 value of the response pressure p_A on the p_T axis.
- From the above point, draw a straight line to where the q_{Vmax} axis crosses zero, keeping inside the interpolation area (here, 10 l/min for interpolation area I or 17 l/min for interpolation area II).
- 3. On the q_{Vmax} axis, enter the system flow rate that is not to be exceeded.
- 4. For this value, ascertain the maximum permitted back pressure on the basis of the line on the p_{T} axis that you have just drawn.

Example 1 with available curve

System/accumulator flow rate that is not to be exceeded: $q_{Vmax} = 5$ l/min Safety valve set to: $p_A = 500$ bar. From the diagram (see arrows, curve 7), read the maximum permitted back pressure p_{τ} of approx. 36 bar.


Example 2 with interpolated curve

System/accumulator flow rate that is not to be exceeded: $q_{Vmax} = 5$ l/min

Safety valve set to: $p_A = 150$ bar.

Value to be entered on the $p_{\rm T}$ axis: 1/10 x 150 bar = 15 bar.

From the diagram (see arrows, dotted curve), read the maximum permitted back pressure p_{T} of approx. 8 bar.

Characteristic curves NG6 with back pressure in the flow line

Diagram for determining the maximum permitted back pressure ρ_T in the flow line at port T of the valve as a function of the flow rate q_{Vmax} for DBDH 6...1X/...XC...E valves with different response pressures p_A .

- p_A Response pressure in bar
- $p_{\rm T}$ Maximum permitted back pressure in the flow line (port T) in bar
- q_{Vmax} Max. maximum flow rate in l/min

Interpolation area I, for DBDH 6...1X/...XC...E valves with response pressure $p_A = 30 \dots 110$ bar and maximum flow rate $q_{Vmax} = 14 \dots 27$ l/min

II Interpolation area II, for DBDH 6...1X/...XC...E valves with response pressure p_A = 115 ... 400 bar and maximum flow rate q_{Vmax} = 52 l/min

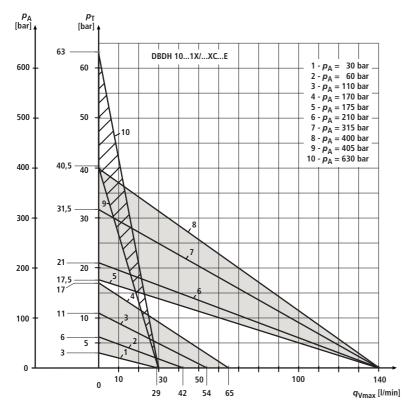
Interpolation of intermediate values in the diagram

- 1. Enter the 1/10 value of the response pressure p_A on the p_T axis
- 2. Determine the neighboring, lower and higher curve from this point. The point entered on ρ_{T} divides the section between the lower and higher curve on the ρ_{T} axis with a certain percentage
- 3. On the q_{Vmax} axis, divide the section between neighboring, lower and higher curves, using the same percentage as the section on the ρ_T axis. Draw a straight line from the point where the q_{Vmax} axis crosses zero, which you have just determined, and the previously entered value on the ρ_T axis.
- 4. On the $q_{\rm Vmax}$ axis, enter the system flow rate that is not to be exceeded.
- 5. For this value, ascertain the maximum permitted back pressure on the basis of the line on the p_{τ} axis that you have just drawn.

Determining the permitted back pressure

Example 1 with available curve

System/accumulator flow rate that is not to be exceeded: $q_{Vmax} = 15$ l/min Safety valve set to: $p_A = 315$ bar. From the diagram (see arrows, curve 7), read the maximum permitted back pressure ρ_T of approx. 22.5 bar.


Example 2 with interpolated curve

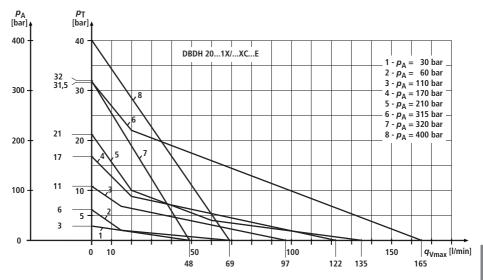
System/accumulator flow rate that is not to be exceeded: $q_{Vmax} = 15$ l/min

Safety valve set to: $p_A = 80$ bar.

Value to be entered on the axis designated as p_{T} : 1/10 x 80 bar = 8 bar.

From the diagram (see arrows, dotted curve), read the maximum permitted back pressure p_{τ} of approx. 3 bar.

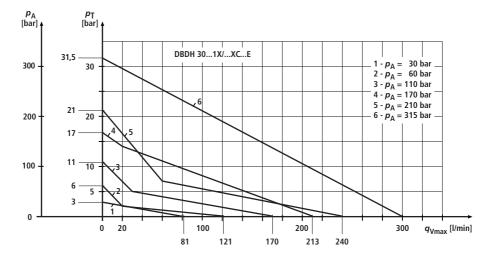
Characteristic curves NG10 with back pressure in the flow line


Diagram for determining the maximum permitted back pressure ρ_T in the flow line at port T of the valve as a function of the flow rate q_{Vmax} for DBDH 10...1X/...XC...E valves with different response pressures ρ_A . ntermediate values can be ascertained with the aid of interpolation. Please refer to the explanations on the previous pages for the interpolation process.

ρ_A Response pressure in bar

p_T Maximum permitted back pressure in the flow line (port T) in bar

q_{Vmax} Max. maximum flow rate in I/min


Interpolation areas

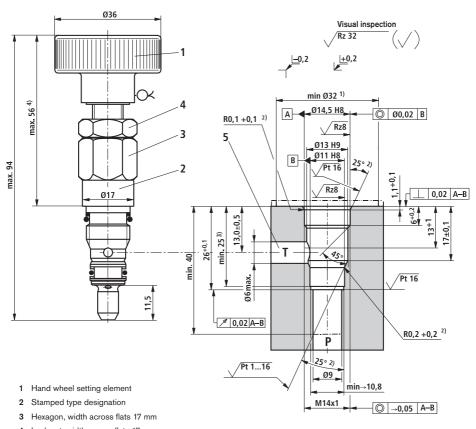
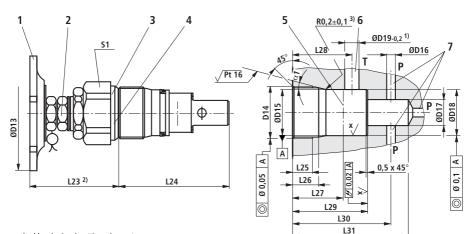

Characteristic curves NG20 and NG30 with back pressure in the flow line

Diagram for determining the maximum permitted back pressure p_T in the flow line at port T of the valve as a function of the flow rate q_{Vmax} for DBDH **20**...1X/...XC...E valves (diagram above) and DBDH **30**...1X/...XC...E valves (diagram below) with different response pressures p_A .

Intermediate values can be ascertained with the aid of interpolation. Please refer to the explanations on the previous pages for the interpolation process.

Unit dimensions: Screw-in valve NG4 (in mm)


- 4 Lock nut, width across flats 17 mm
- 5 Port T, anywhere on the perimeter

Tolerancing: DIN 7167 General tolerances: ISO 2768-mk

- ¹⁾ Minimum diameter in recess
- ²⁾ All edges of sealing ring insertion taper rounded and free from burrs
- 3) Fitting depth
- ⁴⁾ Maximum dimension with response pressure at lowest setting

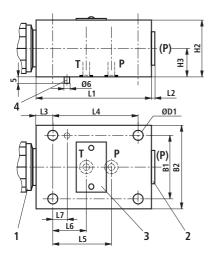
448

Unit dimensions: Screw-in valves NG6 to NG30 (in mm)

449

- 1 Hand wheel setting element
- 2 Lock nut, width across flats 19 mm
- 3 Stamped component code
- 4 Stamped type designation and response pressure
- 5 Fitting depth
- 6 Port T, anywhere on perimeter
- 7 Port P, anywhere on perimeter or on end face

 $X = \sqrt{Rz1...16}$

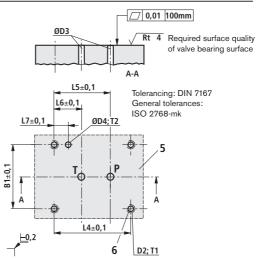

Tolerancing: DIN 7167 General tolerances: ISO 2768-mk

- ¹⁾ Maximum dimension
- 2) Maximum dimension with response pressure at lowest setting
- ³⁾ Edge of sealing ring insertion taper rounded and free from burrs

	Screw-in valve									
NG	ØD13	ØD13 L23 L24 S1 Weight								
6	40	81	64,5	32	ca. 0.4 kg					
10	40	77	77	36	ca. 0.5 kg					
20	40	71	106	46	ca. 1 kg					
30	80	97	131	60	ca. 2.2 kg					

	Screw-in bore hole													
NG	D14	ØD15	ØD16	ØD17	ØD18	ØD19	L25	L26	L27	L28	L29	L30	L31	α1
6	M28 x 1.5	25 ^{H9}	6	15	24.9 +0.152 -0.2	12	15	19	30	36	45	56.5 ± 5.5	65	15°
10	M35 x 1.5	32 ^{H9}	10	18.5	31.9 +0.162	15	18	23	35	41.5	52	67.5 ± 7.5	80	15°
20	M45 x 1.5	40 ^{H9}	20		39.9 ^{+0.162} _{-0.2}		21	27	45	55	70	91.5 ± 8.5	110	20°
30	M60 x 2	55 ^{H9}	30	38.75	54.9 ^{+0.174} _{-0.2}	34	23	29	45	63	84	113.5 ± 11.5	140	20°

Unit dimensions: Sub plate mounting, NG6 to NG30 (in mm)



- 1 Screw-in valve, example illustration 1)
- 2 Connecting bore (P), e.g. for pressure measurement, sealed when supplied with screw plug (see dimension table for (P))

Not available for NG10 with pressure stages > 400 bar

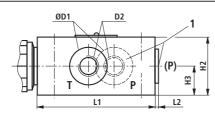
- 3 Nameplate
- 4 Locating pin
- 5 Valve bearing surface
- 6 Four valve fastening bores

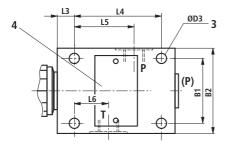
¹⁾ See page 13 for dimensions

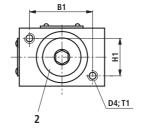
In order to ensure a secure connection, use only the following valve fastening bolts (order separately):

 - 4 hexagon socket head cap screws ISO 4762...-flZn-240h-L (coefficient of friction μ_{total} = 0.09 to 0.14)

Valve fastening bolts to ISO 4762 2)								
NG	Dimensions	Material number						
6	M6 x 50	10.9	R913000151					
10	M8 x 70	10.9	R913000149					
20	M8 x 90	12.9	R913000150					
30	M10 x 110	12.9	R913000148					

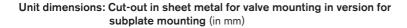

²⁾ Appropriate specified bolts to DIN 912 may also be used as an alternative.

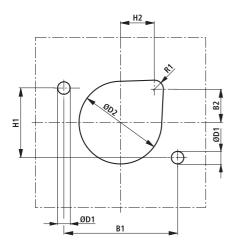

							Pressui	re relief	valve					
NG	B1	B2	ØD1	H2	H3	L1	L2	L3	L4	L5	L6	L7	(P)	Weight
6	45	60	6.6	40	20	80	4	15	55	40	20	15	G1/4	ca. 1.5 kg
10	60	80	9	60	30	100	4	20	70	45	21	15	G1/2	ca. 3.7 kg
20	70	100	9	70	35	135	5.5	20	100	65	34	15	G3/4	ca. 6.4 kg
30	100	130	11	90	45	180	5.5	25	130	85	35	15	G1 1/4	ca. 13.9 kg


NG	Maximum overall length with response pressure at						dimens ole co		-			
	lowest setting	NG	B1	D2	ØD3	ØD4	L4	L5	L6	L7	T1	T2
6	165	6	45	M6	6	7.5	55	40	20	15	15	6.5
10	181	10	60	M8	10	7.5	70	45	21	15	15	6.5
20	212	20	70	M8	20	7.5	100	65	34	15	22	6.5
30	283	30	100	M10	30	7.5	130	88	35	15	22	6.5

Unit dimensions: Threaded connection, NG6 to NG30 (in mm)

451


Tolerancing: DIN 7167 General tolerances: ISO 2768-mk


- Connecting bore (P), (e.g. for pressure measurement), with screw plug, for dimensions see D2 Not available for NG10 with pressure stages > 400 bar
- 2 Screw-in valve, example illustration 1)
- 3 Four valve fastening bores
- 4 Nameplate

¹⁾ See page 13 for dimensions

								Pres	sure	elief v	alve							
NG	B1	B2	ØD1	D2	ØD3	D4	H1	H2	H3	L1	L2	L3	L4	L5	L6	T1	(P)	Weight
6	45	60	25	G1/4	6.6	M6	25	40	20	80	4	15	55	40	20	10	G1/4	ca. 1.5 kg
10	60	80	34	G1/2	9	M8	40	60	30	100	4	20	70	48	21	15	G1/2	ca. 3.7 kg
20	70	100	47	G1	9	M8	50	70	35	135	5.5	20	100	65	34	18	G1	ca. 6.4 kg
30	100	130	65	G1 1/2	11	M10	60	90	45	180	5.5	25	130	85	35	20	G1 1/2	ca. 13.9 kg

NG	Maximum overall length with response pressure at lowest setting
6	165
10	181
20	212
30	283

NG	B1	B2	H1	H2	ØD1 ^{H13}	ØD2 ^{H13}	R1
6	45	12.5	25	22.5	7	40	8
10	60	20.5	40	20.5	9	44	8
20	70	24	50	24	9	55	8
30	100	29.5	60	29.5	11	73	8

Bosch Rewroth AG Hydraulics Zum Eisengießer 1 97816 Lohr am Main, Germany Telefon +49 (0) 93 52 / 18-0 Telefax +49 (0) 93 52 / 18-23 58 documentation@boschrewroth.de www.boschrewroth.de © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Electric Drives and Controls

Hydraulics

Pneumatics

Service

453

1/8

Twin throttle-type check valve, directly operated

RE 27506-XC-B2/06.09 Replaces: 08.06

Nominal size 6 Unit series 4X Maximum operating pressure 315 bar Maximum flow rate 80 l/min

> ATEX units For potentially explosive atmospheres

Part II Technical Data Sheet

Information on explosion protection:

Range of application in accordance with the Explosion Protection Directive and type of protection

- Range of application as per Directive 94/9/EG IM2, II2G, II2D
- Type of protection of valve: c (EN 13463-5:2004-03)

What you need to know about these Operating Instructions

These Operating Instructions apply to the explosion-proof version of Rexroth valves, and consist of the following three parts:

- Part I General Information RE 07010-X-B1
- Part II Technical Data Sheet RE 27506-XC-B2

Part III Product-specific Instructions RE 27506-XC-B3

RE 27506-XC-B0

You can find further information on the correct handling of Rexroth hydraulic products in our publication "General Product Information on Hydraulic Products", RE 07008.

Overview of Contents

Contents	Page
Features	2
Ordering data and scope of delivery	3
Function, sectional diagram	4
Symbols	4
Technical data	5
Information on explosion protection	5
Characteristic curves	6
Unit dimensions	7

Features

- Modular valve

Position of ports to ISO 4401-03-02-0-05 with tension pin and locating bore

- · Adjusting screw with lock nut and protective cap
- · For limiting the main or pilot flow of two consumer ports
- · For inlet or outlet throttling

Ordering data and scope of delivery

Z2FS 6	2 -4	· · / ·	xc		
22F5 6	2 -4	+^ / _		<u>ו</u> י	
Twin throttle-type check valve, directly operated					No code = NBR-seals V = FKM-seals
Nominal size 6 = 6					Note:
Throttle-type check valve sides A and B = - Throttle-type valve side A = A					Take compatibility of seals and pressure fluid into account!
Throttle-type valve side B = B				J =	Sea-water protection
Setting element Adjusting screw with lock nut and protective cap	= 2		XC =		Valve in explosion-proof design, information on explosion protection,
Unit series 40 to 49	= 4X				page 5, for details
(40 to 49: installation and connection dimensions unchanged)			1Q = 2Q =		With precision adjustment Standard version
Inlet throttling on sides A and B (4X/S) Inlet throttling on side A (A-4X/S) Inlet throttling on side B (B-4X/S) Outlet throttling on sides A and B (4X/S2) Outlet throttling on sides A (A-4X/S2)		= S = S2			
Outlet throttling on sides B (B-4X/S2)					

Included in scope of delivery:

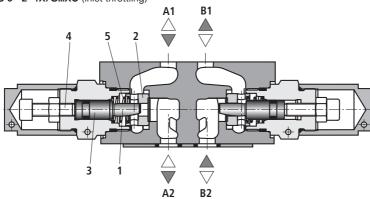
Valve operating instructions with Declaration of Conformity in Part IIII

Type Z2FS 6...XC valves are twin throttle-type check valves with a modular design.

They are used to limit the main or pilot flow of one or two consumer ports.

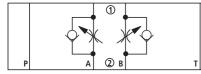
Two throttle-type check valves positioned symmetrically to one another limit flows in one direction and provide a free return of fluid in the opposite direction.

With inlet throttling, the pressure fluid flows through the duct A1 to reach the consumer A2 via the throttling point (1), which is formed by the valve seat (2) and the throttling piston (3). The throttling piston (3) can be axially adjusted by means of the

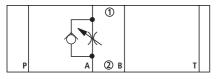

adjusting screw (4), thereby enabling the throttling point (1) to be adjusted as well. The pressure fluid returning from the consumer B2 pushes the valve seat (2) against the spring (5) in the direction of the throttling piston (3), thereby enabling the fluid to flow unhindered from B2 to B1 via the check valve. The same applies to the flow in the opposite direction. Throttling may take effect in the inlet or the outlet, depending on the valve type.

Main flow limitation (version .. 2Q..)

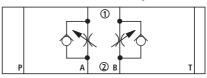
To change the speed of a consumer (main flow limitation), the twin throttle-type check valve is installed between the directional control valve and the subplate.

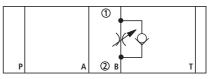

Pilot flow limitation (version ..1Q..)

The twin throttle-type check valve can be used to set the switching delay (pilot flow limitation) of pilot-operated directional control valves. In this case, it is installed between the pilot valve and the main valve.



Symbols (1) unit side, 2) plate side)


Z2FS 6 -..-4X/S...XC (inlet throttling)


Z2FS 6 A ..- 4X/S2 ... XC (outlet throttling)

Z2FS 6 - ..- 4X/S2...XC (outlet throttling)

Z2FS 6 B ..- 4X/S ... XC (inlet throttling)

Type Z2FS 6 -2-4X/S...XC (inlet throttling)

Technical data

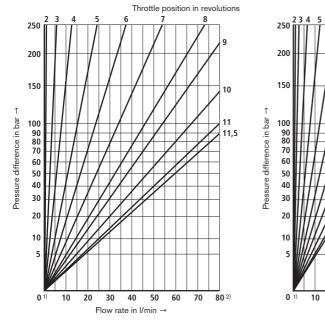
General	
Installation position	Optional
Ambient temperature range °C	-20 +80 (FKM-seals) -30 +80 (NBR-seals)
Storage temperature range °C	-20 +80 (FKM-seals) -30 +80 (NBR-seals)
Weight kg	0,8
Surface protection	Galvanized and chromated olive green FeZn12Dd DIN 50961

457

Hydraulic

Maximum operating pressure, primary	bar	315
Maximum flow rate	l/min	80
Maximum leakage at 315 bar pressure difference	l/min	1 (through closed throttle)
Pressure fluid		Mineral oil (HL, HLP) to DIN 51524 other pressure fluids available on request Ignition temperature > 180 °C
Pressure fluid temperature range	°C	-20 +80 (FKM-seals) -30 +80 (NBR-seals)
Viscosity range	mm²/s	10 800 (preferably 30 60)
Maximum permissible degree of contamination of pressure fluid Purity class to ISO 4406 (c)		Class 20/18/15 ¹⁾

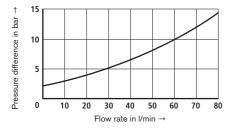
Information on explosion protection

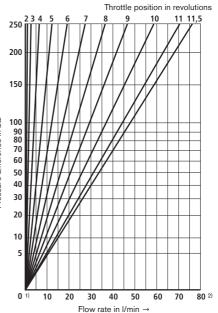

Range of application as per Directive 94/9/EG	IM2, II2G	II2D
Type of protection of valve	c (EN 13463-5:2004-03)	c (EN 13463-5:2004-03)
Maximum surface temperature ²⁾ °C	-	100
Temperature class	T4	-
Degree of protection	-	IP 67

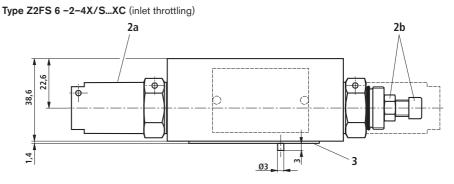
- ¹⁾ The purity classes stated for the components must be complied with in hydraulic systems. Effective filtration prevents problems and also extends the service life of components. For a selection of filters, see Technical Data Sheets RE 50070, RE 50076 and RE 50081.
- ²⁾ As high surface temperatures may occur, European standards ISO 13732-1 and EN 982 on the prevention of accidental contact must be observed

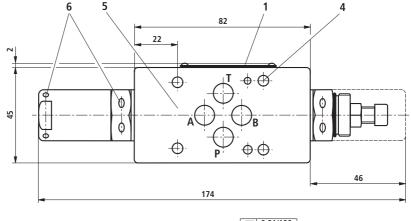
Characteristic curves (measured with HLP46, $\vartheta_{oil} = 40 \text{ °C} \pm 5 \text{ °C}$)

∆p-q_V curves for Z2FS 6 ..-4X/.2QXCJ


Δp-q_V curves for Z2FS 6 ..-4X/.1QXCJ




1) Clockwise to stop


2) Anti-clockwise to stop

 Δp -q_v curves for Z2FS 6 ... via check valve when throttle is closed

Required surface quality of mating component

- 1 Nameplate
- 2a Protective cap SW20
- 2b Hexagon socket adjusting screw SW5 and lock nut SW10
- 3 Sealing ring plate with identical sealing rings for ports P, A, B, T
- 4 Valve mounting bores
- 5 Position of ports to ISO 4401-03-02-0-05, with locating bore and tension pin Ø3 mm
- 6 Bore for lead sealing by customer. Unless the lead seal is destroyed, the valve can no longer be moved.

Valve fastening bolts

In order to ensure a secure connection, use only the following valve fastening bolts:

4 hexagon socket head cap screws ISO 4762-M5x...-10.9-fIZn-240h-L (coefficient of friction 0.09-0.14 to VDA 235-101) (must be ordered separately, also see RE 27506-XC-B3, section 9.1, Available accessories)

Bosch Rexroth AG Hydraulics Zum Eisengießer 1 97816 Lohr am Main, Germany Telefon +49 (0) 93 52 / 18-0 Telefax +49 (0) 93 52 / 18-23 58 documentation@boschrexroth.de www.boschrexroth.de

© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Proportional servo valves

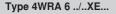
Designation	Туре	Size	Component series	p _{max} in bar	Data sheet	Page
Proportional directional valves						
4/2 and 4/3 proportional directional valves, direct opera- ted, without electrical position feedback	4WRAXE	6	2X	315	29055-XE-B2	463
4/2, 4/3 proportional directional valves, pilot opera- ted, without electrical position feedback	4WRZXE	1032	7X	350	29115-XE-B2	475
Proportional pressure control valves						
Proportional pressure relief valve directly operated	DBET/XE	6	6	420	29162-XE-B2	493
Proportional pressure reducing valve in 3-way version	3DREPXE	6	2X	100	29184-XE-B2	505
Directional control valves						
4/3 directional control valves, pilot operated, with electric position feedback	4WRDXN	1035	5X	350	29094-XN-B2	515
Directional servo-valves						
4/3 directional servo-valve with mechanical position feedback	4WS2EMXN	6	2X	315	29564-XN-B2	537
4/3 directional servo-valve with mechanical position feedback	4WS2EMXN100	6	2X	315	29564-XN-100-B2	549
4/3 directional servo-valve with mechanical position feedback	4WS2EMXN102	6	2X	315	29564-XN-102-B2	561
4/3 directional servo-valve with mechanical position feedback	4WS2EMXH	10	5X	315	29583-XH-B2	573
4/3 directional servo-valve with mechanical position feedback	4WS2EMXH100	10	2X	315	29583-XH-100-B2	587
4/3 directional servo-valve with mechanical position feedback	4WS2EMXH102	10	2X	315	29583-XH-102-B2	601
4/3 directional servo-valve with mechanical position feedback	4WS2EMXH104	10	5X	315	29583-XH-104-B2	615
4/3 directional servo-valve with mechanical position feedback	4WS2EMXN	10	5X	315	29583-XN-B2	629
4/3 directional servo-valve with mechanical position feedback	4WS2EMXN100	10	5X	315	29583-XN-100-B2	641
4/3 directional servo-valve with mechanical position feedback	4WS2EMXN102	10	5X	315	29583-XN-102-B2	653
4/3 directional servo-valve with mechanical position feedback	4WS2EMXN114	10	5X	315	29583-XN-114-B2	665
4/3 directional servo-valve with mechanical position feedback	4WS2EMXD	10	5X	315	29583-XD-B2	677
4/3 directional servo-valve with mechanical position feedback	4WS2EMXD100	10	5X	315	29583-XD-100-B2	691

Electric Drives and Controls

Hydraulics

Linear Motion and Assembly Technologies

Pneumatics


Service

Rexroth Bosch Group

1/12

4/2 and 4/3 proportional directional valves, direct operated, without electrical position feedback

RE 29055-XE-B2/09.13 Replaces: 07.04

Size 6 Component series 2X Maximum operating pressure 315 bar Maximum flow 22 l/min

> ATEX units For explosive areas

Part II Data sheet

Information on the explosion protection:

- Area of application in accordance with the Explosion Protection Directive 94/9/EC: II 2G
- Type of protection of the valve solenoid: Ex e mb IIC T4 Gb according to EN 60079-7:2007/EN 60079-18:2009

Special features of seawater-resistant valves

- The exterior of the valve housing is galvanically coated.
- The seawater-resistance is defined by "J" in the ordering code.

What you need to know about these operating instructions

These operating instructions apply to the explosion-proof version of Rexroth valves and consist of the following three parts:

Part I General information 07010-X-B1

Part II Data sheet 29055-XE-B2

Part III Product-specific instructions 29055-XE-B3

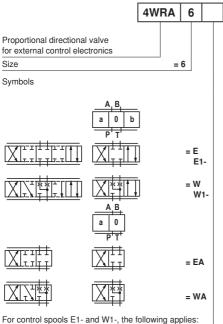
Operating instructions 29055-XE-B0

You can find further information on the correct handling of Rexroth hydraulic products in our publication "General product information on hydraulic products" 07008.

Actual product may differ

463

Table of contents


Contents	Page
Features	2
Ordering code and scope of delivery	3
Symbols	3
Function, section	4
Technical data	5
Information on the explosion protection	6
Electrical connection	7
Characteristic curves	8
Dimensions	10
Installation conditions	11

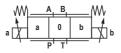
Features

- Direct operated proportional valve for controlling flow direction and flow size for proper use in explosive atmospheres
- Seawater-resistant
- Spring-centered control spool
- For subplate mounting: Porting pattern according to ISO 4401-03-02-05
- Subplates available in FE/ZN version (see page 10)
- Wet-pin DC solenoids
- Solenoid coil can be rotated by 90°
- Electrical connection as individual connection with cable gland

Ordering code and scope of delivery

465

For control spools E1- and W1-, the following applies: $P \rightarrow A: q_{V \max}$ and $B \rightarrow T: q_{V/2}$ $P \rightarrow B: q_{V/2}$ and $A \rightarrow T: q_{V \max}$


In the zero position, control spools W, W1 and WA have a connection from A \rightarrow T and from B \rightarrow T with approx. 3 % of the relevant nominal cross-section

Included in the scope of delivery:

Valve operating instructions with declaration of conformity in Part III

Symbols

Type 4WRA 6 ...XE

Type 4WRA 6 ... A... XE

-2X/G24 XE J /						
					M = V = Ob	NBR seals ¹⁾ FKM seals Important: serve compatibility of seals with hydraulic fluid used!
				J =		Surface protection Seawater-resistant, galvanized
			XE =	Explosion protection "increased safety", see details on the explosion protection page 6		
	Supply voltage of the control electronics G24 = 24 V direct voltage					
	2X = Component series 20 to 29 (20 to 29: Unchanged installation and connection dimensions)					
07 = 15 = 30 =					Chara	Rated flow 6 l/min 10 l/min 18 l/min cteristic curves, see page 8

1) Suitable for mineral oils (HL, HLP) according to DIN 51524

Function, section

The 4/2 and 4/3 proportional directional valves are designed as direct operated valves in plate design. Operation is effected by means of proportional solenoids for explosive areas. The solenoids are actuated by external control electronics.

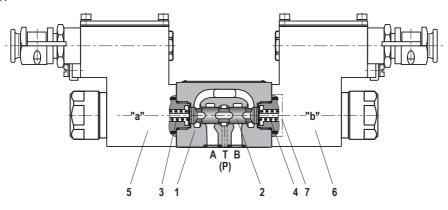
Set-up:

The valve basically consists of:

- Housing (1) with connection surface
- Control spool (2) with compression springs (3 and 4)
- Solenoids (5 and 6) with central thread

Functional description:

- With de-energized solenoids (5 and 6), central position of the control spool (2) by compression springs (3 and 4)
- Direct operation of the control spool (2) by energizing a proportional solenoid


e.g. controlling solenoid "b" (6)

- → Control spool (2) is moved to the left in proportion to the electrical input signal
- → Connection from P → A and B → T via orifice-type cross-sections with progressive flow characteristics
- De-excitation of the solenoid (6)
 - → The compression spring (3) brings the control spool (2) back into the central position

Important:

Regarding the 4/3 version of the valves, only one solenoid may be actuated at a time.

Type 4WRA 6 ...-2X/G24XEJ/V

Valve with 2 spool positions (type 4WRA 6 .A ... XEJ ...):

The function of this valve version basically corresponds to the valve with three spool positions. The 2 spool position valves are, however, only equipped with solenoid "a" (5). Instead of the 2nd proportional solenoid, there is a plug screw (7).

Important:

The tank line must not be allowed to run empty. With corresponding installation conditions, a preload valve (preload pressure approx. 2 bar) must be installed.

Technical data

general			
Installation position			Any; preferably horizontal
Storage temperature	range	°C	-20 +50
Ambient temperature range °C		°C	-20 +60
Weight	4WRA 6XE	kg	4.4
	4WRA 6AXE	kg	2.7
Surface protection			Galvanized coating

hydraulic

Operating pressure range	Ports P, A, B	bar	Up to 315
	Port T	bar	Up to 210
Rated flows $q_{\rm v \ rated}$ with $\Delta_{\rm p}$	= 10 bar	l/min	6
		l/min	10
		l/min	18
Maximum flow		l/min	22
Hydraulic fluid			Mineral oil (HL, HLP) according to DIN 51524 additional hydraulic fluids upon request! Ignition temperature > 180 °C
Hydraulic fluid temperature range °C		°C	-20 +80 (NBR seals)
			-15 +80 (FKM seals)
Viscosity range		mm²/s	15 380 (preferably 30 46)
Maximum admissible degre fluid, cleanliness class acco		ne hydraulic	Class 17/15/12 ¹⁾
Hysteresis		%	≤ 6
Range of inversion		%	≤ 2
Response sensitivity		%	≤ 1

electric

Voltage type	Direct current or pulse-width modulated signal with pulse voltage \leq 28 V and frequency \geq 160 Hz up to max. 500 Hz
Type of signal	Analog
Maximum current per solenoid A	1.03
Duty cycle %	100
Coil temperature °C	Up to 125

¹⁾ The cleanliness classes specified for the components must be adhered to in hydraulic systems. Effective filtration prevents faults and at the same time increases the life cycle of the components. For the selection of the filters see www.boschrexroth.com/filter.

Information on the explosion protection

Area of application in accordance with the Explosion Protection Directive 94/9/EC	II 2G
Type of protection Valve according to EN 13463-1:2009 / EN 13463-5:2011	с Т4 Х
Type of protection Valve solenoid according to EN 60079-7:2007 / EN 60079-18:2009	Ex e mb IIC T4 Gb ¹⁾
Type examination certificate Solenoid	KEMA 02ATEX2240 X
"IECEx Certificate of Conformity" Solenoid	IECEx DEK 12.0068X
Special operating conditions for a safe application	 In case of bank assembly, only one solenoid of all valves may be energized at a time.
	 In case of valves with two solenoids, maximally one of the solenoids may be energized at a time.
	 For the operation, only direct current or a pulse-width modulated signal with pulse voltage ≤ 28 V and frequency ≥ 160 Hz up to max. 500 Hz may be used.

Control electronics 2)

Amplifier module for the control of explosion-proof proportional directional valves 4WRAXE, 3DREP 6XE and 4WRZXE	VT-MSPA2-200-1X/V0/0 according to data sheet 30228-200	
Module for monitoring and limiting the solenoid currents with proportional valves	VT-MUXA2-2-1X/V0/1A according to data sheet 30290	

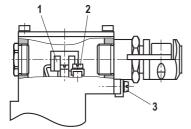
¹⁾ Surface temperature > 50 °C, provide contact protection

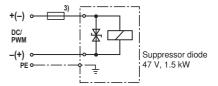
²⁾ Important:

A monitoring circuit is to be provided for the monitoring of the solenoid current. We recommend operating the valves with the assemblies described herein.

Electrical connection

The type-examination tested valve solenoid is equipped with a terminal box and a type-tested cable gland. The connection is polarity-independent.


Important:


Corresponding to the rated current, a fuse according to DIN 41571 and EN / IEC 60127 has to be connected ahead of every valve solenoid (max. 3 x $l_{\rm rated}$).

The shut-off threshold of the fuse has to match the prospective short-circuit current of the supply source.

The prospective short-circuit current of the supply source may ampunt to a maximum of 1500 A.

This fuse may only be installed outside the explosive area or must be of an explosion-proof design.

3) Recommended pre-fuse

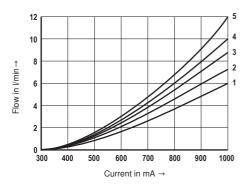
Characteristics medium time-lag according to DIN 41571; 1.25 A

Properties of the connection terminals

Position	Function	Connectable line cross-section
1	Operating voltage connection	Single-wire 0.75 2.5 mm ²
		Finely stranded 0.75 1.5 mm ²
2	Connection for protective earthing conductor	Single-wire max. 2.5 mm ²
		Finely stranded max. 1.5 mm ²
3	Connection for potential equalization conductor	Single-wire 4 6 mm ²
		Finely stranded 4 mm ²

Cable gland

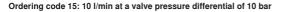
Type approval	II 2G Ex e IIC Gb
Threaded connection	M20 x 1.5
Protection class according to EN 60529	IP66 ¹⁾
Line diameter mm	911
Sealing	Outer sheath sealing

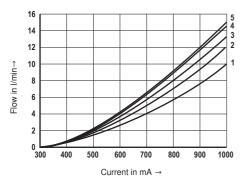

Connection line

Line type	Non-armored cables and lines (outer sheath sealing)	
Temperature range °C	-30 > +110	

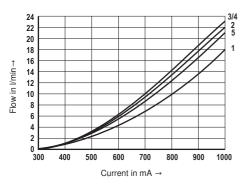
1) If installed properly

Characteristic curves (measured with HLP46, ϑ_{oil} = 40 °C ± 5 °C)



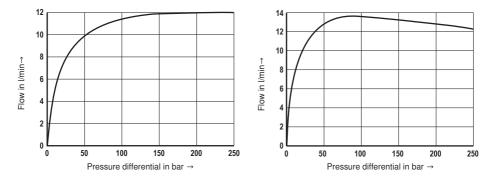


The following applies to all figures on this page:


- 1 $\Delta_p = 10$ bar constant
- 2 $\Delta_p = 20$ bar constant
- **3** $\Delta_p = 30$ bar constant
- 4 $\Delta_{\rm p} = 50$ bar constant
- 5 $\Delta_p = 100$ bar constant

 Δ_{p} = valve pressure differential according to DIN 24311 (inlet pressure minus load pressure and minus return flow pressure)

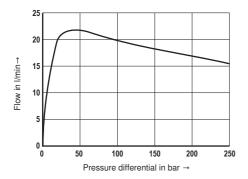
Ordering code 30: 18 l/min at a valve pressure differential of 10 bar

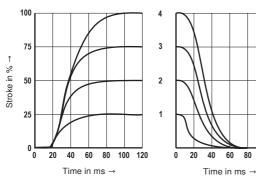

Characteristic curves (measured with HLP46, $\vartheta_{oil} = 40 \text{ °C} \pm 5 \text{ °C}$)

Performance limit

6 l/min rated flow

Performance limit

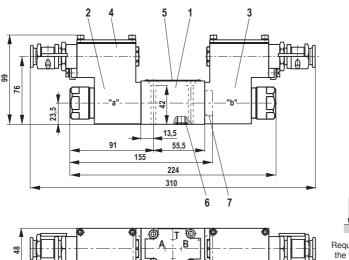

10 l/min rated flow


471

Performance limit

18 l/min rated flow

Transition function with stepped electric input signals



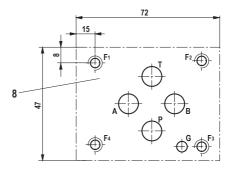
	Change of input signal [%]
1	$0 \rightarrow 25 \rightarrow 0$
2	$0 \rightarrow 50 \rightarrow 0$
3	$0 \rightarrow 75 \rightarrow 0$
4	$0 \rightarrow 100 \rightarrow 0$

Measured at pilot pressure p_{ST} = 10 bar

100 120

Dimensions (dimensions in mm)

Required surface quality of the valve contact surface


- 1 Valve housing
- 2 Proportional solenoid "a"
- 3 Proportional solenoid "b"
- 4 Terminal box
- 5 Name plate
- 6 Identical seal rings for ports P, A, B and T
- 7 Plug screw for valve with one solenoid (2 spool positions, version EA or WA)
- 8 Porting pattern according to ISO 4401-03-02-0-05 Deviating from the standard:
 - -Without locating pin
 - -Ports P, A, B and T with Ø 8 mm

Valve mounting screws

For reasons of stability, exclusively use the following valve mounting screws:

4 hexagon socket head cap screws ISO 4762-M5x50-10.9-flZn-240h-L (friction coefficient 0.09 – 0.14 according to VDA 235-101)

Material no. **R913000064** (must be ordered separately)

Subplates

(without locating hole)

G 341/01 FE/ZN (G1/4) G 342/01 FE/ZN (G3/8) G 502/01 FE/ZN (G1/2)

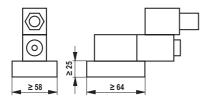
with dimensions as in the data sheet 45052 (must be ordered separately)

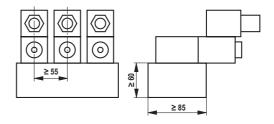
Important:

Subplates are no components in the sense of directive 94/9/EC and can be used after the manufacturer of the overall system has assessed the risk of ignition.

The G...FE/ZN versions are free from aluminum and/or magnesium and galvanized.

Installation conditions (dimensions in mm)


	Individual assembly	Bank assembly
Dimensions of the subplate	Minimum dimensions	Minimum cross-section
	Length \ge 64, width \ge 58, height \ge 25	Height \ge 60, width \ge 85
Thermal conductivity of the subplate	≥ 38 W/mK (E	N-GJS-500-7)
Minimum distance between the longitu- dinal valve axes	≥ 55	mm


473

Schematic diagram

Individual assembly

Bank assembly

Important:

In case of bank assembly, only one solenoid of all valves may be energized at a time.

Bosch Rexroth AG Hydraulics Zum Eisengießer 1 97816 Lohr am Main, Germany Phone +49 (0) 93 52 / 18-0 documentation@boschrexroth.de www.boschrexroth.de © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging. Hydraulics

Linear Motion and Assembly Technologies

Pneumatics

475

Service

Rexroth Bosch Group

1/18

4/2, 4/3 proportional directional valves, pilot operated, without electrical position feedback

RE 29115-XE-B2/09.13 Replaces: 05.11

Type 4WRZ...XE...

Sizes 10, 16, 25, 32 Component series 7X Maximum operating pressure 350 bar Maximum flow 1600 l/min

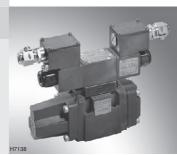
> ATEX units For explosive areas

Part II Data sheet

Information on the explosion protection:

- Area of application in accordance with the Explosion Protection Directive 94/9/EC: II 2G
- Type of protection of the valve solenoid: Ex e mb IIC T4 Gb according to EN 60079-7:2007/EN 60079-18:2009
- Special features of seawater-resistant valves
- The exterior of the valve housing is galvanically coated.
- The seawater resistance is defined by "J" in the ordering code.

What you need to know about these operating instructions


These operating instructions apply to the explosion-proof version of Rexroth valves and consist of the following three parts:

Part I General information 07010-X-B1

- Part II Data sheet 29115-XE-B2
- Part III Product-specific instructions 29115-XE-B3

Operating instructions 29115-XE-B0

You can find further information on the correct handling of Rexroth hydraulic products in our publication "General product information on hydraulic products" 07008.

Actual product may differ

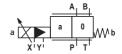
Table of contents

Contents	Page	
Features	2	
Symbols	2	
Ordering code and scope of delivery	3	
Function, section	4	
Technical data	6	
Information on the explosion protection	7	
Control electronics	7	
Electrical connection	8	
Characteristic curves	9	
Dimensions	13	
Pilot oil supply	17	

Features

- Pilot operated 2-stage proportional directional valves for controlling the flow direction and size
- Spring-centered control spool
- Actuation by means of the pilot control valve (3-way pressure reducing valve)
- Solenoid coil can be rotated by 90°
- For subplate mounting:
 Porting pattern according to ISO 4401 ... (information depending on the size)
 Subplates available in FE/ZN version (see pages 13 to 16)

Symbols (simplified)


with electrohydraulic actuation

Type 4WRZ...-7X./...ET...


Pilot oil supply

X = external Y = external

X = internal Y = internal Type 4WRZ...A.-7X./...

Type 4WRZ...A.-7X./...ET...

Ordering code and scope of delivery

4WRZ	-7X/6E G24 XE J /D3
Electro-hydraulic actuation = Z	M = ¹⁾ NBR seals
Size	V = FKM seals
Size 10 = 10	Important:
Size 16 = 16	Observe compatibil- ity of seals with hydraulic
Size 25 = 25	fluid used!
Size 32 = 32 Symbols	D3 = With pressure reducing valve (preset)
<u> </u>	Pilot oil supply and return
	no code = Pilot oil supply external, pilot oil return external
	E = Pilot oil supply internal, pilot oil return external
	ET = Pilot oil supply internal, pilot oil return internal
$\boxed{\boxed{\begin{array}{c} \hline \hline$	T = Pilot oil supply external, pilot oil return internal
	For details, see page 17.
<u></u>	Surface protection
	J = Seawater-resistant, galvanically coated
	XE = Explosion protection, "increased safety",
$\boxed{\sum_{\tau=\tau_1\tau=\tau}^{\tau=\tau_1\tau=\tau_1}}$	for details see information on the explosion protection, page 7
	Supply voltage of the control electronics
	G24 = 24 V direct voltage
For control spools E1- and W8-: $P \rightarrow A$: $q_{1/2}$ $B \rightarrow T$: $q_{1/2}$	6E = Proportional solenoid
$\begin{array}{cccc} P \to A \colon & q_{V \max} & B \to T \colon & q_{V}/2 \\ P \to B \colon & q_{V}/2 & A \to T \colon & q_{V \max} \end{array}$	7X = Component series 70 to 79
For control spools E3- and W9-:	(70 to 79: Unchanged installation and connection dimensions)
$P \rightarrow A: q_{V max}$ $B \rightarrow T: Blocked$	Rated flow
$P \rightarrow B: q_V/2$ $A \rightarrow T: q_{V max}$	25 = 25 l/min (size 10) 50 = 50 l/min (size 10)
(differential circuit, piston top at port A)	85 = 85 l/min (size 10)
Important: In spool position "0", control spools W6-, W8-, W9-, W6A have a connec-	
tion from A \rightarrow T and B \rightarrow T with approx. 2 %	100 = 100 l/min (size 16)
of the relevant nominal cross-section.	150 = 150 l/min (size 16)
	220 = 220 l/min (size 25)
	325 = 325 l/min (size 25)
	360 = 360 l/min (size 32)
	520 = 520 l/min (size 32)
	Characteristic curves, see pages 9 to 12

Included in the scope of delivery:

Valve operating instructions with declaration of conformity in Part III

¹⁾ Suitable for mineral oils (HL, HLP) according to DIN 51524

Function, section

Pilot control valve type 3DREP 6...

The pilot control valve is a 3-way pressure reducing valve that is actuated by a proportional solenoid. It converts an electrical input signal into a proportional pressure output signal and is used for all valves type 4WRZ ...

The proportional solenoids are controllable wet-pin DC solenoids. The solenoids are actuated by external control electronics.

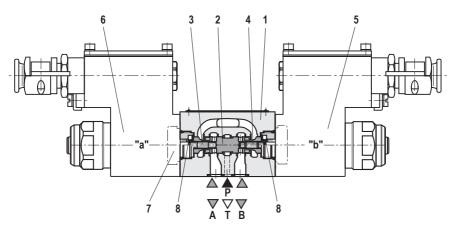
Set-up:

The valve basically consists of:

- Housing (1) with connection surface
- Control spool (2) with pressure measuring pins (3 and 4)
- Solenoids (5 and 6) with central thread

Functional description:

The pressure in A or B is set by means of the proportional solenoids. The amount of the pressure depends on the current.


With de-energized solenoids (5, 6), the control spool (2) is held in the central position by means of the compression springs (8). Ports A and B are connected with T so that the hydraulic fluid can flow off to the tank without obstructions. By actuating a proportional solenoid, e.g. solenoid "b" (5), the pressure measuring pin (4) and the control spool (2) with it are moved to the left. This opens the connection from P to A and B to T via orifice-type cross-sections with progressive flow characteristics. With the surface of the pressure measuring pin (3) the pressure that builds up in channel A acts on the control spool and against the solenoid force. The pressure measuring pin (3) is supported by the solenoid "a". If the pressure exceeds the value set at solenoid "b", the control spool (2) is pushed back against the solenoid force and connects A with T until the set pressure is achieved again. The pressure is proportional to the solenoid current.

When the solenoid is switched off, the control spool (2) is returned to the central position by the compression springs (8).

Important:

If valves version 3DREP 6 ${\bf C}$ are used, only one solenoid may be actuated at a time.

Type 3DREP 6..2X/..XE...

Valve with two spool positions

(type 3DREP 6...A...)

The function of this valve version basically corresponds to the valve with three spool positions. This 2 spool position valve is, however, only equipped with solenoid "b" (5). Instead of the 2nd proportional solenoid, there is a plug screw (7).

Important:

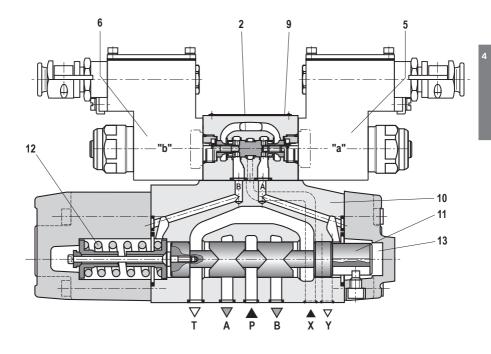
The tank line must not be allowed to run empty. With corresponding installation conditions, a preload valve (preload pressure approx. 2 bar) must be installed.

Function, section

Pilot operated proportional directional valves Type 4WRZ...-7X/..XE...

Valves of the type 4WRZ... are pilot operated 4-way directional valves that are actuated by means of proportional solenoids. Their function is to control the flow direction and size.

Set-up:


The valve basically consists of:

- Pilot control valve (9) with proportional solenoids (5 and 6)
- Main valve (10) with main control spool (11) and centering spring (12)

Functional description:

- With de-energized solenoids (5 and 6), the main control spool (11) is held in central position by means of a centering spring (12).
- Actuation of the main control spool (11) by means of the pilot control valve (9) – the main control spool is proportionally moved – e.g. actuation of solenoid "b" (6)
 - → Displacement of the control spool (2) to the right, pilot oil reaches the pressure chamber (13) pilot control valve (9) and displaces the main control spool (11) proportionally to the electrical input signal to the left
 - → Connection of P → A and B → T via orifice-type crosssections with progressive flow characteristics
- Pilot oil supply to the pilot control valve internally via port P or externally via port X
- Switching off the solenoid (6)
 - → Control spool (2) and main control spool (11) are returned to central position
- Flow depending on spool position from P \rightarrow A and B \rightarrow T or P \rightarrow B and A \rightarrow T.

Type 4WRZ...-7X/..XE...

Technical data

general				
Installation position			Any, preferably horizontal	
Storage temperature range		°C	-20 +50	
Ambient temperature range		°C	-20 +60	
Weight, maximum	Size 10	kg	10	
	Size 16	kg	16	
	Size 25	kg	21	
	Size 32	kg	45	
Surface protection			Galvanized coating	

hydraulic

Size		Size	10	16	25	32
Operating pressure range)					
Pilot control valve	Pilot oil supply external or internal	bar	30 315	30 350	30 350	30 350
Main valve		bar	Up to 315	Up to 350	Up to 350	Up to 350
Return flow pressure	Port T (external pilot oil return)	bar	Up to 315	Up to 250	Up to 250	Up to 150
	Port T (internal pilot oil return)	bar	Up to 30	Up to 30	Up to 30	Up to 30
	Port Y	bar	Up to 30	Up to 30	Up to 30	Up to 30
Pilot volume for switching process $0 \rightarrow 100 \%$		cm ³	1.7	4.6	10	26.5
Pilot flow at port X and Y vith stepped input signal $0 \rightarrow 100 \%$ l/min		l/min	3.5	5.5	7	15.9
Flow of the main valve		l/min	Up to 170	Up to 460	Up to 870	Up to 1600
Hydraulic fluid			Mineral oil (HL, HLP) according to DIN 51524 Additional hydraulic fluids upon request! Ignition temperature > 180 °C			
Hydraulic fluid temperatu	re range	°C	-20 +80 (NBR seals)			
		°C	-15 +80 (FKM seals)			
Viscosity range mr		mm²/s	20 380 (preferably 30 46)			
Maximum admissible degre	e of contamination of the hydra	aulic fluid				
Cleanliness class	Pilot control valve	Class 17/15/12 1)				
according to ISO4406 (c)	Main valve		Class 18/16/13 1)			
Hysteresis %		%		5	6	

¹⁾ The cleanliness classes specified for the components must be adhered to in hydraulic systems. Effective filtration prevents faults and at the same time increases the life cycle of the components. For the selection of the filters see www.boschrexroth.com/filter.

Technical data

electric	
Voltage type	Direct current or pulse-width modulated signal with a pulse voltage \leq 28 V and a frequency \geq 160 Hz up to max. 500 Hz
Type of signal	Analog
Maximum current per solenoid A	1.03
Duty cycle %	100
Coil temperature °C	Up to 125

Information on the explosion protection

Area of application in accordance with the Explosion Protection Directive 94/9/EC	II 2G
Type of protection Valve according to EN 13463-1:2009 / EN 13463-5:2011	c T4 X
Type of protection Valve solenoid according to EN 60079-7:2007 / EN 60079-18:2009	Ex e mb IIC T4 Gb ¹⁾
Type examination certificate Solenoid	KEMA 02ATEX2240 X
"IECEx Certificate of Conformity" Solenoid	IECEx DEK 12.0068X
Special operating conditions for a safe application	 In case of bank assembly, only one solenoid of all valves may be energized at a time.
	 In case of valves with two solenoids, maximally one of the solenoids may be energized at a time.
	 Only direct current or a pulse-width modulated signal with a pulse voltage ≤ 28 V and frequency ≥ 160 Hz up to max. 500 Hz may be used.

Control electronics 2)

Amplifier module for the control of explosion-proof pro- portional directional valves 4WRAXE, 3DREP 6XE and 4WRZXE	VT-MSPA2-200-1X/V0/0 according to data sheet 30228-200
Module for monitoring and limiting the solenoid currents with proportional valves	VT-MUXA2-2-1X/V0/1A according to data sheet 30290

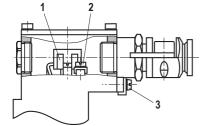
¹⁾ Surface temperature > 50 °C, provide contact protection

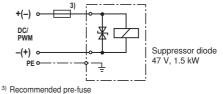
²⁾ Important:

A monitoring circuit is to be provided for the monitoring of the solenoid current. We recommend operating the valves with the assemblies described herein.

Electrical connection

The type-examination tested valve solenoid is equipped with a terminal box and a type-tested cable gland. The connection is polarity-independent.


Important:


Corresponding to the rated current, a fuse according to DIN 41571 and EN / IEC 60127 has to be connected ahead of every valve solenoid (max. 3 x I_{rated}).

The shut-off threshold of the fuse has to match the prospective short-circuit current of the supply source.

The prospective short-circuit current of the supply source may amount to a maximum of 1500 A.

This fuse may only be installed outside the explosive area or must be of an explosion-proof design.

Characteristics medium time-lag according to DIN 41571, 1.25 A

Properties of the connection terminals

Position	Function	Connectable line cross-section
1	Operating voltage connection	Single-wire 0.75 2.5 mm ²
		Finely stranded 0.75 1.5 mm ²
2	Connection for protective earthing conductor	Single-wire max. 2.5 mm ²
		Finely stranded max. 1.5 mm ²
3	Connection for potential equalization conductor	Single-wire 4 6 mm ²
		Finely stranded 4 mm ²

Cable gland

Type approval	II 2G Ex e IIC Gb
Threaded connection	M20 x 1.5
Protection class according to EN 60529	IP66 ¹⁾
Line diameter mm	911
Sealing	Outer sheath sealing

Connection line

Line type	Non-armored cables and lines (outer sheath sealing)
Temperature range °C	-30 > +110

1) If installed properly

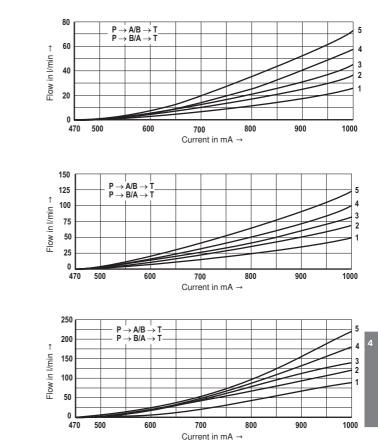
(measured with control spools E, W6-, EA, W6A as well as HLP46, v_{oil} = 40 °C ± 5 °C)

Ordering code 25: Flow

- $\Delta p = 10$ bar constant
- $\Delta p = 20$ bar constant
- $\Delta p = 30$ bar constant
- $\Delta p = 50$ bar constant

Ordering code 50: Flow

 $\Delta p = 10$ bar constant


 $\Delta p = 20$ bar constant

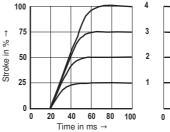
 $\Delta p = 30$ bar constant

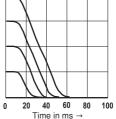
 $\Delta p = 50$ bar constant

 $\Delta p = 100$ bar constant

 $\Delta p = 100$ bar constant

Ordering code 85: Flow

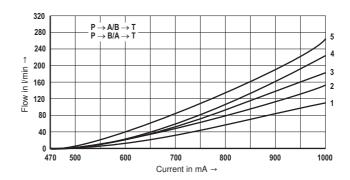

- $\Delta p = 10$ bar constant
- $\Delta p = 20$ bar constant
- $\Delta p = 30$ bar constant
- $\Delta p = 50$ bar constant
- $\Delta p = 100$ bar constant

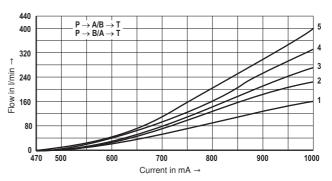

 Δp = valve pressure differential according to DIN 24311 (inlet pressure $p_{\rm p}$ minus load pressure $p_{\rm l}$ minus return flow pressure $p_{\rm r}$)

Transition function with stepped electric input signals

	Change of input signal [%]
1	$0 \rightarrow 25 \rightarrow 0$
2	$0 \rightarrow 50 \rightarrow 0$
3	$0 \rightarrow 75 \rightarrow 0$
4	$0 \rightarrow 100 \rightarrow 0$

Measured at pilot pressure $p_{\rm ST}$ = 50 bar

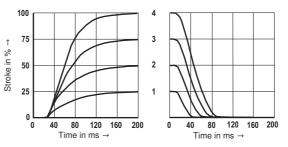



Ordering code 100: Flow

- 1 $\Delta p = 10$ bar constant
- **2** $\Delta p = 20$ bar constant
- **3** $\Delta p = 30$ bar constant
- 4 $\Delta p = 50$ bar constant
- 5 $\Delta p = 100$ bar constant

Ordering code 150: Flow

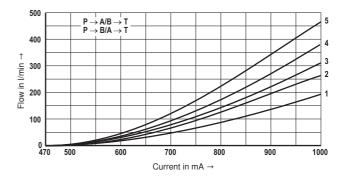
- 1 $\Delta p = 10$ bar constant
- 2 $\Delta p = 20$ bar constant
- 3 $\Delta p = 30$ bar constant
- 4 $\Delta p = 50$ bar constant
- 5 $\Delta p = 100$ bar constant



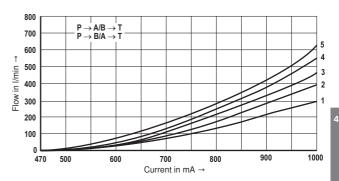
 $\Delta \rho$ = valve pressure differential according to DIN 24311 (inlet pressure $\rho_{\rm p}$ minus load pressure $\rho_{\rm L}$ minus return flow pressure $\rho_{\rm T}$)

Transition function with stepped electric input signals

Change of input signal [%]
$0 \rightarrow 25 \rightarrow 0$
$0 \rightarrow 50 \rightarrow 0$
$0 \rightarrow 75 \rightarrow 0$
$0 \rightarrow 100 \rightarrow 0$


Measured at pilot pressure $p_{ST} = 50$ bar

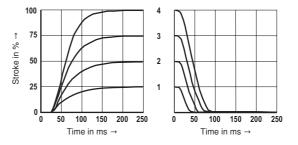
(measured with control spools E, W6-, EA, W6A as well as HLP46, ϑ_{oil} = 40 °C ± 5 °C)


Ordering code 220: Flow

- 1 $\Delta p = 10$ bar constant
- 2 $\Delta p = 20$ bar constant
- 3 $\Delta p = 30$ bar constant
- 4 $\Delta p = 50$ bar constant
- 5 $\Delta p = 100$ bar constant

Ordering code 325: Flow

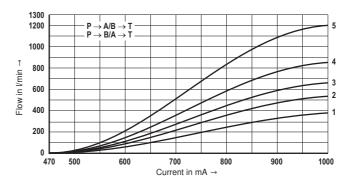
- 1 $\Delta p = 10$ bar constant
- **2** $\Delta p = 20$ bar constant
- **3** $\Delta p = 30$ bar constant
- 4 $\Delta p = 50$ bar constant
- 5 $\Delta p = 100$ bar constant

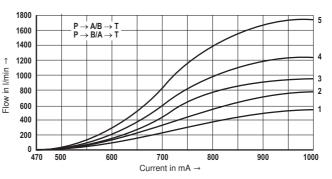


 $\Delta \rho$ = valve pressure differential according to DIN 24311 (inlet pressure ρ_p minus load pressure ρ_L minus return flow pressure ρ_{\uparrow})

Transition function with stepped electric input signals

	Change of input signal [%]
1	$0 \rightarrow 25 \rightarrow 0$
2	$0 \rightarrow 50 \rightarrow 0$
3	$0 \rightarrow 75 \rightarrow 0$
4	$0 \rightarrow 100 \rightarrow 0$

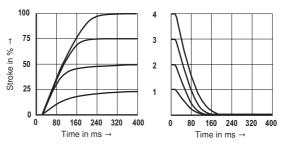

Measured at pilot pressure $p_{\rm ST}$ = 50 bar


Ordering code 360: Flow

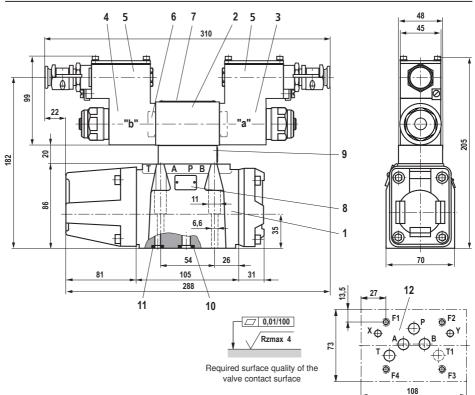
- 1 $\Delta p = 10$ bar constant
- **2** $\Delta p = 20$ bar constant
- **3** $\Delta p = 30$ bar constant
- 4 $\Delta p = 50$ bar constant
- 5 $\Delta p = 100$ bar constant

Ordering code 520: Flow

- 1 $\Delta p = 10$ bar constant
- 2 $\Delta p = 20$ bar constant
- 3 $\Delta p = 30$ bar constant
- 4 $\Delta p = 50$ bar constant
- 5 $\Delta p = 100$ bar constant



 Δp = valve pressure differential according to DIN 24311 (inlet pressure $p_{\rm P}$ minus load pressure $p_{\rm I}$ minus return flow pressure $p_{\rm T}$)


Transition function with stepped electric input signals

	Change of input signal [%]
1	$0 \rightarrow 25 \rightarrow 0$
2	$0 \rightarrow 50 \rightarrow 0$
3	$0 \rightarrow 75 \rightarrow 0$
4	0 → 100 → 0

Measured at pilot pressure $p_{ST} = 50$ bar

- 1 Main valve
- 2 Pilot control valve
- 3 Proportional solenoid "a"
- 4 Proportional solenoid "b"
- 5 Terminal box
- 6 Plug screw for valves with one solenoid
- 7 Name plate for pilot control valve
- 8 Name plate for main valve
- 9 Pressure reducing valve (always available)
- 10 Identical seal rings for ports P, A, B, T and T1
- 11 Identical seal rings for X and Y
- 12 Machined valve contact surface, porting pattern according to ISO 4401-05-05-0-05 (X, Y as required, T1 is available at the valve and can optionally be provided)

Deviating from the standard:

- Locating pin not available

Subplates

G 534/01 FE/ZN (G3/4) without ports X and Y G 535/01 FE/ZN (G3/4) with ports X and Y G 536/01 FE/ZN (G1) with ports X and Y

TFE/ZIN (GT) WILL ports A and T

with dimensions as in the data sheet 45054 must be ordered separately. 4

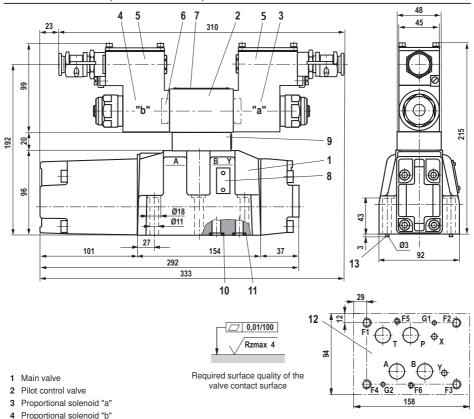
Valve mounting screws

For reasons of stability, exclusively use the following valve mounting screws:

4 hexagon socket head cap screws

ISO 4762-M6x45-10.9-flZn-240h-L

(friction coefficient total: 0.09-0.14 according to VDA 235-101) (must be ordered separately)


Important:

Subplates are no components in the sense of directive 94/9/EC and can be used after the manufacturer of the overall system has assessed the risk of ignition.

The G...FE/ZN versions are free from aluminum and/or magnesium and galvanized.

487

- 5 Terminal box
- 6 Plug screw for valves with one solenoid
- 7 Name plate for pilot control valve
- 8 Name plate for main valve
- 9 Pressure reducing valve (always available)
- 10 Identical seal rings for ports P, A, B and T
- 11 Identical seal rings for X and Y
- 12 Machined valve contact surface valve contact face, porting pattern according to ISO 4401-07-07-0-05 (X, Y as required)

Deviating from the standard:

- -Ports P, A, B and T with Ø 20 mm
- 13 Locating pin

Subplates

G 172/01 FE/ZN (G3/4) G 172/02 FE/ZN (M27 x 2) G 174/01 FE/ZN (G1)

G 174/02 FE/ZN (M33 x 2) G 174/08 FE/ZN (flange)

with dimensions as in the data sheet 45056 must be ordered separately.

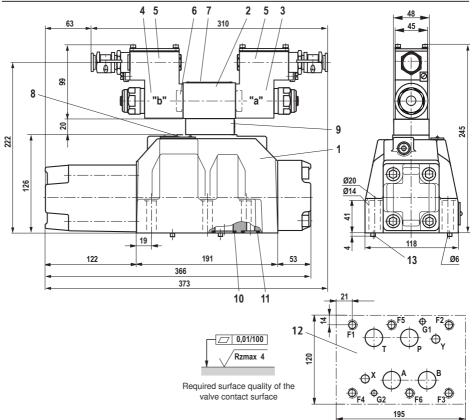
Valve mounting screws

For reasons of stability, exclusively use the following valve mounting screws:

2 hexagon socket head cap screws ISO 4762-M6x60-10.9-flZn-240h-L

(friction coefficient total: 0.09-0.14 according to VDA 235-101) (must be ordered separately)

4 hexagon socket head cap screws


ISO 4762-M10x60-10.9-flZn-240h-L

(total friction coefficient: 0.09-0.14 according to VDA 235-101) (must be ordered separately)

Important:

Subplates are no components in the sense of directive 94/9/EC and can be used after the manufacturer of the overall system has assessed the risk of ignition.

The G...FE/ZN versions are free from aluminum and/or magnesium and galvanized.

Dimensions size 25 (dimensions in mm)

- 1 Main valve
- 2 Pilot control valve
- 3 Proportional solenoid "a"
- 4 Proportional solenoid "b"
- 5 Terminal box
- 6 Plug screw for valves with one solenoid
- 7 Name plate for pilot control valve
- 8 Name plate for main valve
- 9 Pressure reducing valve (always available)
- 10 Identical seal rings for ports P, A, B and T
- 11 Identical seal rings for X and Y
- 12 Machined valve contact surface, porting pattern according to ISO 4401-08-08-0-05 (X, Y as required)
- 13 Locating pin

Subplates

G 151/01 FE/ZN (G1) G 154/01 FE/ZN (G1 1/4) G 154/08 FE/ZN (flange) G 156/01 FE/ZN (G1 1/2)

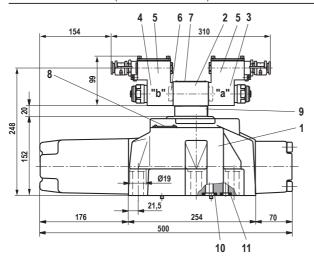
with dimensions as in the data sheet 45058 must be ordered separately.

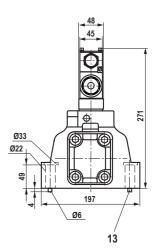
Valve mounting screws

For reasons of stability, exclusively use the following valve mounting screws:

6 hexagon socket head cap screws

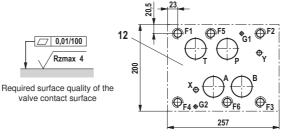
ISO 4762-M12x60-10.9-flZn-240h-L


(friction coefficient total: 0.09-0.14 according to VDA 235-101) (must be ordered separately)


Important:

Subplates are no components in the sense of directive 94/9/EC and can be used after the manufacturer of the overall system has assessed the risk of ignition.

The G...FE/ZN versions are free from aluminum and/or magnesium and galvanized.


Dimensions size 32 (dimensions in mm)

valve contact surface

- 1 Main valve
- 2 Pilot control valve
- 3 Proportional solenoid "a"
- 4 Proportional solenoid "b"
- 5 Terminal box
- 6 Plug screw for valves with one solenoid
- 7 Name plate for pilot control valve
- 8 Name plate for main valve
- 9 Pressure reducing valve (always available)
- 10 Identical seal rings for ports P, A, B and T
- Identical seal rings for X and Y 11
- 12 Machined valve contact surface, porting pattern according to ISO 4401-10-09-0-05 (X, Y as required) Deviating from the standard:
 - -Ports P. A. B and T with Ø 38 mm
- 13 Locating pin

Subplates

G 157/01 FE/ZN (G1 1/2)

G 157/02 FE/ZN (M48 x 2)

G 158/10 FE/ZN (flange)

with dimensions as in the data sheet 45060 must be ordered separately.

Valve mounting screws

For reasons of stability, exclusively use the following valve mounting screws:

6 hexagon socket head cap screws

ISO 4762-M20x80-10.9-flZn-240h-L

(friction coefficient total: 0.09-0.14 according to VDA 235-101) (must be ordered separately)

Important:

Subplates are no components in the sense of directive 94/9/EC and can be used after the manufacturer of the overall system has assessed the risk of ignition.

The G...FE/ZN versions are free from aluminum and/or magnesium and galvanized.

Pilot oil supply

Type 4WRZ ... - ... / ...

Pilot oil supply external Pilot oil return external

In this version, the pilot oil is supplied from a separate pilot circuit (external).

The pilot oil return is not directed into the T channel of the main valve, but is separately directed to the tank via port Y (external).

Type 4WRZ...-.../...E...

Pilot oil supply internal Pilot oil return external

In this version, the pilot oil is supplied via the P channel of the main valve (internal).

The pilot oil return is not directed into the T channel of the main valve, but is separately directed to the tank via port Y (external).

In the subplate, port X is to be closed.

Type 4WRZ...-../...ET... Pilot oil supply internal Pilot oil return internal

In this version, the pilot oil is supplied via the P channel of the main valve (internal).

The pilot oil is directly returned to channel T of the main valve (internal).

In the subplate, ports X and Y are to be closed.

Type 4WRZ...-.../...T...

Pilot oil supply external Pilot oil return internal

In this version, the pilot oil is supplied from a separate pilot circuit (external).

The pilot oil is directly returned to channel T of the main valve (internal).

In the subplate, port Y is to be closed.

Bosch Rexroth AG Hydraulics Zum Eisengießer 1 97816 Lohr am Main, Germany Phone +49 (0) 93 52 / 18-0 documentation@boschrexroth.de www.boschrexroth.de © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Electric Drives and Controls

Hydraulics

493

Service

Rexroth Bosch Group

1/12

Proportional pressure relief valve directly operated

RE 29162-XE-B2/01.08

Type DBET.../...XE

Nominal size 6 Unit series 6X Maximum operating pressure 420 bar Maximum flow rate 2 l/min

> ATEX units For potentially explosive atmospheres

Part II Technical Data Sheet

(£x

Information on explosion protection:

Range of application in accordance with the Explosion Protection Directive and type of protection

- Range of application as per 94/9/EG
- II2G: Type of protection Ex e mb IIT4 as per EN 60079-0:2004, EN 60079-7:2003 and EN 60079-18:2004
- II2D: Type of protection Ex tD A21 T130°C IP67 as per prEN 61241-0:2005 and EN 61241-1:2005

What you need to know about these Operating Instructions

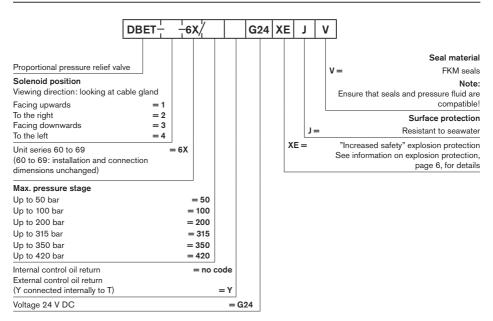
These Operating Instructions apply to the explosion-proof version of Rexroth valves, and consist of the following three parts:

- Part I General Information RE 07010-X-B1
- Part II Technical Data Sheet RE 29162-XE-B2

Part III Product-specific Instructions RE 29162-XE-B3

Mat. No. R901172919

You can find further information on the correct handling of Rexroth hydraulic products in our publication "General product information for hydraulic products", RE 07008.


Overview of Contents

Contents	Page
Features	2
Ordering data and scope of delivery	3
Symbols	3
Function, sectional diagram	4
Technical data	5 6
Information on explosion protection	6
Electrical connection	7
Characteristic curves	8 9
Unit dimensions	10
Installation conditions	11

Features

- Directly operated proportional pressure relief valve with solenoid actuation for proper use in potentially explosive atmospheres
- For subplate mounting: Mounting hole configuration as per ISO 4401-03-02-0-05
- Wet-pin DC solenoid
- Electrical connection is a single terminal with cable gland
- The metal outer parts are galvanized for protection against corrosion (resistance to seawater)

Ordering data and scope of delivery

Included in scope of delivery:

Valve operating instructions with Declaration of Conformity in Part III

Symbols

Internal control oil return

External control oil return

Function, sectional diagram

General

DBET.../...XE proportional pressure relief valves are remote control poppet valves that are used to limit system pressure. They are actuated by a proportional solenoid with central thread and removable coil. The interior of the solenoid is connected to port T or Y, and is filled with pressure fluid. These valves can infinitely adjust the system pressure that needs to be limited, on the basis of an electric setpoint.

The solenoid is actuated by an external VT-MSPA1-200 amplifier (see Technical Data Sheet RE 30233-200). This amplifier must not supply the solenoid with a current in excess of 1.0 A. To achieve this required level of safety when operating the valve in a potentially explosive atmosphere, the solenoid current must be monitored and limited. For this, the VT-MUXA2 safety module (see Technical Data Sheet RE 30290) must be used.

Construction

The valve basically comprises:

- Housing with mounting surface (1)

- A proportional solenoid (2)
- Valve seat (3)
- Valve cone (4)
- Armature plunger (5)

Basic principle

To adjust the system pressure, a sepoint is input in the trigger electronics. Based on this setpoint, the electronics actuate the solenoid coil with electrical current. The proportional solenoid converts the current to a mechanical force, which acts on the valve cone (4) by means of the armature plunger (5). The valve cone (4) presses onto the valve seat (3) and shuts off the connection between ports P and T or Y. If the hydraulic force acting on the valve cone (4) is equivalent to the magnetic force, the valve regulates the set pressure by lifting the valve cone (4) off the valve seat (3), so that pressure fluid can flow from port P to port T or Y. If the setpoint is zero, the proportional solenoid (2) only receives the minimum control current, and the set pressure is at the minimum level.

Technical data

General			
Installation position		Optional, preferably horizontal	
Storage temperature range	°C	-20 +70	
Ambient temperature range	°C	-20 +70	
Weight	kg	2.7	

497

Hydraulic

Max. operating pressure	Port P	bar	420
Max. set pressure	Pressure stage 50 bar	bar	52.5
at setpoint 10 V	Pressure stage 100 bar	bar	105
	Pressure stage 200 bar	bar	210
	Pressure stage 315 bar	bar	330
	Pressure stage 350 bar	bar	370
	Pressure stage 420 bar	bar	420
Max. set pressure at setpe	pint 0	bar	See characteristic curves, page 8
Return pressure	Ports T, Y	bar	0 (separate return line to tank)
Max. operating pressure	Dummy countersink A, B	bar	350
Max. flow rate		l/min	See characteristic curves, page 9 ¹⁾
Pressure fluid			Mineral oil (HL, HLP) nach DIN 51524
			Ignition temperature > 180 °C
Pressure fluid temperature	e range	°C	-15 +80 (preferably +40 +50)
Viscosity range		mm²/s	20 380 (preferably 30 46)
Maximum permissible deg Purity class to ISO 4406	ree of contamination of pres	ssure fluid	Class 20/18/15 ²⁾
Hysteresis		%	< 7 of max. set pressure
Range of inversion		%	< 0.5 of max. set pressure
Sensitivity		%	< 0.5 of max. set pressure
Linearity		%	See characteristic curves, page 8
Manufacturing tolerance	at setpoint 20 %	%	$<\pm1.5$ of max. set pressure ³⁾
of setpoint/pressure curve based on 0.8 l/min, pressure rising	at setpoint 100 %	%	$<\pm5$ of max. set pressure ⁴⁾
Step response $(T_u + T_g) 0$ Line volume < 20 cm ³ ; q_V	\rightarrow 100 % or 100 % \rightarrow 0 = 0.8 l/min	ms	100 (depending on the system!)

- ¹⁾ Exceeding the maximum flow rate of the pressure stage results in back pressure in port P that lies above the maximum nominal pressure of the valve.
- ²⁾ The purity classes stated for the components must be complied with in hydraulic systems. Effective filtration prevents problems and also extends the service life of components.

For a selection of filters, see Technical Data Sheets RE 50070, RE 50076 and RE 50081.

- 3) Zero is calibrated at the factory
- ⁴⁾ Calibration is possible via the amplifier

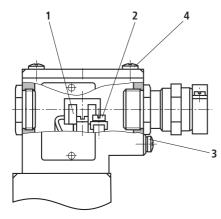
Technical data

Electrical			
Voltage type			DC; PWM signal 100 500 Hz
Signal type			Analog
Maximum current		Α	1.03
Limit rating		W	13.3
Solenoid coil resistance	Cold value at 20 °C	Ω	8.3
	Maximum hot value	Ω	12.56
Cyclic duration fac	ctor	%	100
Coil temperature		°C	Up to 130
Cable gland	Threaded connection		M20 x 1.5
	Cable diameter	mm	6 12
	Thermal resistance	°C	-20 +130
	Degree of protection to EN 60529:1991+A1:2000		IP 67 when mounted
	Seal material		FKM
Required thermal of connecting cab		°C	≥ 115

Information on explosion protection

Range of application as per Directive RL 94/9/EG	II2G, II2D
Type of protection of valve	c (EN 13463-5:2001-01)
Maximum surface temperature 1)	130°C (T4)
Type of protection of solenoid	II2G Ex e mb IIT4 as per EN 60079-0:2004, EN 60079-7:2003 as per EN 60079-18:2004 II2D Ex tD A21 T130°C IP67 as per prEN 61241-0:2005 and EN 61241-1:2005
Type test certification of solenoid	EX5 06 04 39919 009
Special conditions for safe use	

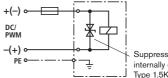
Trigger electronics


Amplifier in modular design ²⁾	VT-MSPA1-200 (Data Sheet RE 30223-200)
Safety module 2)	VT-MUXA2-1(Data Sheet RE 30290-B2)

- ¹⁾ As the solenoid coils may reach a high surface temperature, European standards ISO 13732-1 and EN 982 on the prevention of accidental contact must be observed
- ²⁾ See RE 30290-B2 for the electric circuitry of the valve, amplifier and safety module.

Electrical connection

The type-tested actuating solenoid of the valve is equipped with a terminal box and a type-tested cable gland.


The connection is insensitive to polarity.

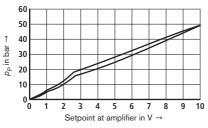
Note:

499

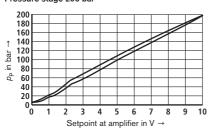
A fuse appropriate for the valve solenoid's nominal current (max. 3 x $I_{\rm nom}$ to EN 60127) must be connected to the solenoid on the line side, to protect against short circuit. The breaking capacity of the fuse must match the possible short-circuit current of the supply source.

Suppressor diode, internally cast Type 1.5KE68CA

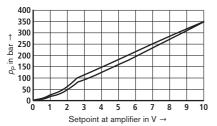
Properties of terminals and fastening elements

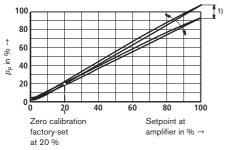

Item	Function	Connectable conductor cross-section	Tightening torque
1	Operating voltage connection	Single wire 0.752.5 mm ²	0.4 0.5 Nm
		Stranded 0.751.5 mm ²	
2	Connection for protective earth conductor	Single wire up to 2.5 mm ² Stranded up to 1.5 mm ²	1.4 2.4 Nm
3	Connection for equipotential bonding conductor	Single wire up to 4 mm ² Stranded up to 4 mm ²	3.5 4.5 Nm
4	Cover screws	-	1.0 1.1 Nm

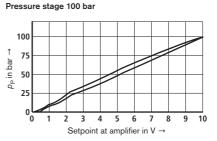
Characteristic curves (measured with HLP46, $\vartheta_{oil} = 40 \text{ °C} \pm 5 \text{ °C}$)


Pressure in port P ($p_{\rm p}\!)$ as a function of the setpoint

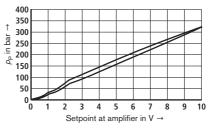
Measured with: Flow rate: 0.8 I/min VT-MSPA1-200 amplifier with VT-MUXA2-1 safety module

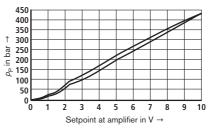

Pressure stage 50 bar


Pressure stage 200 bar

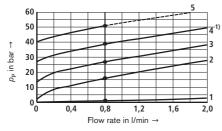


Pressure stage 350 bar

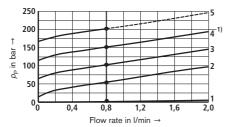


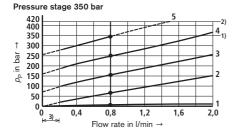


¹⁾ The manufacturing tolerance can be compensated using the Gw potentiometer of the series-connected VT-MSPA1-200 amplifier.


500

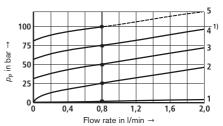
Characteristic curves (measured with HLP46, $\vartheta_{oil} = 40 \text{ °C} \pm 5 \text{ °C}$)

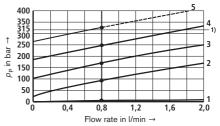

Pressure in port P ($p_{\rm p}$) as a function of the flow rate


VT-MSPA1-200 amplifier with VT-MUXA2-1 safety module.

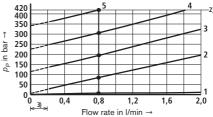
Pressure stage 50 bar

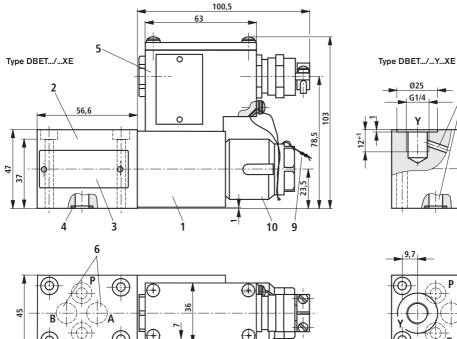
Pressure stage 200 bar

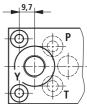



1) Flow rate limit of pressure stage

- 2) Flow rate limit and maximum pressure
- 3) Theoretical curve profile at a flow rate less than 0.2 l/min


Pressure stage 100 bar




Applicable for all pressure stages:

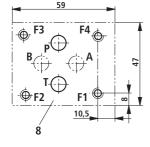
- Curve 1 = 0 % setpoint
- Curve 2 = 25 % setpoint
- Curve 3 = 50 % setpoint
- Curve 4 = 75 % setpoint
- Curve 5 = 100 % setpoint

The curves were measured without back pressure in port T ($\rho_{\rm T}=0$ bar).

Unit dimensions (in mm)

7

- 1 Proportional solenoid
- 2 Valve housing
- 3 Nameplate
- 4 Same seals for ports P, A, B and T
- 5 Terminal box
- 6 Dummy countersinks A and B
- 7 In version ... Y.. (external control oil return), port Y is internally connected to port T Port T is not plugged
- 8 Machined valve bearing surface, position of ports as per ISO 4401-03-02-0-05 Different from the standard:
 - No locating pin
 - "A" and "B" ducts not drilled
- 9 Factory setting secured by retaining wire
- 10 Fastening nuts for solenoid


Valve fastening bolts:

(not included in scope of delivery) In order to ensure a secure connection, use only the following valve fastening bolts:

4 cheese-head bolts

ISO 4762-M5X45-10.9-flZn-240h-L

(coefficient of friction 0.09 - 0.14 to VDA 235-101); Order separately, Mat. No. R913000140

40,5

9.4

Required surface quality of valve bearing surface

Installation conditions (dimensions in mm)

	Single assembly	Bank assembly
Subplate dimensions	Minimum dimensions	Minimum cross-section
	Length \ge 64, width \ge 58, height \ge 25	Height \geq 60, width \geq 85
Thermal conductivity of subplate (based on 300°C)	≥ 35,2 W / (K · m), (EN-GJS-	500-7 to DIN EN 1563:2005)
Minimum distance between valve longitudinal axes	≥ 55	i mm

Block diagram

Single assembly

Bank assembly

Bosch Rewroth AG Hydraulics Zum Eisengießer 1 97816 Lohr am Main, Germany Telefon +49 (0) 93 52 / 18-0 Telefax +49 (0) 93 52 / 18-23 58 documentation@boschrewroth.de www.boschrewroth.de © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging. Hydraulics

505

Service

Rexroth Bosch Group

RE 29184-XE-B2/09.13 Replaces: 12.03

1/10

Proportional pressure reducing valve in 3-way version

Type 3DREP 6 ../..XE...

Size 6 Component series 2X Maximum operating pressure 100 bar Maximum flow 15 I/min

> ATEX units For explosive areas

Part II Data sheet

- Area of application in accordance with the Explosion Protection Directive 94/9/EC: II 2G
- Type of protection of the valve solenoid: Ex e mb IIC T4 Gb according to EN 60079-7:2007/EN 60079-18:2009
- Special features of seawater-resistant valves
- The exterior of the valve housing is galvanically coated.
- The seawater-resistance is defined by "J" in the ordering code.

What you need to know about these operating instructions

These operating instructions apply to the explosion-proof version of Rexroth valves and consist of the following three parts:

- Part I General information 07010-X-B1
- Part II Data sheet 29184-XE-B2
- Part III Product-specific instructions 29184-XE-B3

Operating instructions 29184-XE-B0

You can find further information on the correct handling of Rexroth hydraulic products in our publication "General product information on hydraulic products" 07008.

Actual product may differ

Table of contents

Contents	Page
Features	2
Ordering code and scope of delivery	3
Symbols	3
Function, section	4
Technical data	5
Information on the explosion protection	6
Electrical connection	7
Characteristic curves	8
Dimensions	9
Installation conditions	10

Features

- Direct operated proportional pressure reducing valve with solenoid actuation for proper use in explosive atmospheres
- For subplate mounting: Porting pattern according to ISO 4401-03 -02-05
- Subplates available in FE/ZN version (see page 9)
- Wet-pin DC solenoids
- Solenoid coil can be rotated by 90°
- Electrical connection as individual connection with cable gland

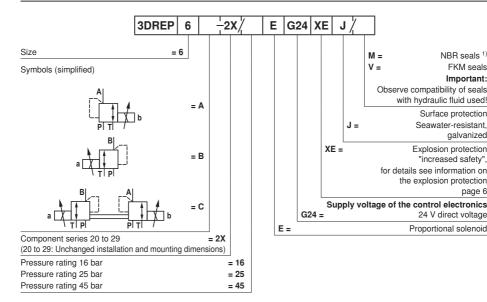
NBR seals 1)

FKM seals

Important:

Surface protection

Seawater-resistant, galvanized

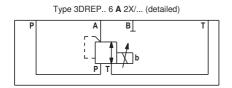

Explosion protection

"increased safety",

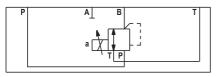
24 V direct voltage

page 6

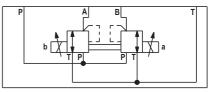
Ordering code and scope of delivery



1) Suitable for mineral oils (HL, HLP) according to DIN 51524


Included in the scope of delivery:

Valve operating instructions with declaration of conformity in Part III


Symbols

Type 3DREP.. 6 B 2X/... (detailed)

Type 3DREP.. 6 C 2X/... (detailed)

Function, section

The 3-way pressure reducing valve type 3DREP 6.. is direct operated by proportional solenoids. It converts an electrical input signal into a proportional pressure output signal.

The proportional solenoids are controllable wet-pin DC solenoids. The solenoids are actuated by external control electronics.

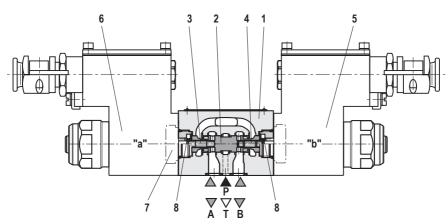
Set-up:

The valve basically consists of:

- Housing (1) with connection surface
- Control spool (2) with pressure measuring pins (3 and 4)
- Solenoids (5 and 6) with central thread

Functional description:

The pressure in A or B is set by means of the proportional solenoids. The amount of the pressure depends on the current.


With de-energized solenoids (5, 6), the control spool (2) is held in the central position by means of the compression springs (8). Ports A and B are connected with T so that the hydraulic fluid can flow off to the tank without obstructions. When one proportional solenoid is actuated, e.g. solenoid "b" (5), the pressure measuring pin and the control spool (2) are moved to the left. This opens the connection from P to A and B to T via orifice-type cross-sections with progressive flow characteristics. With the surface of the pressure measuring pin (3) the pressure that builds up in channel A acts on the control spool and against the solenoid force. The pressure measuring pin (3) is supported by the solenoid "a". If the pressure exceeds the value set at solenoid "b", the control spool (2) is pushed back against the solenoid force and connects A with T until the set pressure is achieved again. The pressure is proportional to the solenoid current.

When the solenoid is switched off, the control spool (2) is returned into the central position by the compression springs (8).

Important:

Regarding valves of the version 3DREP 6 C, only one solenoid may be actuated at a time.

Type 3DREP 6..2X/..XE..

Valve with two spool positions

(type 3DREP 6...A...)

The function of this valve version basically corresponds to the valve with three spool positions. This 2 spool position valve is, however, only equipped with solenoid "b" (5). Instead of the 2nd proportional solenoid, there is a plug screw (7).

Important:

The tank line must not be allowed to run empty. With corresponding installation conditions, a preload valve (preload pressure approx. 2 bar) must be installed.

Technical data

general			
Installation position	on		Any; preferably horizontal
Storage temperat	ture range	°C	-20 +50
Ambient temperature range °C		°C	-20 +60
Weight	3DREP6 A/B	kg	2.7
	3DREP6 C	kg	4.4
Surface protection	n		Galvanized coating

509

hydraulic

Operating pressure range	Port P	bar	20 100 for pressure rating 16
		bar	30 100 for pressure rating 25
		bar	50 100 for pressure rating 45
	Port T	bar	0 30
Maximum flow $P \rightarrow A \text{ or } P \rightarrow B$		l/min	15 (Δp = 50 bar) see characteristic curves page 7
Hydraulic fluid			Mineral oil (HL, HLP) according to DIN 51524 Additional hydraulic fluids upon request! Ignition temperature > 180 °C
Hydraulic fluid temperature range °C		-20 +80 (NBR seals)	
			-15 +80 (FKM seals)
Viscosity range		mm²/s	20 380 (preferably 30 46)
Maximum admissible degree of co lic fluid, cleanliness class accordir		nydrau-	Class 17/15/12 1)
Hysteresis		%	≤ 6
Repetition accuracy		%	≤ 2
Response sensitivity		%	≤ 1
Range of inversion		%	≤ 2

electric

Voltage type	Direct current or pulse-width modulated signal with pulse voltage \leq 28 V and frequency \geq 160 Hz up to max. 500 Hz
Type of signal	Analog
Maximum current per solenoid A	1.03
Duty cycle %	100
Coil temperature °C	up to 125

¹⁾ The cleanliness classes specified for the components must be adhered to in hydraulic systems. Effective filtration prevents faults and at the same time increases the life cycle of the components. For the selection of the filters see www.boschrexroth.com/filter.

Information on the explosion protection

Area of application in accordance with the Explosion Protection Directive 94/9/EC	II 2G
Type of protection Valve according to EN 13463-1:2009 / EN 13463-5:2011	c T4 X
Type of protection Valve solenoid according to EN 60079-7:2007 / EN 60079-18:2009	Ex e mb IIC T4 Gb ¹⁾
Type examination certificate Solenoid	KEMA 02ATEX2240 X
"IECEx Certificate of Conformity" Solenoid	IECEx DEK 12.0068X
Special operating conditions for a safe application	 In case of bank assembly, only one solenoid of all valves may be energized at a time.
	 In case of valves with two solenoids, maximally one of the solenoids may be energized at a time.
	 For the operation, only direct current or a pulse-width modulated signal with pulse voltage ≤ 28 V and frequency ≥ 160 Hz up to max. 500 Hz may be used.

Control electronics 2)

Amplifier module for the control of explosion-proof proportional directional valves 4WRAXE, 3DREP 6XE and 4WRZXE	VT-MSPA2-200-1X/V0/0 according to data sheet 30228-200
Module for monitoring and limiting the solenoid currents with proportional valves	VT-MUXA2-2-1X/V0/1A according to data sheet 30290

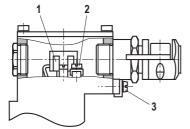
1) Surface temperature > 50 °C, provide contact protection

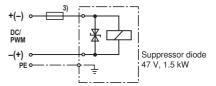
2) Important:

A monitoring circuit is to be provided for the monitoring of the solenoid current. We recommend operating the valves with the assemblies described herein.

Electrical connection

The type-examination tested valve solenoid is equipped with a terminal box and a type-tested cable gland. The connection is polarity-independent.


Important:


Corresponding to the rated current, a fuse according to DIN 41571 and EN / IEC 60127 has to be connected ahead of every valve solenoid (max. 3 x I_{rated}).

The shut-off threshold of the fuse has to match the prospective short-circuit current of the supply source.

The prospective short-circuit current of the supply source may amount to a maximum of 1500 A.

This fuse may only be installed outside the explosive area or must be of an explosion-proof design.

3) Recommended pre-fuse

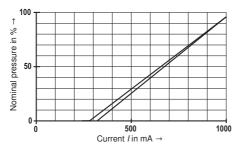
Characteristics medium time-lag according to DIN 41571; 1.25 A

Properties of the connection terminals

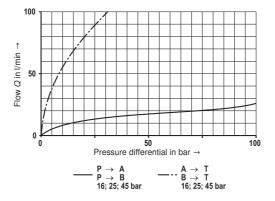
Position	Function	Connectable line cross-section
1	Operating voltage connection	Single-wire 0.75 2.5 mm ²
		Finely stranded 0.75 1.5 mm ²
2	Connection for protective earthing conductor	Single-wire max. 2.5 mm ²
		Finely stranded max. 1.5 mm ²
3	Connection for potential equalization conductor	Single-wire 4 6 mm ²
		Finely stranded 4 mm ²

Cable gland

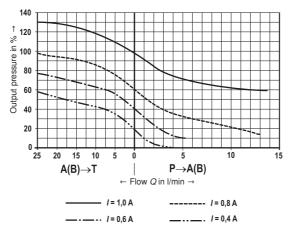
Type approval	II 2G Ex e IIC Gb
Threaded connection	M20 x 1.5
Protection class according to EN 60529	IP66 ¹⁾
Line diameter mm	911
Sealing	Outer sheath sealing

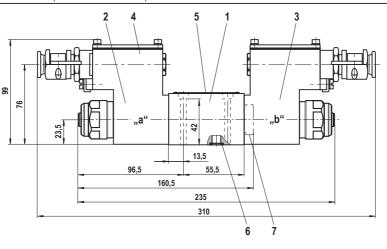

Connection line

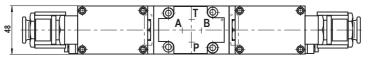
Line type	Non-armored cables and lines (outer sheath sealing)
Temperature range °C	-30 > +110


1) If installed properly

Characteristic curves (measured with HLP46, ϑ_{oil} = 40 °C ± 5 °C and p = 100 bar)


Pressure ratings 16, 25, and 45 bar


Pressure ratings 16, 25, and 45 bar



Pressure as a function of flow

Dimensions (dimensions in mm)

Required surface quality of the valve contact surface

- 1 Valve housing
- 2 Proportional solenoid "a"
- 3 Proportional solenoid "b"
- 4 Terminal box
- 5 Name plate
- 6 Identical seal rings for A, B, P and T
- 7 Plug screw for valve with one solenoid (2 spool positions, version A or B)
- 8 Porting pattern according to ISO 4401-03-02-0-05

Valve mounting screws

For reasons of stability, exclusively use the following valve mounting screws:

4 hexagon socket head cap screws ISO 4762-M5x50-10.9-flZn-240h-L (friction coefficient 0.09 – 0.14 according to VDA 235-101)

Material no. **R913000064** (must be ordered separately)

Subplates

(without locating hole)

G 341/01 FE/ZN (G1/4) G 342/01 FE/ZN (G3/8) G 502/01 FE/ZN (G1/2)

72

15

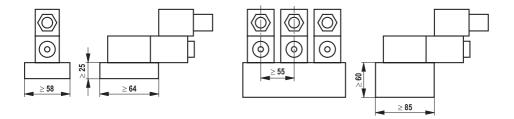
with dimensions as in the data sheet 45052 (must be ordered separately)

Important:

Subplates are no components in the sense of directive 94/9/EC and can be used after the manufacturer of the overall system has assessed the risk of ignition.

The G...FE/ZN versions are free from aluminum and/or magnesium and galvanized.

8


Installation conditions (dimensions in mm)

	Individual assembly	Bank assembly	
Dimensions of the subplate	Minimum dimensions	Minimum cross-section	
	Length \ge 64, width \ge 58, height \ge 25	Height \ge 60, width \ge 85	
Thermal conductivity of the subplate	≥ 38 W/mK (EN-GJS-500-7)		
Minimum distance between the longitu- dinal valve axes	≥ 55 mm		

Schematic diagram

Individual assembly

Bank assembly

Important:

In case of bank assembly, only one solenoid of all valves may be energized at a time.

Bosch Rexroth AG Hydraulics Zum Eisengießer 1 97816 Lohr am Main, Germany Phone +49 (0) 93 52 / 18-0 documentation@boschrexroth.de www.boschrexroth.de © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging. Hydraulics

Linear Motion and Assembly Technologies

Pneumatics

Service

Rexroth Bosch Group

1/22

4/3 directional control valves, pilot operated, with electric position feedback RE 29094-XN-B2/07.11 Replaces: 11.10

Type 4WRD...XN

Sizes 10, 16, 25, 27, 32, 35 Component series 5X Maximum operating pressure 350 bar

> ATEX units For explosive areas Part II Data sheet

Information on explosion protection:

Range of application in accordance with the Explosion Protection Directive 94/9/EC

II3G: Type of protection

Ex nA II T5X without directional sandwich plate valve Ex nA II T3X with directional sandwich plate valve according to EN 60079-0:2006 / EN 60079-15:2005

What you need to know about these operating instructions

These operating instructions apply to the explosion-proof version of Rexroth valves and consist of the following three parts:

Part I General information 07010-X-B1

Part II Data sheet 29094-XN-B2

Part III Product-specific instructions 29094-XN-B3

Operating instructions 29094-XN-B0

You can find further information on the correct handling of Rexroth hydraulic products in our publication "General product information on hydraulic products" 07008.

515

Type 4WRD25...XN

Table of contents

Content	Page
Features	2
Ordering code and scope of delivery	3
Symbols	4
Function, section	5
Technical data	6, 7
Information on explosion protection	7
Electrical connection	8, 9
Characteristic curves	1015
Unit dimensions	1621

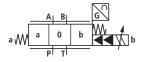
Features

- Pilot operated 3-stage directional control valve for intended use in explosive areas of zone 2
- Electric position feedback of the main spool
- 2-stage pilot control valve type 4WS2EM 6-2X/...XN
- Particularly suitable for the position, velocity, pressure and force control with simultaneously high requirements on the dynamics and the response sensitivity
- For subplate mounting, porting pattern according to ISO 4401 (size 10 to size 35)
- Subplates available in FE/ZN version (see pages 16 to 21)
- The signal linking of the valve control loop, the supply of the position measurement system and the actuation of the pilot control valve are carried out via external control electronics.

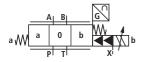
Ordering code and scope of delivery

4WRD		5X/ 6	6L 24	XN	K	31/	v	R	
Electrically operated 3-stage directional control valve in 3-way design Size = 10 = 16 = 25 = 27 = 32 = 35						w	G152 Indwic	e = wit sandv = h plate out ma	R rings FKM seals hout directional wich plate valve with directional valve, 24 VDC ating connector, separate order, separge 9
Spool symbols						K31 =	E	Electri	cal connection
									ating connector, der, see page 9
$\begin{array}{c} \hline \\ P \\ \hline \\ P \\ \hline \\ \hline \\ T \\ \hline \\ T \\ \hline \\ T \\ \hline \\ T \\ \hline \\ \hline$		5X =		XN	Deta	ails see i	F P P nform Serv Com	bilot oil bilot oil bilot oil bilot oil bilot oil pilot o lot oil s pilot o Explo type o ation o pro o valve ponent	Pilot flow supply external, i return external supply internal, i return external supply internal, il return internal supply external, il return internal oscion protection f protection nA" in the explosion otection, page 7 e control, size 6 series 50 to 59 on dimensions)
have a connection from A to T and B to T with approx. 3 % of the relevant nominal cross-section.	L= P=	(50 10 59. 1				Char	acteris	stic curve form linear
	P=			Ra	ted flow				pages 11 to 15
	25 ¹⁾ =	or	50 =		or	100 =			with size 10
	125 =	or	200 =	-					with size 16
	220 =	or	350 =	=					with size 25
	500 =								with size 27
	400 = 1000 =	or	600 =	-					with size 32
	1000 =								with size 35

¹⁾ only available with E...; W... and V... spool variant and with characteristic curve form L (linear)

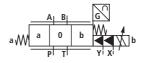

Included in the delivery:

Valve operating instructions with declaration of conformity in part III

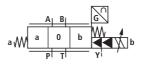

Symbols (simplified, detailed)

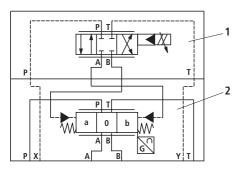
Type 4WRD...-5X/...XNET...

Pilot oil supply and pilot oil return internal



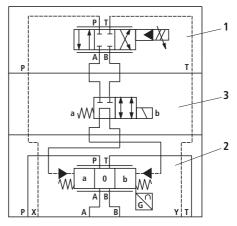
Type 4WRD ... –5X/...XNT... Pilot oil supply external, pilot oil return internal




Type 4WRD...-5X/...XN...

Pilot oil supply and pilot oil return external

Type 4WRD... –5X/...XNE ... Pilot oil supply internal, pilot oil return external



Example:

Type 4WRD...-5X/...XN... Pilot oil supply external, pilot oil return external

- 2 Main valve
- 3 Directional sandwich plate valve

Example:

Type 4WRD...-5X/...XN...WG152...

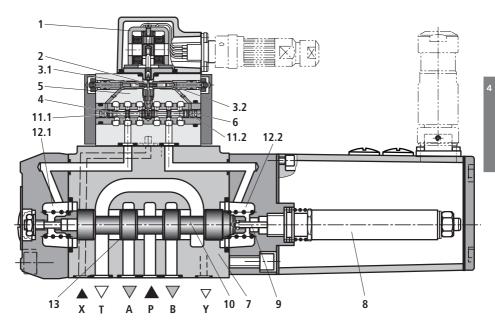
Directional sandwich plate valve for centering the main stage Pilot oil supply external, pilot oil return external

Function, section

Valves of type 4WRD...XN are 3-stage directional control valves.

They control the quantity and direction of a flow and are mainly used in control loops for different tasks.

It consists of the following assemblies:


- The 2-stage pilot control valve, consisting of the control motor (1), a hydraulic amplifier (5) designed as nozzle flapper plate valve and the spool socket unit (6) as flow amplifier stage for actuating the 3rd stage (7),
- the 3rd stage (7) for flow control,
- an inductive position transducer (8) the core (9) of which is attached to the spool (10) of the 3rd stage.

The position of the spool (10) is measured by an inductive position transducer (8). The signal linking of the valve control loop, the supply of the position measurement system and the actuation of the pilot control valve are carried out via external control electronics.

The voltage difference created by the command/actual value comparison is amplified in the control electronics and supplied to the 1st stage of the valve as control error. This signal deflects the flapper plate (2) between the two control nozzles (3.1, 3.2). This results in the creation of a pressure differential between the two control chambers (11.1, 11.2). The control spool (4) is displaced and releases a corresponding oil volume into the control chamber (12.1 or 12.2). The spool (10) with the core (9) of the inductive position transducer (8) attached to it is displaced until the actual value corresponds to the command value. In the compensated condition, the spool (10) is held in the position specified by the command value.

The spool stroke is proportional to the command value. For the control of the flow, a corresponding control opening results, depending on the position of the spool (10) to the control edges, to which the flow is proportional. The valve dynamics are optimized by means of the electric gain.

Type 4WRD 10...XN

Technical data

general							
Sizes		10	16	25	27	32	35
Installation position		Preferably horizontal					
Storage temperature range	°C	-20+80					
Ambient temperature range	°C	-20+60					
Weight	kg	6.8	8.9	15.2	15.5	35.2	71

hydraulic (measured with HLP 46, $\vartheta_{oil} = 40 \text{ °C } \pm 5 \text{ °C}$)

`	- 7 - 011		,					
Ports P, A, B	- Pilot oil gupply	bar	up to 315	up to 350	up to 350	up to 210	up to 350	up to 350
Port X	external ¹⁾	bar	250 (min. 25)			210 (min. 25)	250 (min. 25)	
Ports P, A, B	Pilot oil supply internal	bar	250 (min. 25)		210 (min. 25)	250 (min. 25)		
Dort T	Pilot oil return internal	bar	Pressure peaks < 100 permitted					
Port I	Pilot oil return external	bar	up to 315	up to 250	up to 250	up to 210	up to 250	up to 250
Port Y	Pilot oil return internal	bar	bar Pressure peaks < 100 permitte				nitted	
Rated flow $q_{Vnom} \pm 10$ % with $\Delta p = 10$ bar ²) $\Delta p = Valve$ pressure differential in bar			25 50 100	- 125 200	_ 220 350	 500	- 400 600	_ _ 1000
e main stage (max. a	dmissible)	l/min	170	460	870	1000	1600	3000
Pilot oil flow at port X or Y with stepped input signal from 0 to 100% (250 bar)			8.8	13.5	17.4	17.4	32.5	45.3
Hydraulic fluid			Mineral oil (HL, HLP) according to DIN 51524, Ignition temperature > 150 °C					
Hydraulic fluid temperature range			-20 +80; preferably +40 +50					
Viscosity range mm			20380					
nissible degree of cor fluid	ntamination of the							
ss class	Pilot control valve	9			Class 18	3/16/13 ³⁾		
according to ISO 4406 (c) Main valve			Class 20/18/15 3)					
Hysteresis (dither-optimized)			≤ 0.2					
Response sensitivity (dither-optimized) %			≤ 0.1					
Zero point calibration (ex works) 4) %			≤ 1					
upon change of:								
Hydraulic fluid temperature % / 20 k			≤ 0.7					
Operating pressure % / 100 k			≤ 0.5					
Return flow pressure 0 to 10 % of p			≤ 0.2					
	Port X Ports P, A, B Port T Port Y v q _{Vnom} ±10 % with Δ e pressure differentia e main stage (max. a w at port X or Y with al from 0 to 100% (25 fluid fluid temperature ran ange nissible degree of cor fluid s class o ISO 4406 (c) s (dither-optimized) s ensitivity (dither-optimized) s ensitivity (dither-optimized) s calibration (ex works upon change of: raulic fluid temperature rating pressure	Ports P, A, B Pilot oil supply external 1) Port X Pilot oil supply internal 1) Ports P, A, B Pilot oil supply internal Port T Pilot oil return external Port Y Pilot oil return internal Port Y Pilot oil return internal Port Y Pilot oil return internal v $q_{vnom} \pm 10 \%$ with $\Delta p = 10$ bar 2) e e main stage (max. admissible) w at port X or Y with stepped al from 0 to 100% (250 bar) fluid fluid fluid Pilot control valve o ISO 4406 (c) s class s class s o ISO 4406 (c) Pilot control valve Main valve is calibration (ex works) 4) upon change of: raulic fluid temperature range raulic fluid temperature rating pressure fluid temperature rating pressure	Ports P, A, B Pilot oil supply bar Port X Pilot oil supply bar Ports P, A, B Pilot oil supply bar Ports P, A, B Pilot oil supply bar Port T Pilot oil return bar Port T Pilot oil return bar Port Y Pilot oil return bar Port Y Pilot oil return bar e pressure differential in bar l/min e main stage (max. admissible) l/min fluid fluid temperature range ° C range mm²/s nissible degree of contamination of the fluid s class % o ISO 4406 (c) Pilot control valve % s calibration (ex works) ⁴ % % upon change of: raulic fluid temperature % / 20 K	Ports P, A, B Pilot oil supply bar up to 315 Port X Pilot oil supply bar 2 Ports P, A, B Pilot oil supply bar 2 Port T Pilot oil return internal bar 2 Port Y Pilot oil return external bar 2 Port Y Pilot oil return internal bar 0 Port Y Pilot oil return internal bar 25 Port Y Pilot oil return internal bar 25 e pressure differential in bar 1/min 170 25 e main stage (max. admissible) 1/min 170 8.8 fluid M M M M fluid M M M M fluid Pilot control valve 0 0 M s class class Pilot control valve 0 0 0 0 s clabration (ex works) 4 ¹ % % 0 0 % 0 upon change of: rauge pressure % / 20 K % 0 % 0	Ports P, A, B Port XPilot oil supply external 1)barup to 315up to 350Port XPilot oil supply internalbar250 (min. 2)Ports P, A, BPilot oil return internalbar250 (min. 2)Port TPilot oil return externalbarup to 315up to 250Port YPilot oil return internalbarup to 315up to 250Port YPilot oil return internalbarup to 315up to 250Port YPilot oil return internalbarPressv q _{vnom} ±10 % with $\Delta p = 10$ bar 2) e pressure differential in barl/min170460w at port X or Y with stepped al from 0 to 100% (250 bar)l/min170460wat port X or Y with stepped fluidl/min8.813.5fluidPilot control valve mm²/smm²/smineral oil (h lgnitfluidPilot control valve Main valve5-200s (dither-optimized)%%-200wation (ex works) 4)%%-200wation (ex works) 4)%wation (ex works) 4)%up on change of: raulic fluid temperature rating pressure% / 20 K-200 K	Ports P, A, B Port XPilot oil supply external 1)barup to 315up to 350up to 350Port XPilot oil supply internalbar250 (min. 25)Ports P, A, BPilot oil return internalbar250 (min. 25)Port TPilot oil return externalbarup to 315up to 250Port YPilot oil return internalbarup to 315up to 250Port YPilot oil return internalbarPressure peaksV q _{vnom} ±10 % with $\Delta p = 10$ bar 2) e pressure differential in bar1/min $\frac{25}{50}$ 100 $\frac{-}{220}$ e main stage (max. admissible)1/min170460870w at port X or Y with stepped al from 0 to 100% (250 bar)1/min8.813.517.4fluidMineral oil (HL, HLP) a Ignition temperIgnition temperfluidPilot control valveClass 18 o 1SO 4406 (c)200 ≤ 10 S class c (dither-optimized)% ≤ 10 ≤ 10 s calibration (ex works) $^{(4)}$ % ≤ 10 ≤ 10 up on change of: raujuc fluid temperature% / 20 K ≤ 10	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

¹⁾ For a perfect system behavior, we recommend an external pilot oil supply for pressures above 210 bar.

 $^{2)}$ $q_{\rm Vnom}$ = Rated flow (overall valve) in l/min with a V spool

For the selection of the filters, see www.boschrexroth.com/ filter.

⁴⁾ related to the pressure-signal characteristic curve (V spool)

520

³⁾ The cleanliness classes specified for the components must be adhered to in hydraulic systems. Effective filtration prevents faults and at the same time increases the service life of the components.

Technical data

electric		
Voltage type		Direct voltage
Type of signal		analog
Rated current per coil	mA	30
Resistance per coil	Ω	85
Inductivity (measured with 60 Hz and I_{Rated})	Н	0.25
Protection class of the valve according to EN 60529:1991+A1:2000		IP65 with mating connector correctly mounted and locked

521

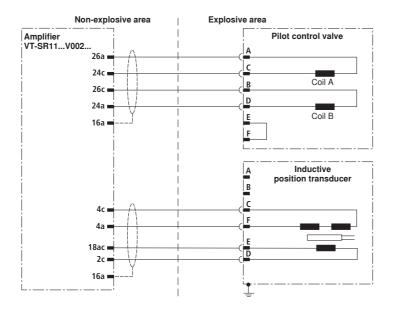
Information on explosion protection

Range of application as per directive 94/9/EC		II 3 G
Type of protection according to EN 60079-0:2006 / EN 60079-15:2005		Ex nA II T5X without directional sandwich plate valve Ex nA II T3X with directional sandwich plate valve
Maximum surface temperature 1)	°C	100 for version without directional sandwich plate valve (T5) 140 for version with directional sandwich plate valve (T3)
Ambient temperature range	°C	-20 +60
Hydraulic fluid temperature range	°C	-15 +80
Max. admissible operating voltage of the external control electronics	V	32 (DC)
Conditions for use in zone 2		The valve may only be used in explosive areas of device group II, category 3, with "low" risk of mechanical hazards according to the harmonized standards EN 60079-0:2006, section 26.4.2.
		If used in areas with a "high" risk of mechanical load accord- ing to these standards , the user must take measures with "low" risk of mechanical load.

1) Surface temperature > 50 °C, provide contact protection

External control electronics (separate order)

Amplifier in Eurocard format according to data sheet 30211	for size	Туре	Material no.		
	10	VT-SR11-1X/1/V002/4WRD10-5X	R901305504		
	16	VT-SR11-1X/1/V002/4WRD16-5X	R901305503		
	25/27	VT-SR11-1X/1/V002/4WRD25-5X	R901305502		
-	32	VT-SR11-1X/1/V002/4WRD32-5X	R901305501		
-	35	on request	-		

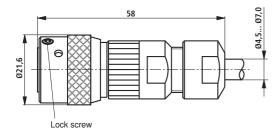

The coils of the valve may only be connected in parallel to the amplifier!

\triangle WARNING – Risk of explosion

- The external amplifier must be operated outside the explosive area!

Electrical connection

Pinout


Note:

With the VT-SR11...V002... amplifier card, the control logics differ from the standard: Positive command value results in flow from $P \rightarrow B$ and $A \rightarrow T$. Negative command value results in flow from $P \rightarrow A$ and $B \rightarrow T$.

Mating connector for the pilot control valve

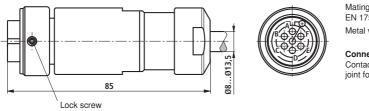
The pilot control valve may only be supplied through this mating connector.

Separate order, Material no. R901043330

Connection:

Contact sockets with connection cross-section for litz wires 0.4 \dots 0.75 mm² are supplied unpacked.

The connection of the litz wires to the contact sockets is possible by crimping or soldering.


A list of the required tools for the crimping connection is available in the assembly instructions which are supplied with the mating connector.

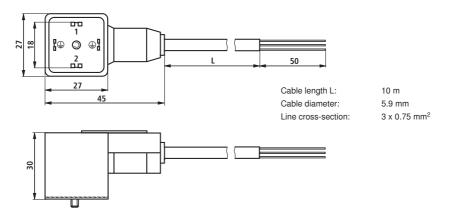
Electrical connection

Mating connector for the inductive position transducer

The position transducer may only be supplied through this mating connector.

Separate order, Material no. R901044595

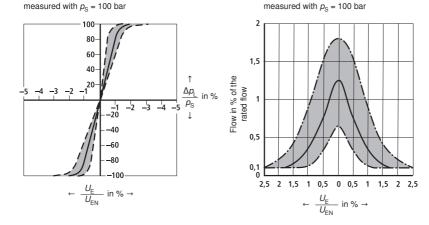
523

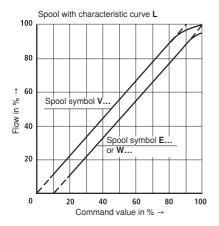

Mating connector according to EN 175201-804 Metal version

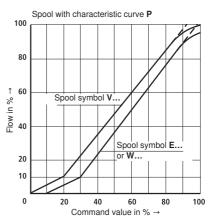
Connection:

Contact sockets with soldered joint for litz wires 0.5...1.5 mm²

Mating connector for directional sandwich plate valve WG152

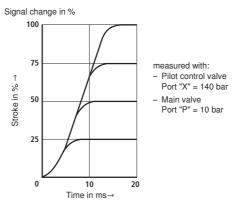

The directional sandwich plate valve may only be supplied through this mating connector. Separate order, Material no. **R901269455**

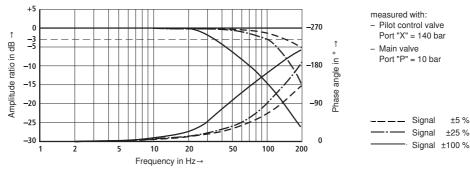

Characteristic curves (measured with v = 32 mm²/s and ϑ = 40 °C)


Pressure-signal characteristic curve (V spool)

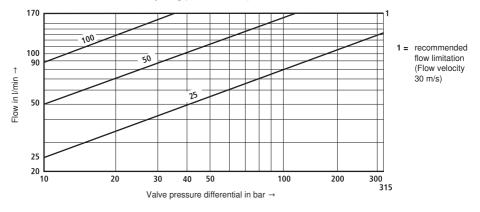
Zero flow of the main stage (V spool) without pilot control valve

Flow command value functions (with 10 bar valve pressure differential or 5 bar per control edge)

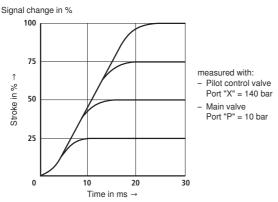



4

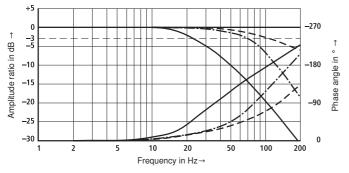
Characteristic curves size 10 (measured with HLP 46 with 40 °C ± 5 °C)


Transition function with stepped electric input signals

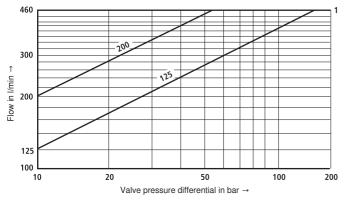
Frequency response characteristic curves



Flow load function with max. valve opening (tolerance ±10 %)



Characteristic curves size 16 (measured with HLP 46 with 40 °C \pm 5 °C)


Transition function with stepped electric input signals

Frequency response characteristic curves

Flow load function with max. valve opening (tolerance ± 10 %)

Signal ±100 %

Signal

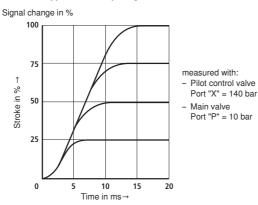
Signal

±5 %

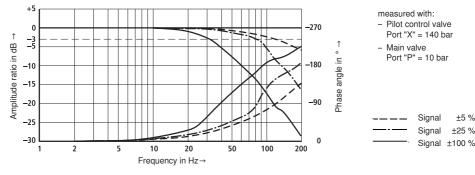
±25 %

measured with: - Pilot control valve

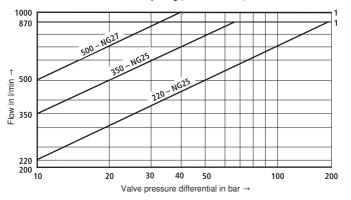
- Main valve


Port "X" = 140 bar

Port "P" = 10 bar

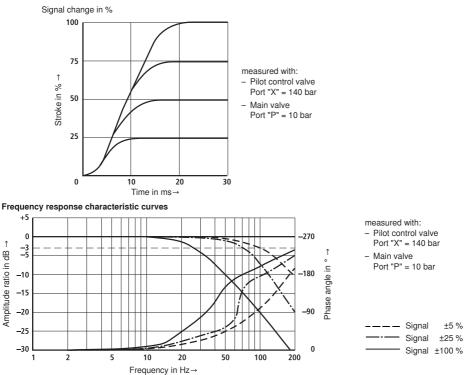

1 = recommended flow limitation (Flow velocity 30 m/s)

Characteristic curves size 25 and size 27 (measured with HLP 46 with 40 °C ± 5 °C)


Transition function with stepped electric input signals

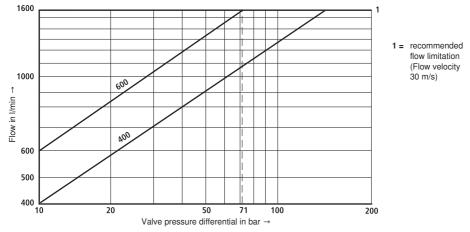
Frequency response characteristic curves

Flow load function with max. valve opening (tolerance ±10 %)


Δ

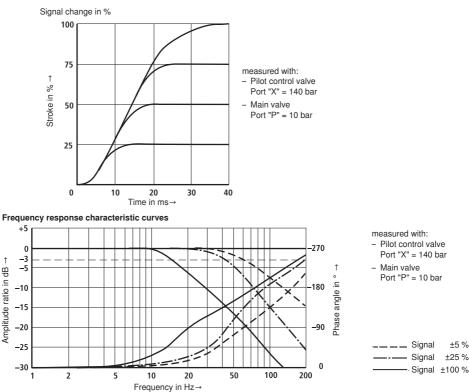
±5 %

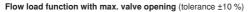
±25 %

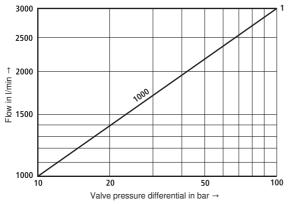

Characteristic curves size 32 (measured with HLP 46 with 40 °C ± 5 °C)

Transition function with stepped electric input signals

Flow load function with max. valve opening (tolerance ±10 %)


Amplitude ratio in dB →

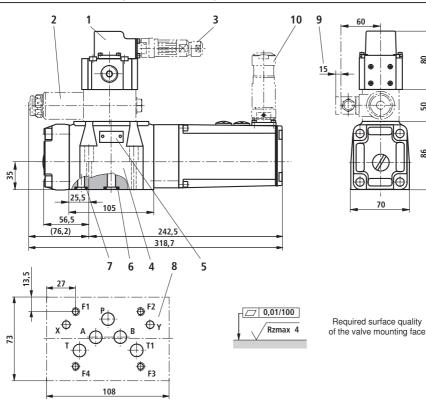



Amplitude ratio in dB →

Characteristic curves size 35 (measured with HLP 46 with 40 °C ± 5 °C)

Transition function with stepped electric input signals

1 = recommended flow limitation (Flow velocity 30 m/s)


Δ ±5 %

8

86

216 20

- 1 Pilot control valve
- 2 Directional sandwich plate valve (only contained with version " ... WG152")
- 3 Mating connector for pilot control valve, see page 8
- 4 Main valve
- 5 Name plate
- 6 Identical seal rings for ports P, A, B, T and T1
- 7 Identical seal rings for ports X and Y
- 8 Machined valve mounting face, porting pattern according to ISO 4401-05-05-0-05 (ports X, Y as required) deviating from the standard: - ports P, A, B, T and T1 Ø 11 mm
- 9 Space required for removing the mating connector
- 10 Mating connector for inductive position transducer, see page 9

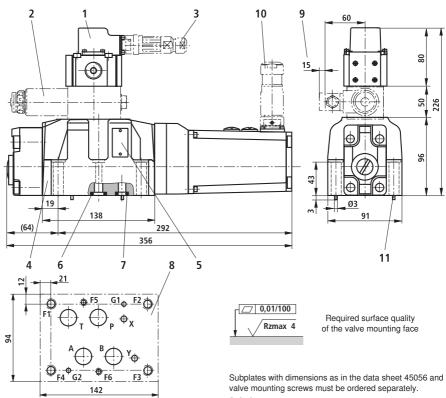
Subplates with dimensions as in the data sheet 45054 and valve mounting screws must be ordered separately.

Subplates

without ports X, Y with ports X, Y

G 534/01 FE/ZN (G3/4) G 535/01 FE/ZN (G3/4) G 536/01 FE/ZN (G1)

Valve mounting screws


For reasons of stability, exclusively use the following valve mounting screws:

4 hexagon socket head cap screws ISO 4762-M6x45-10.9-flZn-240h-L, (Friction coefficient 0.09 - 0.14 according to VDA 235-101), Material no. R913000258

Important:

Subplates are no components in the sense of directive 94/9/EC and can be used after the manufacturer of the overall system has assessed the risk of ignition.

The G...FE/ZN versions are free from aluminum and/or magnesium and galvanized.

- 1 Pilot control valve 2 Directional sandwich plate valve
- (only contained with version "...WG152")
- 3 Mating connector for pilot control valve, see page 8
- 4 Main valve
- 5 Name plate
- 6 Identical seal rings for ports P. A. B and T
- 7 Identical seal rings for ports X and Y
- 8 Machined valve mounting face, porting pattern according to ISO 4401-07-07-0-05 (ports X, Y as required)
 - deviating from the standard: - ports P, A, B and T Ø 20 mm
- 9 Space required for removing the mating connector
- 10 Mating connector for inductive position transducer, see page 9
- 11 Locating pins (2x)

Subplates

G 174/02 FE/ZN (M33 x 2)

G 172/01 FE/ZN (G3/4)

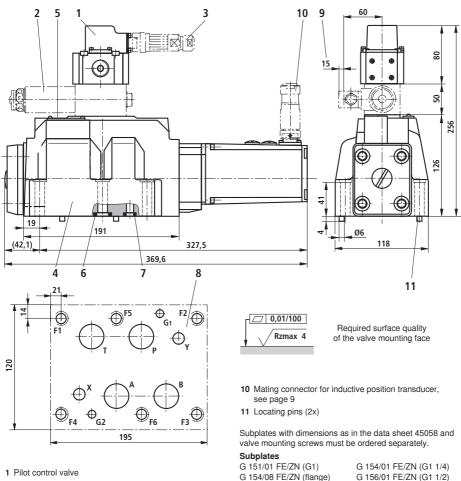
G 172/02 FE/ZN (M27 x 2) G 174/01 FE/ZN (G1)

Valve mounting screws

For reasons of stability, exclusively use the following valve mounting screws:

- 2 hexagon socket head cap screws ISO 4762-M6x60-10.9-flZn-240h-L, (Friction coefficient 0.09 - 0.14 according to VDA 235-101) material no. R913000115
- 4 hexagon socket head cap screws ISO 4762-M10x60-10.9-flZn-240h-L. (Friction coefficient 0.09 - 0.14 according to VDA 235-101) Material no. R913000116

Important:


Subplates are no components in the sense of directive 94/9/EC and can be used after the manufacturer of the overall system has assessed the risk of ignition.

The G...FE/ZN versions are free from aluminum and/or magnesium and galvanized.

4

Unit dimensions size 16 (dimensions in mm)

- 2 Directional sandwich plate valve (only contained with version "...WG152")
- 3 Mating connector for pilot control valve, see page 8
- 4 Main valve
- 5 Name plate
- 6 Identical seal rings for ports P, A, B and T
- 7 Identical seal rings for ports X and Y
- 8 Machined valve mounting face, porting pattern according to ISO 4401-08-08-0-05 (ports X, Y as required) deviating from the standard:
 - ports A, B and T Ø 25 mm
 - port P Ø 24 mm
- 9 Space required for removing the mating connector

Valve mounting screws

For reasons of stability, exclusively use the following valve mounting screws:

6 hexagon socket head cap screws ISO 4762-M12x60-10.9-flZn-240h-L. (Friction coefficient 0.09 - 0.14 according to VDA 235-101) Material no. R913000121

Important:

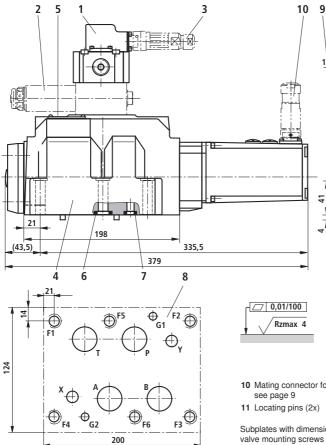
Subplates are no components in the sense of directive 94/9/EC and can be used after the manufacturer of the overall system has assessed the risk of ignition.

The G...FE/ZN versions are free from aluminum and/or magnesium and galvanized.

8

20

4


ሰ

11

270

60

15

533

of the valve mounting face

Required surface quality

Ø6

120

- 4
- 10 Mating connector for inductive position transducer,

Subplates with dimensions as in the data sheet 45058 and valve mounting screws must be ordered separately.

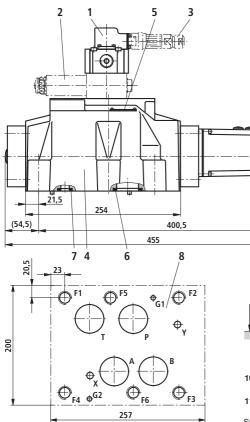
Subplates

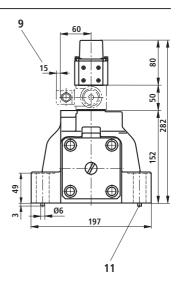
G 151/01 FE/ZN (G1)	G 154/01 FE/ZN (G1 1/4)
G 154/08 FE/ZN (flange)	G 156/01 FE/ZN (G1 1/2)

Valve mounting screws

For reasons of stability, exclusively use the following valve mounting screws:

6 hexagon socket head cap screws ISO 4762-M12x60-10.9-flZn-240h-L. (Friction coefficient 0.09 - 0.14 according to VDA 235-101) Material no. R913000121


Important:


Subplates are no components in the sense of directive 94/9/EC and can be used after the manufacturer of the overall system has assessed the risk of ignition.

The G...FE/ZN versions are free from aluminum and/or magnesium and galvanized.

- 1 Pilot control valve
- 2 Directional sandwich plate valve (only contained with version " ... WG152")
- 3 Mating connector for pilot control valve, see page 8
- 4 Main valve
- 5 Name plate
- 6 Identical seal rings for ports P, A, B and T
- 7 Identical seal rings for ports X and Y
- 8 Machined valve mounting face.
- porting pattern according to ISO 4401-08-08-0-05 (ports X, Y as required) deviating from the standard:
 - ports P, A, B and T Ø 32 mm
- 9 Space required for removing the mating connector

Unit dimensions size 32 (dimensions in mm)

Required surface quality of the valve mounting face

- 10 Mating connector for inductive position transducer, see page 9
- 11 Locating pin (2x)

Subplates with dimensions as in the data sheet 45060 and valve mounting screws must be ordered separately.

Subplates

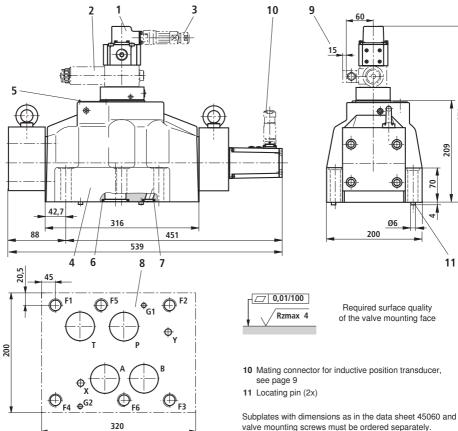
G 157/01 FE/ZN (G1 1/2) G 157/02 FE/ZN (M48 x 2) G 158/10 FE/ZN (flange)

Valve mounting screws

For reasons of stability, exclusively the following valve mounting screws may be used:

6 hexagon socket head cap screws ISO 4762-M20x80-10.9-12n-240h-L (Friction coefficient 0.09 - 0.14 according to VDA 235-101) Material no. R901035246

Important:


Subplates are no components in the sense of directive 94/9/EC and can be used after the manufacturer of the overall system has assessed the risk of ignition.

The G...FE/ZN versions are free from aluminum and/or magnesium and galvanized.

- 1 Pilot control valve
- 2 Directional sandwich plate valve (only contained with version "...WG152")
- 3 Mating connector for pilot control valve, see page 8
- 4 Main valve
- 5 Name plate
- 6 Identical seal rings for ports P, A, B and T
- 7 Identical seal rings for ports X and Y8 Machined valve mounting face.
- porting pattern according to ISO 4401-10-09-0-05 (ports X, Y as required) deviating from the standard: - ports P, A, B and T Ø 38 mm
- 9 Space required for removing the mating connector

534

10

- Subplates
 - G 157/01 FE/ZN (G1 1/2) G 157/02 FE/ZN (M48 x 2) G 158/10 FE/ZN (flange)

Valve mounting screws

For reasons of stability, exclusively the following valve mounting screws may be used: 6 hexagon socket head cap screws ISO 4762-M20x100-10.9-flZn-240h-L (Friction coefficient 0.09 - 0.14 according to VDA 235-101) Material no. R913000386

Important:

Subplates are no components in the sense of directive 94/9/EC and can be used after the manufacturer of the overall system has assessed the risk of ignition.

The G...FE/ZN versions are free from aluminum and/or magnesium and galvanized.

- 1 Pilot control valve
- 2 Directional sandwich plate valve (only contained with version "...WG152")
- 3 Mating connector for pilot control valve, see page 8
- 4 Main valve
- 5 Name plate
- 6 Identical seal rings for ports P, A, B and T
- 7 Identical seal rings for ports X and Y
- 8 Machined valve mounting face.
- porting pattern according to ISO 4401-10-09-0-05 (ports X, Y as required) deviating from the standard:
 - ports P, A, B and T Ø 50 mm
- 9 Space required for removing the mating connector

370

11

209 2 Ø6

Notes

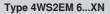
Bosch Rexroth AG Hydraulics Zum Eisengießer 1 97816 Lohr am Main, Germany Phone +49 (0) 93 52 / 18-0 Fax +49 (0) 93 52 / 18-23 58 documentation@boschrexroth.de www.boschrexroth.de

© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Electric Drives and Controls

Hydraulics

Pneumatics


Service

Rexroth Bosch Group

1/12

4/3 directional servo-valve with mechanical position feedback

RE 29564-XN-B2/04.10 Replaces: 11.06

Size 6 Component series 2X Maximum operating pressure 315 bar Maximum flow 48 l/min

ATEX units For explosive areas

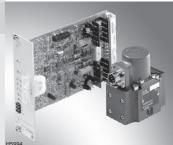
Part II Technical data sheet

Information on explosion protection:

Range of application in accordance with the Explosion Protection Directive 94/9/EC

II3G: Type of protection Ex nA II T5X according to EN 60079-0:2006 / EN 60079-15:2005

II3D: Type of protection Ex tD A22 IP 65 TX according to EN 61241-0:2006 / EN 61241-1:2004


What you need to know about these operating instructions

These operating instructions apply to the explosion-proof version of Rexroth valves and consist of the following three parts:

- Part I General information RE 07010-X-B1
- Part II Technical data sheet RE 29564-XN-B2
- Part III Product-specific instructions RE 29564-XN-B3

RE 29564-XN-B0

You can find further information on the correct handling of Rexroth hydraulic products in our publication "General product information on hydraulic products" RE 07008.

537

Table of contents

Content	Page
Features	2
Ordering code and scope of delivery	3
Symbol	3
Function, section	4
Technical data	5, 6
Information on explosion protection	6
External control electronics	6
Mating connector	7
Electrical connection	7
Characteristic curves	8, 9
Unit dimensions	10
Flushing plate	11

Features

- Directional servo-valve for proper use in explosive areas of zone 2 and 22
- Valve to control position, force, pressure or velocity
- 2-stage servo valve with mechanical feedback
- 1st stage as nozzle flapper plate amplifier
- For subplate mounting, porting pattern according to ISO 4401-03-02-0-05 subplates available in FE/ZN version (see page 10)
- Dry control motor, no contamination of the solenoid gap by the hydraulic fluid
- Can also be used as 3-way variant
- Wear-free spool feedback element
- Control: External control electronics in Eurocard format or in modular design (separate order), see page 6
- Valve is adjusted and tested
- Pressure chambers at the control sleeve with gap seals, therefore no wear of the seal ring
- Filter for 1st stage freely accessible from the outside

Ordering code and scope of delivery

	4WS2EI	N	6 -	2X/	/	В	11	1	XN	E	Т	ĸ	17	_	١	/
Electrically actua 2-stage servo va directional desig mechanical feed external control	lve in 4/3 n with back for															Seal material V = FKM seals, suitable for mineral oill (HL, HLP) according to DIN 51524
Size	cicculoriics	= 6												E	=	Spool overlap ⁵⁾ 0 0.5 % negative
Component series 20 to 29 = 2X (20 to 29: unchanged installation and													17) =) =	0 0.5 % positive 3 5 % positive	
connection dime	nsions)												K17	7 =		Electrical connection
Nominal flow 1)															~	via unit connector Order mating connector separately,
2 l/min 5 l/min					2										C	see page 7
10 l/min				= 1	-											Inlet pressure range 4)
15 l/min				= 1	15							210	_			10 to 210 bar
20 l/min				= 2								315				10 to 315 bar
25 l/min				= 2	25						ET :	=			h	nternal pilot oil supply and return 3)
Characteristic cu			nal fi	incti	00))	(N =						Explosion protection "Type nA"
				1					r deta	ils se	e ir	nforr	nation on the explosion protection, page 6			

Included in the delivery:

Valve operating instructions with declaration of conformity in part III

1) Rated flow

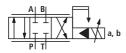
The rated flow refers to a 100 % command value signal at 70 bar valve pressure differential (35 bar per control edge). The valve pressure differential must be regarded as reference. Other values result in the flow being changed. A possible rated flow tolerance of ± 10 % must be taken into account (see flow signal function page 8).

2) External control electronics

The actuating signal must be formed by a current controlled output step. Control electronics (servo amplifier) see page 6.

3) Pilot oil

The valve is only delivered with internal control oil supply and return.


4) Inlet pressure range

Care should be taken that the system pressure is as constant as possible.

With regard to the dynamics, the frequency response dependency must be observed within the admissible pressure range of 10 ... 210 bar and/or 10 ... 315 bar.

5) Spool overlap

The spool overlap is specified in % of the control spool stroke.

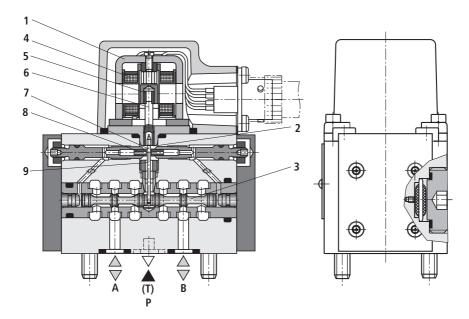
Function, section

4WS2EM 6-2X/...XN

Valves of this type are electrically actuated, 2-stage directional servo-valves with porting pattern according to ISO 4401-03-02-0-05. They are mainly used to control position, force, pressure or velocity.

These valves are made of an electromechanical converter (torque motor) (1), a hydraulic amplifier (principle: nozzle flapper plate) (2) and a control spool (3) in a sleeve (2^{nd} stage) which is connected with the torque motor via a mechanic feedback.

An electric input signal at the coils (4) of the torque motor generates a force by means of a permanent magnet which acts on the armature (5), and in connection with a torque tube (6) results in a torque. This causes the flapper plate (7) which is connected to the torque tube (6) via a pin to move from the central position between the two control nozzles (8), and a pressure differential is created across the front faces of the control spool (3). The pressure differential results in the spool changing its position, which results in the pressure port being connected to one actuator port and, at the same time, the other actuator port being connected to the return flow port.


The control spool is connected to the flapper plate or the torque motor by means of a bending spring (mechanical feedback) (9). The position of the spool is changed until the feedback torque across the bending spring and the electro-magnetic torque of the torque motor are balanced and the pressure differential at the nozzle flapper plate system becomes zero.

The stroke of the control spool and consequently the flow of the servo valve are controlled in proportion to the electrical input signal. It must be noted that the flow depends on the valve pressure drop.

External control electronics (separate order)

External control electronics (servo amplifier) serve the actuation of the valve, amplifying an analog input signal (command value) so that with the output signal, the servo valve is actuated in a flow-controlled form.

Type 4WS2EM 6-2X/...XN

Hydraulics | Bosch Rexroth AG 5/12

Technical data

general							
Porting pattern		ISO 4401-03-02-0-05					
Installation position			Any (Ensure that upon system start-up, the pilot control is supplied with enough pressure (≥10 bar)!)				
Surface protection	Valve body, cover, filter screw		Nitro-carburated				
	Сар		Anodized				
Storage temperature	range	°C	-20 +80				
Ambient temperature	range	-30 +80					
Weight		kg	1.1				

hydraulic (measured with HLP 32, v_{oil} = 40 °C ± 5 °C)

Operating pressure	Ports P, A, B	bar	10 210 or 10 315				
Return flow pressure	Port T	bar	Pressure peaks < 100, static < 10				
Hydraulic fluid			Mineral oil (HL, HLP) according to DIN 51524, ignition temperature > 150 °C				
Hydraulic fluid temperatu	ire range	°C	-15 +80; preferably +40 +50				
Viscosity range		mm²/s	15 380; preferably 30 45				
	gree of contamination of the according to ISO 4406 (c)		Class 18/16/13 ¹⁾				
Zero flow $q_{\rm V,L}^{2)}$ with spo measured without dither		l/min	$\sqrt{\rho_{\rm P}/70 \text{ bar}} \cdot (0.4 \text{ l/min} + 0.02 \cdot q_{\rm V rated})^{-3);4)}$				
Rated flows $q_{v rated}^{3)}$, tole with valve pressure difference of the second sec		l/min	2; 5; 10; 15; 20; 25				
Max. control spool stroke mechanical end position related to nominal stroke	(in case of error)	%	120 170				
Feedback system			Mechanical				
Hysteresis (dither-optimiz	zed)	%	≤ 1.5				
Range of inversion (dithe	er-optimized)	%	≤ 0.2				
Response sensitivity (dit	her-optimized)	%	≤ 0.2				
Pressure gain with 1 % s (from the hydraulic zero		% of $p_{\rm P}{}^{4)}$	≥ 50				
Zero adjustment flow over entire operating pressure		%	\leq 3, long-term \leq 5				
Zero drift upon change o	f:						
Hydraulic fluid temp	perature	%/20 °C	≤ 1				
Ambient temperatu	re	%/20 °C	≤ 1				
Operating pressure	80 120 % of p _P 4)	% / 100 bar	≤ 2				
Return flow pressur	re 0 10 % of p _P 4)	% / bar	≤ 1				

1) The cleanliness classes specified for the components must be adhered to in hydraulic systems. Effective filtration prevents faults and at the same time increases the service life of the components.

²⁾ $q_{\rm V,L}$ = Zero flow in I/min

³⁾ $q_{v rated}$ = Rated flow in l/min

⁴⁾ $p_{\rm P}$ = Operating pressure in bar

For the selection of filters, see technical data sheets RE 50070, RE 50076 and RE 50081.

541

Technical data

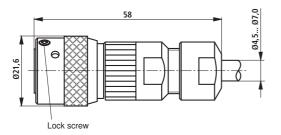
electrical							
Protection class according	to EN 60529:1991+A1:2000	IP 65 with mating connector correctly mounted and locked					
Type of signal			Analog				
Rated current per coil mA			30				
Resistance per coil Ω			85				
Inductivity with 60 Hz	Connection in series	Н	1.0				
and 100 % rated current	Connection in parallel	Н	0.25				
In case of actuating using r	non-Rexroth amplifiers, we re	ecomm	end a superimposed dither signal				

Information on explosion protection

Range of application as per directive 94/9/EC		II 3 G; II 3 D
Type of protection according to EN 60079-0:2006 / EN 60079-15:2005		Ex nA II T5X
Type of protection according to EN 61241-0:2006 / EN 61241-1:2004		Ex tD A22 IP 65 TX
Maximum surface temperature	°C	100
Ambient temperature range	°C	-30 +80
Hydraulic fluid temperature range	°C	-15 +80
Max. admissible operating voltage of the servo amplifier	V	32 (DC)
Conditions for use in zone 2 and 22		The valve may only be used in explosive zones of device group II, category 3, with "low" risk of mechanical hazards according to the harmonized standards EN 60079-0:2006, section 26.4.2 and EN 61241-0:2006, section 23.4.2.1.
		If used in zones with a "high" risk of mechanical load accord- ing to these standards , the user must take measures with a "low" risk of mechanical load.

External control electronics

Servo amplifier (separate order)	Eurocard format	Analog	Type VT-SR2-1X/.60 according to technical data sheet RE 29980					
	Modular design	Analog	Type VT 11021 according to technical data sheet RE 29743					
The coils of the valve may only be connected in parallel to these amplifiers!								

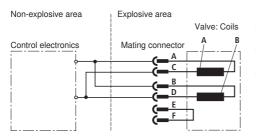

▲ WARNING – Risk of explosion

- The external servo amplifier must be operated outside the explosive area!

Mating connector

The servo valve may only be supplied through this mating connector.

Separate order, Material no. R901043330



Connection:

Contact bushing with a connection cross-section for litz wires of 0.4 ... 0.75 mm² are supplied unpacked. The connection of the litz wires to the contact bushings is possible by crimping or soldering.

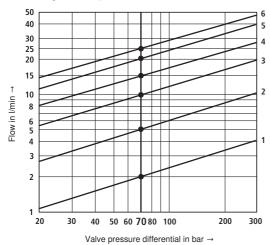
A list of the required tools for crimping connection is available in the assembly instructions which are supplied with the mating connector.

Electrical connection (example of parallel connection)

The coils are connected in parallel in the mating connector or at the amplifier (see figure).

In case of serial connection, contact ${\sf B}$ and ${\sf C}$ must be connected.

The E-F bridge can be used for the electrical determination of the correct connection of the plug-in connector and/or for the identification of cable break.

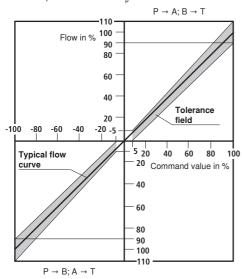

The electrical actuation from A (+) to D (–) causes flow direction from P \rightarrow A and B \rightarrow T. The reverse electrical actuation causes flow direction from P \rightarrow B and A \rightarrow T.

Characteristic curves (measured with HLP 32, ϑ_{oil} = 40 °C ± 5 °C)

Flow/load function (tolerance ± 10 %) with 100 % command value signal

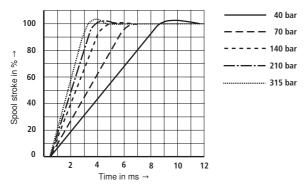
Important:

Observe flow values in the max. command value range (see tolerance field of the flow/signal function)

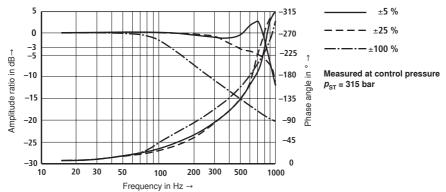


Ordering code	Rated flow	Curve		
2	2 l/min	1		
5	5 l/min	2		
10	10 l/min	3		
15	15 l/min	4		
20	20 l/min	5		
25	25 l/min	6		

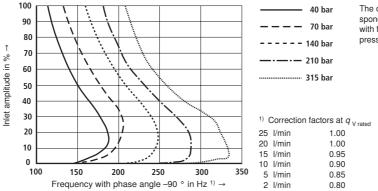
 $\Delta_{p} = Valve \text{ pressure differential} \\ (inlet pressure p_{p} \text{ minus load} \\ pressure p_{L} \text{ minus return flow} \\ pressure p_{T})$


Tolerance field of flow/signal function

at constant valve pressure difference Δ_n



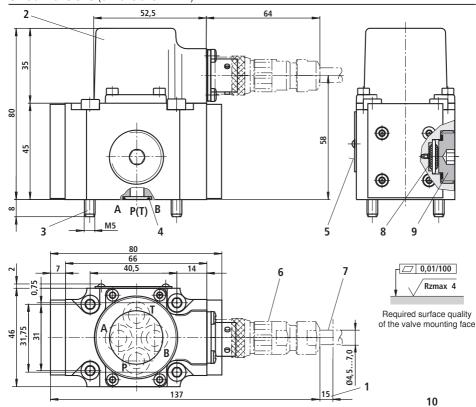
Characteristic curves (measured with HLP 32, $\vartheta_{oil} = 40 \text{ °C} \pm 5 \text{ °C}$)


Transition function with pressure rating 315 bar, step response without flow

Frequency response with pressure rating 315 bar, stroke frequency without flow

The output signal corresponds to the spool stroke with flow and without load pressure

545


80

F2.

19

A

Unit dimensions (dimensions in mm)

- 1 Required space for the removal of mating connectors, additionally observe the bending radius of the connecting line
- 2 Cap
- 3 Valve mounting screws For reasons of stability, exclusively the following valve mounting screws may be used: A basepa poster based can screwe.

4 hexagon socket head cap screws ISO 4762-M5x50-10.9-fiZn-240h-L (Friction coefficient 0.09 – 0.14 according to VDA 235-101) (included in the delivery)

- 4 Identical seal rings for ports P, A, B, T
- 5 Nameplate
- 6 Mating connector (order separately, see page 7)
- 7 Connection line, further information on page 7
- 8 Filter

- 9 Plug screw
- 10 Machined valve mounting face, porting pattern according to ISO 4401-03-02-0-05
 - Deviating from the standard: - Locating pin not available (G)

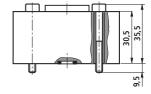
Subplates

G341/01 FE/ZN (G1/4) G342/01 FE/ZN (G3/8) G502/01 FE/ZN (G1/2) with dimensions as in the technical data sheet RE 45052 (must be ordered separately)

Important:

Subplates are no components in the sense of directive 94/9/EC and can be used after the manufacturer of the overall system has assessed the risk of ignition. The G...FE/ZN versions are free from aluminum and/or magnesium and galvanized.

47


Flushing plate with porting pattern according to ISO 4401-03-02-0-05 (dimensions in mm)

Symbol

Р	ΑΤ ΒΤ	т

Ordering code and more information

- Material number: R900936049
- Weight: 0.6 kg
- Identical seal rings for ports P, A, B and T
- Mounting screws
 For reasons of stability, exclusively the following mounting screws may be used:
 4 hexagon socket head cap screws
 ISO 4762-M5x40-10.9-fIZn-240h-L
 (Friction coefficient 0.09 - 0.14 according to VDA 235-101)
 (included in the delivery)

Important

Before the assembly, observe the information in the Productspecific instructions RE 29564-XN-B3, section 3.2. Importants

Bosch Rexroth AG Hydraulics Zum Eisengießer 1 97816 Lohr am Main, Germany Phone +49 (0) 93 52 / 18-0 Fax +49 (0) 93 52 / 18-23 58 documentation@boschrexroth.de

www.boschrexroth.de

© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Electric Drives and Controls

Hydraulics

549

Pneumatics

Service

Rexroth Bosch Group

RE 29564-XN-100-B2/05.10 Replaces: 02.09

1/12

4/3 directional servo-valve with mechanical position feedback

Type 4WS2EM 6...XN...-100

Size 6 Component series 2X Maximum operating pressure 315 bar Maximum flow 48 l/min

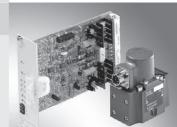
ATEX units For explosive areas

Part II Technical data sheet

Information on explosion protection:

Range of application in accordance with the Explosion Protection Directive 94/9/EC

- II3G: Type of protection Ex nA II T5X according to EN 60079-0:2006 / EN 60079-15:2005
- II3D: Type of protection Ex tD A22 IP 65 TX according to EN 61241-0:2006 / EN 61241-1:2004


What you need to know about these operating instructions

These operating instructions apply to the explosion-proof version of Rexroth valves and consist of the following three parts:

- Part I General information RE 07010-X-B1
- Part II Technical data sheet RE 29564-XN-100-B2
- Part III Product-specific instructions RE 29564-XN-100-B3

RE 29564-XN-100-B0

You can find further information on the correct handling of Rexroth hydraulic products in our publication "General product information on hydraulic products" RE 07008.

Table of contents

Content	Page
Features	2
Ordering code and scope of delivery	3
Symbol	3
Function, section	4
Technical data	5, 6
Information on explosion protection	6
External control electronics	6
Mating connector	7
Electrical connection	7
Characteristic curves	8, 9
Unit dimensions	10
Flushing plate	11

Features

- Directional servo-valve for proper use in explosive areas of zone 2 and 22
- Valve to control position, force, pressure or velocity
- 2-stage servo valve with mechanical feedback
- 1st stage as nozzle flapper plate amplifier
- For subplate mounting, porting pattern according to ISO 4401-03-02-0-05 subplates available in FE/ZN version (see page 10)
- Dry control motor, no contamination of the solenoid gaps by the hydraulic fluid
- Can also be used as 3-way version
- Wear-free spool feedback element
- Control: External control electronics in Eurocard format or in modular design (separate order), see page 6
- Valve is adjusted and tested
- Pressure chambers at the control sleeve with gap seal, therefore no wear of the seal ring
- Filter for 1st stage freely accessible from the outside

Ordering code and scope of delivery

	4WS2E		6 <mark>-</mark> 2	x/	В	11	XN	ET	·	K1	7		V -1	00				
Electrically actua 2-stage servo va 4/3 directional d mechanical feed external control Size 6	alve in esign with Iback for	= 6											V = suita		ior mi	iner	Seal I FK al oil (H Ig to DI	umber ⁶⁾ material M seals, HL, HLP) N 51524
Component series 20 to 29 = 2X (20 to 29: unchanged installation and connection dimensions)											E = D = C =) 0	0.5 % . 0.5 %	verlap ⁵⁾ negative positive positive	
Rated flow ¹⁾ 2 I/min 5 I/min 10 I/min				= 2 = 5 = 10						1	K17		Order r	natir			via co ctor se	nection nnector parately, e page 7
15 l/min 20 l/min 25 l/min Characteristic ci	urves, see pa	ige 8		= 15 = 20 = 25						Inlet pressure ra 210 = 10 to 21				210 bar 315 bar				
(observe toleran signal function)	ce field of flo	Ŵ					,	(N =				ET =		<u> </u>		<u> </u>		type nA"
Valve for extern coil no. 11 (30 m					= 1	1		For details see information on the explosion protection, pa					<i>²</i>					

Included in the delivery:

Valve operating instructions with declaration of conformity in part III

1) Rated flow

The rated flow refers to a 100% command value signal at 70 bar valve pressure differential (35 bar per control edge). The valve pressure differential must be regarded as reference. Other values result in the flow being changed. A possible rated flow tolerance of $\pm 10\%$ must be taken into account (see flow signal function page 8).

2) External control electronics

The actuating signal must be formed by a current controlled output stage. Control electronics (servo amplifier) see page 6.

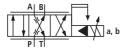
3) Pilot oil

The valve is only delivered with internal pilot oil supply and return.

4) Inlet pressure range

Care should be taken that the system pressure is as constant as possible.

With regard to the dynamics, the frequency response dependency must be observed within the admissible pressure range of 10 ... 210 bar and/or 10 ...315 bar.


5) Spool overlap

The spool overlap is specified in % of the control spool stroke.

6) Special number "100"

Without actuation (de-energized condition), channels P \to B and A \to T are open for 10% of the nominal quantity.

Symbol

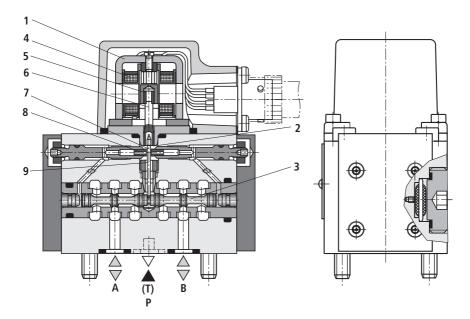
Function, section

4WS2EM 6-2X/...XN...-100

Valves of this type are electrically actuated, 2-stage directional servo-valves with porting pattern according to ISO 4401-03-02-0-05. They are mainly used to control position, force, pressure or velocity.

These valves are made of an electro-mechanical converter (torque motor) (1), a hydraulic amplifier (principle: nozzle flapper plate) (2) and a control spool (3) in a bushing (2nd stage) which is connected with the torque motor via a mechanical feedback.

An electrical input signal at the coils (4) of the torque motor generates a force by means of a permanent magnet which acts on the armature (5), and in connection with a torque tube (6) results in a torque. This causes the flapper plate (7) which is connected to the torque tube (6) via a pin to move from the central position between the two control nozzles (8), and a pressure differential is created across the front faces of the control spool (3). The pressure differential results in the spool changing its position, which results in the pressure port being connected to one actuator port and, at the same time, the other actuator port being connected to the return flow port.


The control spool is connected to the flapper plate or the torque motor by means of a bending spring (mechanical feedback) (9). The position of the spool is changed until the feedback torque across the bending spring and the electro-magnetic torque of the torque motor are balanced and the pressure differential at the nozzle flapper plate system becomes zero.

The stroke of the control spool and consequently the flow of the servo valve are controlled in proportion to the electrical input signal. It must be noted that the flow depends on the valve pressure drop.

External control electronics (separate order)

External control electronics (servo amplifier) serve the actuation of the valve, amplifying an analog input signal (command value) so that with the output signal, the servo valve is actuated in a flow-controlled form.

Type 4WS2EM 6-2X/...XN...-100

Hydraulics | Bosch Rexroth AG 5/12

Technical data

general								
Porting pattern		ISO 4401-03-02-0-05						
Installation position		Any (Ensure that upon system start-up, the valve is supplied with enough pressure (≥10 bar)!)						
Surface protection	Valve body, cover, filter screw		Nitro-carburated					
	Сар		Anodized					
Storage temperature	range	°C	-20 +80					
Ambient temperature	range	-30 +80						
Weight		1.1						

hydraulic (measured with HLP 32, $\vartheta_{oil} = 40^{\circ}C \pm 5^{\circ}C$)

Operating pressure Ports P, A, B b	ar 10 210 or 10 315
Return flow pressure Port T b	ar Pressure peaks < 100, static < 10
Hydraulic fluid	Mineral oil (HL, HLP) according to DIN 51524, ignition temperature > 150 °C
Hydraulic fluid temperature range	C -15 +80; preferably +40 +50
Viscosity range mm ²	/s 15 380; preferably 30 45
Maximum admissible degree of contamination of the hydrau lic fluid cleanliness class according to ISO 4406 (c)	- Class 18/16/13 ¹⁾
Zero flow $q_{\rm V,L}^{\ 2}$ with spool overlap E l/m measured without dither signal	in $\sqrt{p_{\rm P}/70 \rm bar} \cdot (0.4 \rm l/min + 0.02 \cdot q_{\rm V rated})^{(3);4)}$
Rated flows $q_{v rated}^{3)}$, tolerance ±10 % l/m with valve pressure differential Δ_p = 70 bar	in 2; 5; 10; 15; 20; 25
Max. control spool stroke possible with mechanical end position (in case of error) related to nominal stroke	% 120 170
Feedback system	Mechanical
Hysteresis (dither-optimized)	% ≤ 1.5
Range of inversion (dither-optimized)	% ≤ 0.2
Response sensitivity (dither-optimized)	% ≤ 0.2
Pressure gain with 1 % spool stroke change % of $p_{\rm F}$ (from the hydraulic zero point)	⁴⁾ ≥ 50
Zero adjustment flow over the entire operating pressure range	% ≤ 3, long-term ≤ 5
Zero shift upon change of:	
Hydraulic fluid temperature % / 20	°C ≤ 1
Ambient temperature % / 20	°C ≤ 1
Operating pressure 80 120 % of $p_{\rm P}^{\rm (4)}$ % / 100 k	ar ≤ 2
Return flow pressure 0 10 % of $p_{\rm P}^{\rm 4}$ % / b	ar ≤ 1

¹⁾ The cleanliness classes specified for the components must be adhered to in hydraulic systems. Effective filtration prevents faults and at the same time increases the service life of the components. For the selection of the filters see www.boschrexroth.com/filter ²⁾ $q_{\rm V,L}$ = Zero flow in l/min

³⁾ $q_{v \text{ rated}}$ = Rated flow in I/min

⁴⁾ $p_{\rm P}$ = Operating pressure in bar

Technical data

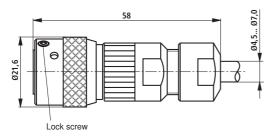
electric			
Protection class according	to EN 60529:1991+A1:2000	IP 65 with mating connector correctly mounted and locked	
Type of signal			analog
Rated current per coil		30	
Resistance per coil		85	
Inductivity with 60 Hz	Connection in series	Н	1.0
and 100% rated current	Connection in parallel	0.25	
In case of actuation using	non-Rexroth amplifiers, we r	ecomme	end a superimposed dither signal

Information on explosion protection

Range of application as per directive 94/9/EC		II 3 G; II 3 D
Type of protection according to EN 60079-0:2006 / EN 60079-15:2005		Ex nA II T5X
Type of protection according to EN 61241-0:2006 / EN 61241-1:2004		Ex tD A22 IP 65 TX
Maximum surface temperature	°C	100
Ambient temperature range	°C	-30 +80
Hydraulic fluid temperature range	°C	-15 +80
Max. admissible operating voltage of the servo amplifier	V	32 (DC)
Conditions for use in zone 2 and 22		The valve may only be used in explosive zones of device group II, category 3, with "low" risk of mechanical hazards according to the harmonized standards EN 60079-0:2006, section 26.4.2 and EN 61241-0:2006, section 23.4.2.1.
		If used in zones with a "high" risk of mechanical load accord- ing to these standards , the user must take measures with a "low" risk of mechanical load.

External control electronics

Servo amplifier (separate order)	Eurocard format	Analog	Type VT-SR2-1X/.60 according to technical data sheet RE 29980				
	Modular design	Analog	Type VT 11021 according to technical data sheet RE 29743				
The coils of the valve may only be connected to these amplifiers in parallel!							

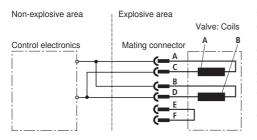

A WARNING – Risk of explosion

- The external servo amplifier must be operated outside the explosive area!

Hydraulics | Bosch Rexroth AG 7/12

Mating connector

The servo valve may only be supplied through this mating connector. Separate order, material no. **R901043330**


Connection:

555

Contact bushings with connection cross-section for litz wires 0.4 ... 0.75 mm² are supplied unpacked. The connection of the litz wires to the contact bushings is possible by crimping or soldering.

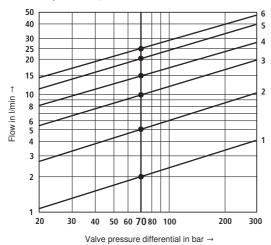
A list of the required tools for crimping connection is available in the assembly instructions which are supplied with the mating connector.

Electrical connection (example of parallel connection)

The coils are connected in parallel in the mating connector or at the amplifier (see figure).

In case of serial connection, contacts B and C must be connected.

The E-F bridge can be used for the electrical determination of the correct connection of the plug-in connector and/or for the identification of cable break.

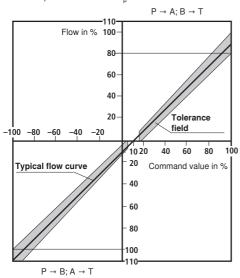

The electrical actuation from A (+) to D (-) causes flow direction from P \rightarrow A and B \rightarrow T. The reverse electrical actuation causes flow direction from P \rightarrow B and A \rightarrow T.

Characteristic curves (measured with HLP 32, $\vartheta_{oil} = 40 \degree C \pm 5 \degree C$)

Flow/load function (tolerance ±10 %) with 100 % command value signal

Note:

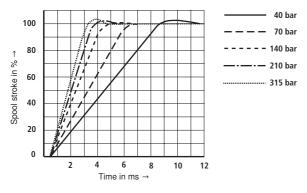
Observe flow values in the max. command value range (see tolerance field of the flow/signal function)

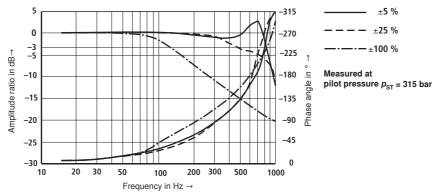


Ordering code	Rated flow	Curve
2	2 l/min	1
5	5 l/min	2
10	10 l/min	3
15	15 l/min	4
20	20 l/min	5
25	25 l/min	6

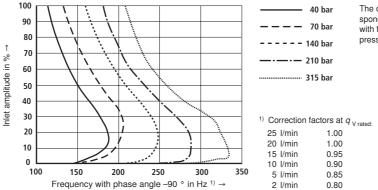
 $\begin{array}{l} \Delta_{\rm p} = \mbox{ Valve pressure differential} \\ (inlet pressure \mbox{ } p_{\rm p} \\ minus \mbox{ load pressure } \mbox{ } p_{\rm L} \\ minus \mbox{ return flow pressure } \mbox{ } p_{\rm r}) \end{array}$

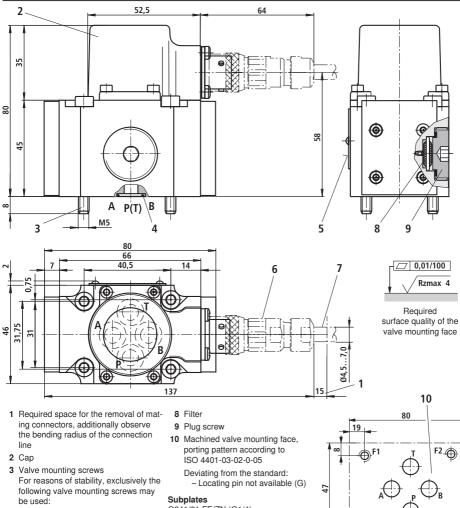
Tolerance field of flow/signal function


at constant valve pressure difference Δ_n


Characteristic curves (measured with HLP 32, $\vartheta_{oil} = 40 \,^\circ\text{C} \pm 5 \,^\circ\text{C}$)

557

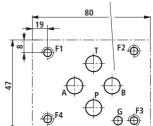

Transition function with pressure rating 315 bar, step response without flow


Frequency response with pressure rating 315 bar, stroke frequency without flow

The output signal corresponds to the spool stroke with flow and without load pressure Unit dimensions (dimensions in mm)

4 hexagon socket head cap screws ISO 4762-M5x50-10.9-flZn-240h-L (Friction coefficient 0.09 - 0.14 according to VDA 235-101) (included in the delivery)

- 4 Identical seal rings for ports P, A, B and T
- 5 Name plate
- 6 Mating connector (order separately, see page 7)
- 7 Connection line, further information on page 7

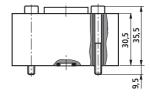

G341/01 FE/ZN (G1/4) G342/01 FE/ZN (G3/8) G502/01 FE/ZN (G1/2)

with dimensions as in the technical data sheet RE 45052 (must be ordered separately)

Note:

Subplates are no components in the sense of directive 94/9/EC and can be used after the manufacturer of the overall system has assessed the risk of ignition.

The G...FE/ZN versions are free from aluminum and/or magnesium and galvanized.


Flushing plate with porting pattern according to ISO 4401-03-02-0-05 (dimensions in mm)

Symbol

Р AT BT т

Ordering code and more information

- Material number: R900936049
- Weight: 0.6 kg
- Identical seal rings for ports P, A, B and T
- Mounting screws
 For reasons of stability, exclusively the following mounting screws may be used:
 4 hexagon socket head cap screws
 ISO 4762-M5x40-10.9-fIZn-240h-L
 (Friction coefficient 0.09 - 0.14 according to VDA 235-101) (included in the delivery)

Note

Before the assembly, observe the information in the product-specific instructions RE 29564-XN-100-B3, section 3.2.

Notes

Bosch Rexroth AG Hydraulics Zum Eisengießer 1 97816 Lohr am Main, Germany Phone +49 (0) 93 52 / 18-0 Fax +49 (0) 93 52 / 18-23 58 documentation@boschrexroth.de © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Electric Drives and Controls

Hydraulics

561

Pneumatics

Service

Rexroth Bosch Group

RE 29564-XN-102-B2/05.10 Replaces: 02.09

1/12

4/3 directional servo-valve with mechanical position feedback

Type 4WS2EM 6...XN...-102

Size 6 Component series 2X Maximum operating pressure 315 bar Maximum flow 48 l/min

ATEX units For explosive areas

Part II Technical data sheet

Information on explosion protection:

Range of application in accordance with the Explosion Protection Directive 94/9/EC

- II3G: Type of protection Ex nA II T5X according to EN 60079-0:2006 / EN 60079-15:2005
- II3D: Type of protection Ex tD A22 IP 65 TX according to EN 61241-0:2006 / EN 61241-1:2004

What you need to know about these operating instructions

These operating instructions apply to the explosion-proof version of Rexroth valves and consist of the following three parts:

- Part I General information RE 07010-X-B1
- Part II Technical data sheet RE 29564-XN-102-B2
- Part III Product-specific instructions RE 29564-XN-102-B3

RE 29564-XN-102-B0

You can find further information on the correct handling of Rexroth hydraulic products in our publication "General product information on hydraulic products" RE 07008.

Table of contents

Content	Page
Features	2
Ordering code and scope of delivery	3
Symbol	3
Function, section	4
Technical data	5, 6
Information on explosion protection	6
External control electronics	6
Mating connector	7
Electrical connection	7
Characteristic curves	8, 9
Unit dimensions	10
Flushing plate	11

Features

- Directional servo-valve for proper use in explosive areas of zone 2 and 22
- Valve to control position, force, pressure or velocity
- 2-stage servo valve with mechanical feedback
- 1st stage as nozzle flapper plate amplifier
- For subplate mounting, porting pattern according to ISO 4401-03-02-0-05 subplates available in FE/ZN version (see page 10)
- Dry control motor, no contamination of the solenoid gaps by the hydraulic fluid
- Can also be used as 3-way version
- Wear-free spool feedback element
- Control: External control electronics in Eurocard format or in modular design (separate order), see page 6
- Valve is adjusted and tested
- Pressure chambers at the control sleeve with gap seal, therefore no wear of the seal ring
- Filter for 1st stage freely accessible from the outside

Ordering code and scope of delivery

	4WS2EN	/ (δ <mark>-</mark> 2	x /	В	11	XN	E	Т	K	17		V -10	02				
Electrically actu 2-stage servo v 4/3 directional d mechanical feed external contro	alve in esign with lback for	= 6											V = suita		ior mi	inei ordir	Seal Fk ral oil (I ng to Dl	mumber ⁶⁾ material (M seals, HL, HLP) IN 51524
Component seri (20 to 29: uncha connection dime	anged installa		= 2X and									E = D = C =				C 0	0.5 % . 0.5 %	negative positive positive
Rated flow ¹⁾ 2 I/min 5 I/min 10 I/min				= 2 = 5 = 10							K17		Order r	natir			via co ctor se	parately, e page 7
15 l/min 20 l/min 25 l/min Characteristic c	urves, see pa	ige 8		= 15 = 20 = 25						210 315					Inlet	pre	10 to	210 bar 315 bar
(observe tolerar signal function)								KN =				ET =				- '		d return ³⁾ 'type nA"
Valve for extern coil no. 11 (30 n]	= 1	11				s see i	nform	ation						1, page 6

Included in the delivery:

Valve operating instructions with declaration of conformity in part III

1) Rated flow

The rated flow refers to a 100% command value signal at 70 bar valve pressure differential (35 bar per control edge). The valve pressure differential must be regarded as reference. Other values result in the flow being changed. A possible rated flow tolerance of $\pm 10\%$ must be taken into account (see flow signal function page 8).

2) External control electronics

The actuating signal must be formed by a current controlled output stage. Control electronics (servo amplifier) see page 6.

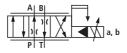
3) Pilot oil

The valve is only delivered with internal pilot oil supply and return.

⁴⁾ Inlet pressure range

Care should be taken that the system pressure is as constant as possible.

With regard to the dynamics, the frequency response dependency must be observed within the admissible pressure range of 10 ... 210 bar and/or 10 ...315 bar.


5) Spool overlap

The spool overlap is specified in % of the control spool stroke.

6) Special number "102"

Without actuation (de-energized condition), channels P \rightarrow A and B \rightarrow T are open for 10% of the nominal quantity.

Symbol

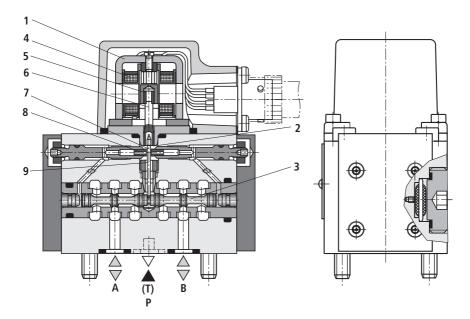
Function, section

4WS2EM 6-2X/...XN...-102

Valves of this type are electrically actuated, 2-stage directional servo-valves with porting pattern according to ISO 4401-03-02-0-05. They are mainly used to control position, force, pressure or velocity.

These valves are made of an electro-mechanical converter (torque motor) (1), a hydraulic amplifier (principle: nozzle flapper plate) (2) and a control spool (3) in a bushing (2nd stage) which is connected with the torque motor via a mechanical feedback.

An electrical input signal at the coils (4) of the torque motor generates a force by means of a permanent magnet which acts on the armature (5), and in connection with a torque tube (6) results in a torque. This causes the flapper plate (7) which is connected to the torque tube (6) via a pin to move from the central position between the two control nozzles (8), and a pressure differential is created across the front faces of the control spool (3). The pressure differential results in the spool changing its position, which results in the pressure port being connected to one actuator port and, at the same time, the other actuator port being connected to the return flow port.


The control spool is connected to the flapper plate or the torque motor by means of a bending spring (mechanical feedback) (9). The position of the spool is changed until the feedback torque across the bending spring and the electro-magnetic torque of the torque motor are balanced and the pressure differential at the nozzle flapper plate system becomes zero.

The stroke of the control spool and consequently the flow of the servo valve are controlled in proportion to the electrical input signal. It must be noted that the flow depends on the valve pressure drop.

External control electronics (separate order)

External control electronics (servo amplifier) serve the actuation of the valve, amplifying an analog input signal (command value) so that with the output signal, the servo valve is actuated in a flow-controlled form.

Type 4WS2EM 6-2X/...XN...-102

Hydraulics | Bosch Rexroth AG 5/12

Technical data

general						
Porting pattern			ISO 4401-03-02-0-05			
Installation position			Any (Ensure that upon system start-up, the valve is supplied with enough pressure (≥10 bar)!)			
Surface protection	Valve body, cover, filter screw		Nitro-carburated			
	Сар		Anodized			
Storage temperature	range	°C	-20 +80			
Ambient temperature range °C			-30 +80			
Weight		kg	1.1			

hydraulic (measured with HLP 32, $\vartheta_{oil} = 40 \degree C \pm 5 \degree C$)

Operating pressure Ports P, A, B	bar 10 210 or 10 315
Return flow pressure Port T	bar Pressure peaks < 100, static < 10
Hydraulic fluid	Mineral oil (HL, HLP) according to DIN 51524, ignition temperature > 150 °C
Hydraulic fluid temperature range	°C -15 +80; preferably +40 +50
Viscosity range mm	² /s 15 380; preferably 30 45
Maximum admissible degree of contamination of the hydra lic fluid cleanliness class according to ISO 4406 (c)	u- Class 18/16/13 ¹⁾
Zero flow $q_{V,L}^{(2)}$ with spool overlap E V_{1} measured without dither signal	nin $\sqrt{p_{\rm P}/70 \text{ bar}} \cdot (0.4 \text{ l/min} + 0.02 \cdot q_{\rm V rated})^{(3); 4)}$
Rated flows $q_{v \text{ rated}}^{3)}$, tolerance ±10 % I/i with valve pressure differential Δ_p = 70 bar	nin 2; 5; 10; 15; 20; 25
Max. control spool stroke possible with mechanical end position (in case of error) related to nominal stroke	% 120 170
Feedback system	Mechanical
Hysteresis (dither-optimized)	% ≤ 1.5
Range of inversion (dither-optimized)	% ≤ 0.2
Response sensitivity (dither-optimized)	% ≤ 0.2
Pressure gain with 1 % spool stroke change % of p (from the hydraulic zero point)	P _P ⁴) ≥ 50
Zero adjustment flow over the entire operating pressure range	% <pre>≤ 3, long-term < 5</pre>
Zero shift upon change of:	
Hydraulic fluid temperature % / 20	°C ≤ 1
Ambient temperature % / 20	°C ≤ 1
Operating pressure 80 120 % of p_P^{4} %/100	bar ≤2
Return flow pressure 0 10 % of $p_{\rm P}^{\rm (4)}$ % /	bar ≤ 1

¹⁾ The cleanliness classes specified for the components must be adhered to in hydraulic systems. Effective filtration prevents faults and at the same time increases the service life of the components. For the selection of the filters see www.boschrexroth.com/filter ²⁾ $q_{\rm V,L}$ = Zero flow in l/min

³⁾ $q_{v \text{ rated}}$ = Rated flow in I/min

⁴⁾ $p_{\rm P}$ = Operating pressure in bar

Technical data

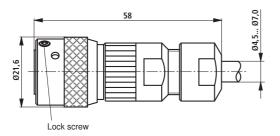
to EN 60529:1991+A1:2000		IP 65 with mating connector correctly mounted and locked
	analog	
	30	
	85	
Connection in series	Н	1.0
Connection in parallel	0.25	
	Connection in parallel	mA Ω Connection in series H

Information on explosion protection

Range of application as per directive 94/9/EC		II 3 G; II 3 D
Type of protection according to EN 60079-0:2006 / EN 60079-15:2005		Ex nA II T5X
Type of protection according to EN 61241-0:2006 / EN 61241-1:2004		Ex tD A22 IP 65 TX
Maximum surface temperature	°C	100
Ambient temperature range	°C	-30 +80
Hydraulic fluid temperature range	°C	-15 +80
Max. admissible operating voltage of the servo amplifier	V	32 (DC)
Conditions for use in zone 2 and 22		The valve may only be used in explosive zones of device group II, category 3, with "low" risk of mechanical hazards according to the harmonized standards EN 60079-0:2006, section 26.4.2 and EN 61241-0:2006, section 23.4.2.1.
		If used in zones with a "high" risk of mechanical load accord- ing to these standards , the user must take measures with a "low" risk of mechanical load.

External control electronics

Servo amplifier (separate order)	Eurocard format	Analog	Type VT-SR2-1X/.60 according to technical data sheet RE 29980				
	Modular design	Analog	Type VT 11021 according to technical data sheet RE 29743				
The coils of the valve may only be connected to these amplifiers in parallel!							

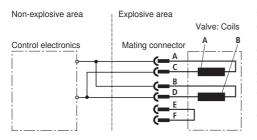

M WARNING - Risk of explosion

- The external servo amplifier must be operated outside the explosive area!

Hydraulics | Bosch Rexroth AG 7/12

Mating connector

The servo valve may only be supplied through this mating connector. Separate order, material no. **R901043330**


Connection:

567

Contact bushings with connection cross-section for litz wires 0.4 ... 0.75 mm² are supplied unpacked. The connection of the litz wires to the contact bushings is possible by crimping or soldering.

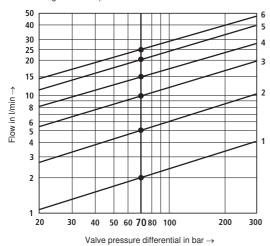
A list of the required tools for crimping connection is available in the assembly instructions which are supplied with the mating connector.

Electrical connection (example of parallel connection)

The coils are connected in parallel in the mating connector or at the amplifier (see figure).

In case of serial connection, contacts B and C must be connected.

The E-F bridge can be used for the electrical determination of the correct connection of the plug-in connector and/or for the identification of cable break.

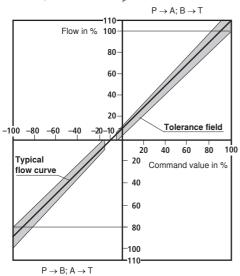

The electrical actuation from A (+) to D (-) causes flow direction from P \rightarrow A and B \rightarrow T. The reverse electrical actuation causes flow direction from P \rightarrow B and A \rightarrow T.

Characteristic curves (measured with HLP 32, $\vartheta_{oil} = 40 \degree C \pm 5 \degree C$)

Flow/load function (tolerance ±10 %) with 100 % command value signal

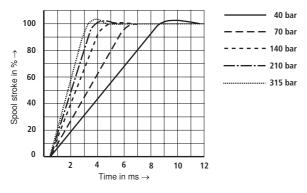
Note:

Observe flow values in the max. command value range (see tolerance field of the flow/signal function)

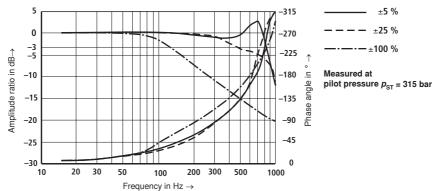


Ordering code	Rated flow	Curve
2	2 l/min	1
5	5 l/min	2
10	10 l/min	3
15	15 l/min	4
20	20 l/min	5
25	25 l/min	6

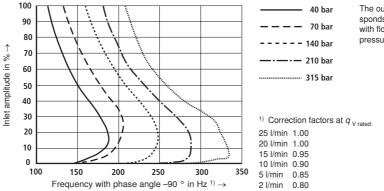
 $\Delta_{p} = Valve \text{ pressure differential} \\ (inlet pressure p_{p} \\ minus load pressure p_{L} \\ minus return flow pressure p_{r})$


Tolerance field of flow/signal function

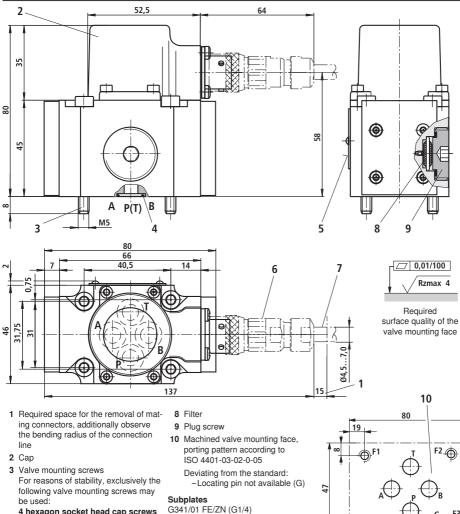
at constant valve pressure difference Δ_n



Characteristic curves (measured with HLP 32, $\vartheta_{oil} = 40 \,^\circ\text{C} \pm 5 \,^\circ\text{C}$)


Transition function with pressure rating 315 bar, step response without flow

Frequency response with pressure rating 315 bar, stroke frequency without flow



The output signal corresponds to the spool stroke with flow and without load pressure

4

Unit dimensions (dimensions in mm)

4 hexagon socket head cap screws ISO 4762-M5x50-10.9-flZn-240h-L (Friction coefficient 0.09 – 0.14 according to VDA 235-101) (included in the delivery)

- 4 Identical seal rings for ports P, A, B and T
- 5 Name plate
- 6 Mating connector (order separately, see page 7)
- 7 Connection line, further information on page 7

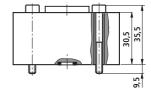
G341/01 FE/ZN (G1/4) G342/01 FE/ZN (G3/8) G502/01 FE/ZN (G1/2)

with dimensions as in the technical data sheet RE 45052 (must be ordered separately)

Note:

Subplates are no components in the sense of directive 94/9/EC and can be used after the manufacturer of the overall system has assessed the risk of ignition.

The G...FE/ZN versions are free from aluminum and/or magnesium and galvanized.


Flushing plate with porting pattern according to ISO 4401-03-02-0-05 (dimensions in mm)

Symbol

Ρ ΑΤ ΒΤ Τ

Ordering code and more information

- Material number: R900936049
- Weight: 0.6 kg
- Identical seal rings for ports P, A, B and T
- Mounting screws
 For reasons of stability, exclusively the following mounting screws may be used:
 4 hexagon socket head cap screws
 ISO 4762-M5x40-10.9-fIZn-240h-L
 (Friction coefficient 0.09 - 0.14 according to VDA 235-101) (included in the delivery)

Note

Before the assembly, observe the information in the product-specific instructions RE 29564-XN-102-B3, section 3.2.

Notes

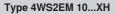
Bosch Rexroth AG Hydraulics Zum Eisengießer 1 97816 Lohr am Main, Germany

97816 Lohr am Main, Germany Phone +49 (0) 93 52 / 18-0 Fax +49 (0) 93 52 / 18-23 58 documentation@boschrexroth.de www.boschrexroth.de © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Electric Drives and Controls

Hydraulics

Pneumatics


Service

Rexroth Bosch Group

1/14

4/3 directional servo-valve with mechanical position feedback

RE 29583-XH-B2/10.11 Replaces: 07.11

Size 10 Component series 5X Maximum operating pressure 315 bar Maximum flow 180 l/min

ATEX units For explosive areas

Part II Data sheet

Information on explosion protection:

Range of application in accordance with the Explosion Protection Directive 94/9/EC

II 1G: Type of protection Ex ia IIC T4 Ga according to EN 60079-0:2009 / EN 60079-11:2007

What you need to know about these operating instructions

These operating instructions apply to the explosion-proof version of Rexroth valves and consist of the following three parts:

Part I General information 07010-X-B1

Part II Data sheet 29583-XH-B2

Part III Product-specific instructions 29583-XH-B3

Operating instructions 29583-XH-B0

You can find further information on the correct handling of Rexroth hydraulic products in our publication "General product information on hydraulic products" 07008.

Table of contents

Content	Page
Features	2
Ordering code and scope of delivery	3
Symbol	3
Function, section	4
Technical data	5 and 6
Information on explosion protection	6
External control electronics	6
Mating connector	7
Electrical connection	7
Characteristic curves	8 to 11
Unit dimensions	12
Flushing plate	13

Features

- Directional servo-valve for proper use in explosive areas of zone 0
- Valve to control position, force, pressure or velocity
- 2-stage servo valve with mechanical feedback
- 1st stage as nozzle flapper plate amplifier
- For subplate mounting, porting pattern according to ISO 4401-05-05-0-05 with ports X and Y suplates available in FE/ZN version (see page 12)
- Dry control motor, no contamination of the solenoid gaps by the hydraulic fluid
- Can also be used as 3-way version
- Wear-free spool feedback element
- Control: External control electronics in modular design, additional safety barrier (separate order), see page 6
- Valve is adjusted and tested
- Internal/external pilot oil supply and return can be ordered individually
- Spool with flow force compensation
- Control sleeve centrically fixed, thus low susceptibility to temperature and pressure
- Pressure chambers at the control sleeve with gap seal, therefore no wear of the seal ring
- Filter for 1st stage freely accessible from the outside

Ordering code and scope of delivery

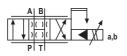
г					1	- 1	-			1	-				—	-
	4WS2E	: I	M	10	<u>-</u> 52	X /	E	3	11	X	1		K	31	_ `	V
Electrically opera 2-stage servo val 4/3 directional de external control « Mechanical feedth Size Component serie (50 to 59: unchar connection dimer Rated flow ¹)	ve in sign for electronics back s 50 to 59 nged installa		= 10) = !	5X									K31	E = D = C =	V = Seal material V = FKM seals suitable for mineral oil (HL, HLP) according to DIN 51524 Spool overlap ⁵ 00.5 % negative 00.5 % positive 35 % positive Electrical connection via connector
5 l/min 10 l/min 20 l/min						= 5 = 10 = 20								(Order	mating connector separately, see page 7
30 l/min						: 30								Inlet	press	sure range to the 1 st stage 4)
45 l/min 60 l/min					=	= 45 = 60							210 315	=	F	10 210 bar 10 315 bar
75 l/min 90 l/min						= 75 = 90						_				Pilot oil supply and return ³⁾ upply external, return external
Valve for externa coil no. 11 (30 m/							=	= 11				- = E =			S T=S	upply internal, return external upply external, return external Supply internal, return internal (ET = Standard version)

Included in the delivery:

- Valve mounting screws
- Valve operating instructions with declaration of conformity in part III

1) Rated flow

The rated flow refers to a 100% command value signal at 70 bar valve pressure differential (35 bar per control edge). The valve pressure differential must be regarded as reference. Other values result in the flow being changed. A possible rated flow tolerance of $\pm 10\%$ must be taken into account (see flow signal function page 8).


2) External control electronics

The actuating signal must be created from a flow-controlled output stage with a superimposed dither signal. Control electronics (servo amplifier) see page 6.

3) Pilot oil

Care should be taken that the pilot pressure is as constant as possible. An external pilot control via port X is thus often advantageous.

Symbol

The valve can be operated with a higher pressure at X than at P in order to influence the dynamics in a positive form. **Important:**

For details see information on the explosion protection,

Explosion protection "type ia"

page 6

4

The ports X and Y are also pressurized in case of "internal" pilot oil supply and return.

4) Inlet pressure range

XH =

Care should be taken that the system pressure is as constant as possible.

Pilot pressure range: 10 ... 210 bar or 10 ... 315 bar

With regard to the dynamics, the frequency response dependency must be observed within the admissible pressure range.

5) Spool overlap

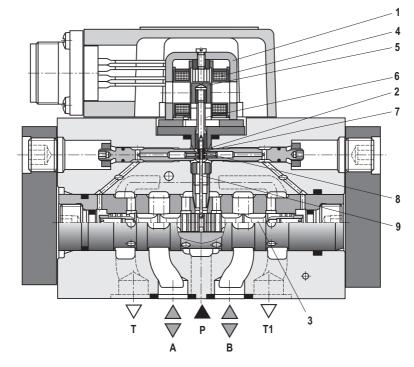
The spool overlap is specified in % of the control spool stroke.

Function, section

4WS2EM 10...XH

Valves of this type are electrically operated, 2-stage directional servo-valves with porting pattern according to ISO 4401-05-05-0-05. They are mainly used to control position, force, pressure or velocity.

These valves are made of an electro-mechanical converter (torque motor) (1), a hydraulic amplifier (principle: nozzle flapper plate) (2) and a control spool (3) in a bushing (2nd stage) which is connected with the torque motor via a mechanical feedback.


An electrical input signal at the coils (4) of the torque motor generates a force by means of a permanent magnet which acts on the armature (5), and in connection with a torque tube (6) results in a torque. This causes the flapper plate (7) which is connected to the torque tube (6) via a pin to move from the central position between the two control nozzles (8), and a pressure differential is created across the front faces of the control spool (3). The pressure differential results in the spool changing its position, which results in the pressure port being connected to one actuator port and, at the same time, the other actuator port being connected to the return flow port.

The control spool is connected to the flapper plate or the torque motor by means of a bending spring (mechanical feedback) (9). The position of the spool is changed until the feedback torque across the bending spring and the electro-magnetic torque of the torque motor are balanced and the pressure differential at the nozzle flapper plate system becomes zero.

The stroke of the control spool and consequently the flow of the servo valve are controlled in proportion to the electrical input signal. It must be noted that the flow depends on the valve pressure drop.

External control electronics (separate order)

External control electronics (servo amplifier) serve the actuation of the valve, amplifying an analog input signal (command value) so that with the output signal, the servo valve is actuated in a flow-controlled form.

Type 4WS2EM 10...XH

4

Technical data

general								
Porting pattern		ISO 4401-05-05-0-05						
Installation position		Any (Ensure that upon system start-up, the pilot control is supplied with enough pressure (≥10 bar)!)						
Surface protection	Valve body, cover, filter screw	Nitro-carburated						
	Сар	Anodized						
Storage temperature	range °C	-20 +70						
Ambient temperature	range °C	-20 +60						
Weight	kg	3.56						

577

hydraulic (measured with HLP 32, $\vartheta_{oil} = 40^{\circ}C \pm 5^{\circ}C$)

Operating pres-	Pilot control stage, pilot oil s	upply bar	10 210	or 10 31	15							
sure	Main valve, ports P, A, B	bar	up to 315									
Return flow pres-	Port T											
sure	Pilot oil return internal	bar	Pressure peaks < 100 permitted									
	Pilot oil return external	bar	up to 315									
	Port Y	bar	Pressure peaks <100 permitted, static < 10									
Hydraulic fluid			Mineral oil (HL, HLP) according to DIN 51524 Ignition temperature > 150 °C									
Hydraulic fluid ten	nperature range	°C	-15 +60	; preferably	/ +40 .	+50						
Viscosity range		mm²/s	15 380;	preferably	30 4	45						
	ble degree of contamination o anliness class according to IS	Class 18/1	16/13 ¹⁾									
Zero flow $q_{V,L}^{2)}$ with spool overlap measured without		l/min	$\begin{bmatrix} \frac{p_{p}^{4}}{70} \bullet^{0.7}_{min} \\ \frac{p_{p}^{4}}{70} \bullet^{0.9}_{min} \\ \frac{p_{p}^{4}}{70} \bullet^{1.2}_{min} \end{bmatrix} \begin{bmatrix} \frac{p_{p}^{4}}{70} \bullet^{1.2}_{min} \\ \frac{p_{p}^{4}}{70} \bullet^{1.2}_{min} \end{bmatrix} \begin{bmatrix} \frac{p_{p}^{4}}{70} \bullet^{1.5}_{min} \\ \frac{p_{p}^{4}}{70} \bullet^{1.5}_{min} \end{bmatrix}$				$\frac{p_{\rm P}^{4)}}{70 \text{ bar}} \cdot 1.7 \frac{1}{\text{min}}$					
Rated flows q _{v rater} with valve pressur (35 bar/edge)	l/min	5	10	20	30	45	60	75	90			
	I stroke possible with mechani use of error) related to nomina		120 170 120 150						50			
Feedback system			Mechanical									
Hysteresis (dither-	-optimized)	%	≤ 1.5									
Range of inversion	n (dither-optimized)	%	≤ 0.3									
Response sensitiv	vity (dither-optimized)	%	≤ 0.2									
Pressure gain with (from the hydraulie	≥ 30 ≥ 60 ≥ 80						≥ 80					
Zero adjustment fl operating pressure		%	≤ 3, long-t	erm ≤ 5								
Zero shift upon ch	ange of:											
Hydraulic fluid t	emperature	% / 20 K	≤ 1									
Ambient temper	rature	% / 20 K	≤ 1									
Operating press	sure 80 120 % of p _P 4)	% / 100 bar	≤ 2									
Return flow pres	ssure 0 10 % of p _P 4)	% / bar	≤ 1									
-		-	-	-								

¹⁾ The cleanliness classes specified for the components must be adhered to in hydraulic systems. Effective filtration prevents faults and at the same time increases the service life of the components. For the selection of the filters, see www.boschrexroth.com/filter ²⁾ $q_{\rm V,L}$ = Zero flow in l/min

³⁾ $q_{v rated}$ = Rated flow in I/min

⁴⁾ $p_{\rm P}$ = Operating pressure in bar

Technical data

electric							
Protection class according to EN 60529:1991+A1:200	IP 65 with mating connector correctly mounted and locked						
Type of signal		Analog					
Rated current per coil	mA	30					
Resistance per coil	Ω	85					
Inductivity with 60 Hz and 100% rated current Connection in parallel	Н	0.25					
In case of actuation using non-Rexroth amplifiers, we	recomme	end a superimposed dither signal					

Information on explosion protection

Range of application as per directive 94/9/EC	;	II 1G							
Type of protection according to EN 60079-0:2 EN 60079-11:2007	2009 /	Ex ia IIC T4 Ga							
Ambient temperature range		-20 +60							
Hydraulic fluid temperature range		-15 +60							
Electric supply of the valve only from certi-	U _{max}	9.3							
fied, intrinsically safe electrical circuits with	I _{max} mA		390						
the following maximum values	P _{max}	mW	907						
Conditions for use in zone 0			The valve cap consists of die-cast aluminum. For the use as device of category 1 in zone 0, the valve cap must be protected so that even with rarely occurring malfunc- tions, no ignitable sparks from friction, impact or grinding can be produced.						
			Important: The ignition temperature of the hydraulic fluid used must at least be 150 °C.						
Necessary clearance area for burst protection	ו		The specified clearance area for the burst protection (see page 12) must remain free so that in case of error, overpres- sure can leak through the blanking plug from the valve cap.						

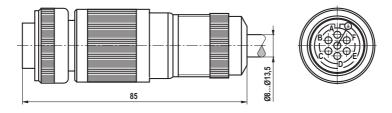
External control electronics

Servo amplifier 1) in modular design	Analog	Type VT 11021 according to data sheet 29743
Recommended safety barrier 1)	Single-channel	Company Stahl, type 9001/02-093-390-101

A WARNING - Risk of explosion

- The servo amplifier and the safety barrier must be operated outside the explosive area!

1) order separately


Mating connector

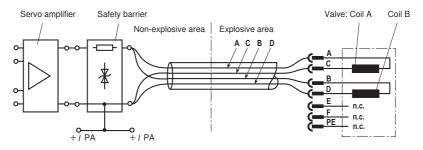
Mating connector according to EN 175201-804 Metal version

Separate order under the Material no. R900223890

Connection:

Solder contacts with connection cross-section for litz wires 0.5 \dots 1.5 mm²

579


Electrical connection

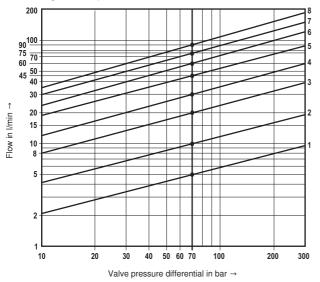
The coils may only be connected in parallel.

The electrical control with plus (+) at A and B and minus (–) at C and D results in the flow direction P \rightarrow A and B \rightarrow T.

The reverse electrical control causes flow direction from P \rightarrow B and A \rightarrow T.

Pins E, F and PE at the connector are not connected.

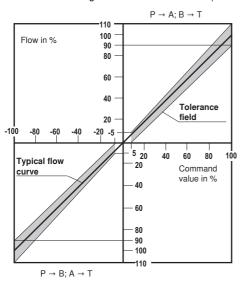
Important


For intrinsically safe electric circuits, only cables and lines approved of for that purpose may be used.

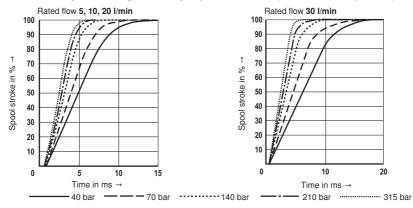
Characteristic curves (measured with HLP32, $\vartheta_{oil} = 40 \degree C \pm 5 \degree C$)

Flow/load function (tolerance ±10 %) with 100 % command value signal

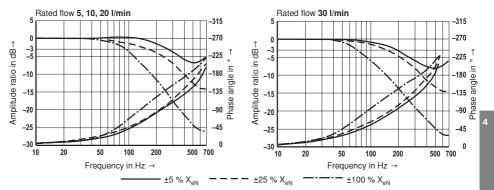
Important:

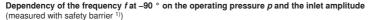

Observe flow values in the max. command value range (see tolerance field of the flow/signal function)

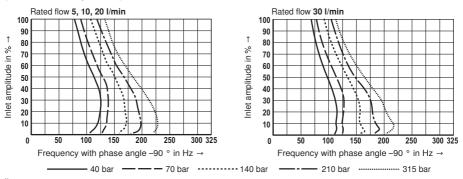
Ordering code	Rated flow	Curve			
5	5 l/min	1			
10	10 l/min	2			
20	20 l/min	3			
30	30 l/min	4			
45	45 l/min	5			
60	60 l/min	6			
75	75 l/min	7			
90	90 l/min	8			


 $\Delta p = \text{Valve pressure differential} \\ (inlet pressure p_{P} minus \\ load pressure p_{L} minus \\ return flow pressure p_{T})$

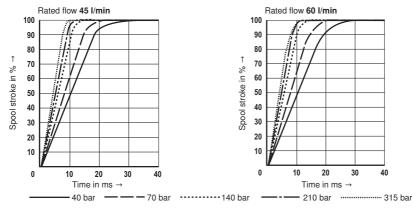
Tolerance field of the flow/signal function at constant valve pressure differential Δp

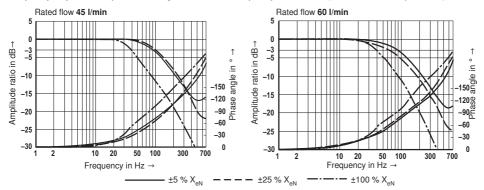


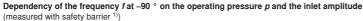

Characteristic curves (measured with HLP 32, $\vartheta_{oil} = 40^{\circ}C \pm 5^{\circ}C$)

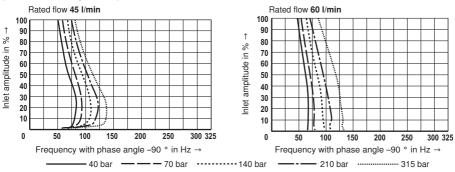

Transition function with pressure rating 315 bar, step response without flow (measured with safety barrier ¹⁾)

Frequency response with pressure rating 315 bar, stroke frequency without flow (measured with safety barrier 1))

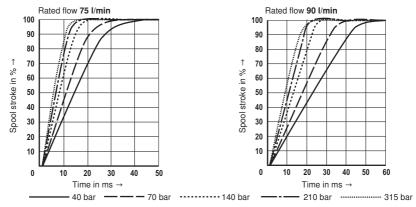



¹⁾ For information on the safety barrier see page 6 and 7

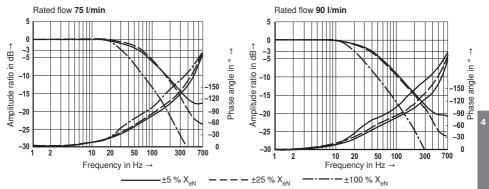

Characteristic curves (measured with HLP 32, $\vartheta_{oil} = 40 \degree C \pm 5 \degree C$)

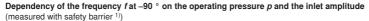

Transition function with pressure rating 315 bar, step response without flow (measured with safety barrier 1))

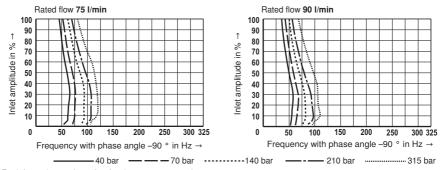
Frequency response with pressure rating 315 bar, stroke frequency without flow (measured with safety barrier ¹⁾)



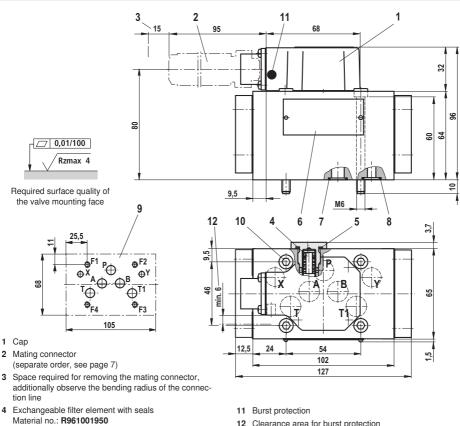
1) For information on the safety barrier see page 6 and 7


582


Characteristic curves (measured with HLP 32, $\vartheta_{oil} = 40 \,^\circ\text{C} \pm 5 \,^\circ\text{C}$)


Transition function with pressure rating 315 bar, step response without flow (measured with safety barrier 1))

Frequency response with pressure rating 315 bar, stroke frequency without flow (measured with safety barrier 1)



1) For information on the safety barrier see page 6 and 7

583

Unit dimensions (dimensions in mm)

- 5 Profile seal for filter screw M16 x 1.5, part of item 4
- 6 Name plate
- 7 Identical seal rings for ports P, A, B, T and T1
- 8 Identical seal rings for ports X and Y Ports X and Y are also pressurized in case of "internal"
- pilot oil supply and return. 9 Processed valve mounting face Porting pattern according to ISO 4401-05-05-0-05 Port T1 is optional and is recommended for reducing the pressure differential from $B \rightarrow T$ with rated flows > 45 l/min.
- 10 Valve mounting screws For reasons of stability, exclusively the following valve mounting screws may be used: 4 hexagon socket head cap screws ISO 4762-M6x70-10.9-flZn-240h-L (Friction coefficient 0.09 - 0.14 according to VDA 235-101) (included in the delivery)

12 Clearance area for burst protection

Subplates

G 66/01 FE/ZN (G3/8) G 67/01 FE/ZN (G1/2)

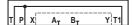
with ports X and Y: G 535/01 FE/ZN (G3/4) G 535/02 FE/ZN (M27 x 2)

G 536/01 FE/ZN (G1)

G 536/02 FE/ZN (M33 x 2)

with dimensions like in data sheet 45054 (must be ordered separately)

Important:

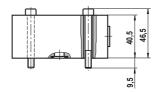

Subplates are no components in the sense of directive 94/9/EC and can be used after the manufacturer of the overall system has assessed the risk of ignition.

The G...FE/ZN versions are free from aluminum and/or magnesium and galvanized.

Flushing plate with porting pattern according to ISO 4401-05-05-0-05 (dimensions in mm)

585

```
Symbol
```



Ordering code and more information

- Material number: R900912450
- Weight: 2 kg
- Identical seal rings for ports P, A, B, T and T1
- Identical seal rings for ports X and Y
- Mounting screws
 For reasons of stability, exclusively the following mounting screws may be used:
 4 hexagon socket head cap screws
 ISO 4762-M6x50-10.9-flZn-240h-L (friction coefficient 0.09 - 0.14 according to VDA 235-101) (included in the delivery)

Important

Before the assembly, observe the information in the Productspecific instructions 29583-XH-B3, section 3.2.

Notes

586

Bosch Rexroth AG Hydraulics Zum Eisengießer 1 97816 Lohr am Main, Germany Phone +49 (0) 93 52 / 18-0 Fax +49 (0) 93 52 / 18-23 58 documentation@boschrexroth.de www.boschrexroth.de

© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

4/3 directional servo-valve with mechanical position feedback

Hydraulics

Type 4WS2EM 10...XH...-100

Electric Drives and Controls

Size 10 Component series 5X Maximum operating pressure 315 bar Maximum flow 180 l/min

ATEX units For explosive areas

Part II Data sheet

Information on explosion protection:

Range of application in accordance with the Explosion Protection Directive 94/9/EC

II 1G: Type of protection Ex ia IIC T4 Ga according to EN 60079-0:2009 / EN 60079-11:2007

What you need to know about these operating instructions

These operating instructions apply to the explosion-proof version of Rexroth valves and consist of the following three parts:

Part I General information 07010-X-B1

Part II Data sheet 29583-XH-100-B2

Part III Product-specific instructions 29583-XH-100-B3

Operating instructions 29583-XH-100-B0

You can find further information on the correct handling of Rexroth hydraulic products in our publication "General product information on hydraulic products" 07008.

RE 29583-XH-100-B2/12.11 Replaces: 07.11

• •

1/14

587

Pneumatics

Linear Motion and

Assembly Technologies

Service

Table of contents

Content	Page
Features	2
Ordering code and scope of delivery	3
Symbol	3
Function, section	4
Technical data	5 and 6
Information on explosion protection	6
External control electronics	6
Mating connector	7
Electrical connection	7
Characteristic curves	8 to 11
Unit dimensions	12
Flushing plate	13

Features

- Directional servo-valve for proper use in explosive areas of zone 0
- Valve to control position, force, pressure or velocity
- 2-stage servo valve with mechanical feedback
- 1st stage as nozzle flapper plate amplifier
- For subplate mounting, porting pattern according to ISO 4401-05-05-0-05 with ports X and Y suplates available in FE/ZN version (see page 12)
- Dry control motor, no contamination of the solenoid gaps by the hydraulic fluid
- Can also be used as 3-way version
- Wear-free spool feedback element
- Control: External control electronics in modular design, additional safety barrier (separate order), see page 6
- Valve is adjusted and tested
- Internal/external pilot oil supply and return can be ordered individually
- Spool with flow force compensation
- Control sleeve centrically fixed, thus low susceptibility to temperature and pressure
- Pressure chambers at the control sleeve with gap seal, therefore no wear of the seal ring
- Filter for 1st stage freely accessible from the outside

Hydraulics Bosch Rexroth AG 3/14

Ordering code and scope of delivery

4WS2EM10-5X/B11XHK31V-100Electrically operated 2-stage servo valve in 4/3 directional design for external control electronics100 = Special number 6)Mechanical feedback= MSize= 10Component series 50 to 59= 5X (50 to 59): unchanged installation and con- nection dimensions)5 // min5 // minRated flow 1)5 // min= 55 10 // min5 // min5 // min5 // min= 20 30 // min= 30 90 // min5 // min6 // min20 // min= 20 90 // min= 75 90 // min= 10Valve for external control electronics Coil no. 11 (30 mA/85 Ω per coil) 2)= 11																			
2-stage servo valve in 4/3 directional design for external control electronics Mechanical feedback = M Size = 10 Component series 50 to 59 = 5X (50 to 59: unchanged installation and con- nection dimensions) Rated flow ¹) 5 //min = 5 10 //min = 10 20 //min = 20 30 //min = 45 60 //min = 75 90 //min = 75 90 //min = 90 Valve for external control electronics Valve for external control electronics		4WS2E	: I	M	10	<u>+</u> 5)	(//	В	1	1	ΧН		K	31		V – 1	00		
external control electronics Seal matched Mechanical feedback = M Size = 10 Component series 50 to 59 = 5X (50 to 59: unchanged installation and connection dimensions) = 5 Rated flow 1) 5 5 l/min = 5 10 l/min = 10 20 l/min = 20 30 l/min = 30 60 l/min = 60 75 l/min = 75 90 l/min = 90 Valve for external control electronics 11 Valve for external control electronics 11																	100	=	
SizeInterpretation of the stage 4/2Component series 50 to 59 $= 5X$ (50 to 59: unchanged installation and connection dimensions)Rated flow 1/2SizeSize (HL, HLP) according to DIN 51524(HL, HLP) according to DIN 51524(HL, HLP) according to DIN 51524Spool overlap 5/2E = 0 0.5 % negativeD = 0 0.5 % positiveC = 3 5 % positiveC =																v =		S	
Old Image: Component series 50 to 59 = 5X Component series 50 to 59 = 5X (S0 to 59: unchanged installation and connection dimensions) E = 0 0.5 % negative Rated flow 1) 5 //min 5 //min = 5 10 //min = 10 20 //min = 20 30 //min = 45 60 //min = 60 75 //min = 75 90 //min = 90 Valve for external control electronics 11 Valve for external control electronics 11	Mechanical feed	back	= M														Suit	able	formineral oil
(50 to 59: unchanged installation and connection dimensions) Spool overlap 5) Rated flow 1) E = 0 0.5 % negative 5 //min = 55 10 //min = 10 20 //min = 20 30 //min = 45 60 //min = 60 75 //min = 75 90 //min = 90 Valve for external control electronics 11 Valve for external control electronics 11				= 10													(HL,	HLP)	
$C = 3 \dots 5\%$ positive	(50 to 59: unchar nection dimensio	nged installa	ation a	and c		5X									D =			0.! 0 0	5 % negative .5 % positive
10 //min = 10 20 //min = 20 30 //min = 30 45 //min = 45 60 //min = 60 75 //min = 75 90 //min = 90 Valve for external control electronics 210 = 10 to 210 bar Valve for external control electronics Pilot oil supply and return ³)						;	= 5												
20 //min = 20 30 //min = 30 30 //min = 30 45 //min = 45 60 //min = 60 75 //min = 75 90 //min = 90 Valve for external control electronics 11 Pilot oil supply and return ³	10 l/min					=	10							K31	=	Ele	ctric	al coi	
45 //min = 45 60 //min = 60 75 //min = 60 75 //min = 75 90 //min = 90 Valve for external control electronics 210 = 10 to 210 bar Valve for external control electronics 91 bar 10 to 315 bar Pilot oil supply and return ³ 91 bar 11															-				
$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $														(Jraer	matin	g con	necto	
75 //min = 75 90 //min = 90 Valve for external control electronics 11 Valve for external control electronics Pilot oil supply and return ³)																			
$\begin{array}{c} 10 \\ 90 \\ \hline \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$															press	sure ra	ange		-
Valve for external control electronics Valve at 1 (20 m M/05 O per cell) 2 Pilot oil supply and return 3																			
Colling 11 (20 mA/05 O per coll) 2)			otror	ine]					315	=					
-= Supply external, return external								- 1	1										
E = Supply internal, return external	001110.11 (0011	17 0 0 0 12 pci	0011)					- 1	•			_=							
E = Supply internal, return external T = Supply external, return internal																			

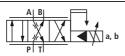
Included in the delivery:

- Valve mounting screws

 Valve operating instructions with declaration of conformity in part III

1) Rated flow

The rated flow refers to a 100 % command value signal at 70 bar valve pressure differential (35 bar per control edge). The valve pressure differential must be regarded as reference. Other values result in the flow being changed. A possible rated flow tolerance of ± 10 % must be taken into account (see flow signal function page 8).


2) External control electronics

The actuating signal must be created from a flow-controlled output stage with a superimposed dither signal. Control electronics (servo amplifier) see page 6.

3) Pilot oil

Care should be taken that the pilot pressure is as constant as possible. An external pilot control via port X is thus often advantageous.

Symbol

The valve can be operated with a higher pressure at X than at P in order to influence the dynamics in a positive form. **Important:**

For details see information on the explosion protection,

Supply internal, return internal

Explosion protection "type ia"

(ET = Standard version)

page 6

The ports X and Y are also pressurized in case of "internal" pilot oil supply and return.

4) Inlet pressure range

ET =

XH =

Care should be taken that the system pressure is as constant as possible.

Pilot pressure range: 10 ... 210 bar or 10 ... 315 bar

With regard to the dynamics, the frequency response dependency must be observed within the admissible pressure range.

5) Spool overlap

The spool overlap is specified in % of the control spool stroke.

6) Special number "100"

Without actuation (de-energized condition), channels $P \rightarrow B$ and $A \rightarrow T$ are open for 10 % of the nominal quantity.

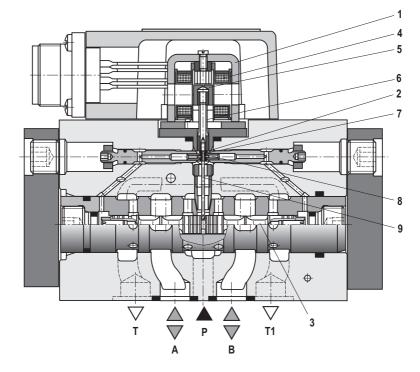
589

Function, section

4WS2EM 10...XH...-100

Valves of this type are electrically operated, 2-stage directional servo-valves with porting pattern according to ISO 4401-05-05-0-05. They are mainly used to control position, force, pressure or velocity.

These valves are made of an electro-mechanical converter (torque motor) (1), a hydraulic amplifier (principle: nozzle flapper plate) (2) and a control spool (3) in a bushing (2nd stage) which is connected with the torque motor via a mechanical feedback.


An electrical input signal at the coils (4) of the torque motor generates a force by means of a permanent magnet which acts on the armature (5), and in connection with a torque tube (6) results in a torque. This causes the flapper plate (7) which is connected to the torque tube (6) via a pin to move from the central position between the two control nozzles (8), and a pressure differential is created across the front faces of the control spool (3). The pressure differential results in the spool changing its position, which results in the pressure port being connected to one actuator port and, at the same time, the other actuator port being connected to the return flow port.

The control spool is connected to the flapper plate or the torque motor by means of a bending spring (mechanical feedback) (9). The position of the spool is changed until the feedback torque across the bending spring and the electro-magnetic torque of the torque motor are balanced and the pressure differential at the nozzle flapper plate system becomes zero.

The stroke of the control spool and consequently the flow of the servo valve are controlled in proportion to the electrical input signal. It must be noted that the flow depends on the valve pressure drop.

External control electronics (separate order)

External control electronics (servo amplifier) serve the actuation of the valve, amplifying an analog input signal (command value) so that with the output signal, the servo valve is actuated in a flow-controlled form.

Type 4WS2EM 10...XH...-100

Hydraulics Bosch Rexroth AG 5/14

4

Technical data

general									
Porting pattern		ISO 4401-05-05-0-05							
Installation position		Any (Ensure that upon system start-up, the pilot control is supplied with enough pressure (≥ 10 bar)!)							
Surface protection	Valve body, cover, filter screw	Nitro-carburated							
	Сар	Anodized							
Storage temperature	range °C	-20 +70							
Ambient temperature	range °C	-20 +60							
Weight	kç	3.56							

hydraulic (measured with HLP 32, ϑ_{oil} = 40 °C ± 5 °C)

Operating	Pilot control stage, pilot oil sup	oply bar	10 210	or 10 31	15						
pressure	Main valve, ports P, A, B	bar	up to 315								
Return flow	Port T										
pressure	Pilot oil return internal	Pressure peaks < 100 permitted									
	Pilot oil return external	up to 315									
	Port Y	bar	Pressure peaks < 100 permitted, static < 10								
Hydraulic fluid			Mineral oil (HL, HLP) according to DIN 51524 Ignition temperature > 150 °C								
Hydraulic fluid te	emperature range	°C	-15 +60); preferably	y +40 .	+50					
Viscosity range		15 380	preferably	30 4	15						
	ssible degree of contamination of cleanliness class according to IS	Class 18/	16/13 ¹⁾								
Zero flow $q_{V, L}^{(2)}$ with spool overla measured witho	ap E ut dither signal	$ \left\ \frac{\overline{p_{p}}^{4}}{70} _{\text{bar}}^{0.7} _{\text{min}}^{1} \left\ \frac{\overline{p_{p}}^{4}}{70} _{\text{bar}}^{0.9} _{\text{min}}^{1} \right\ \left\ \frac{\overline{p_{p}}^{4}}{70} _{\text{bar}}^{4} _{\text{min}}^{1.2} \frac{1}{\text{min}} \right\ \left\ \frac{\overline{p_{p}}^{4}}{70} _{\text{bar}}^{1.5} _{\text{min}}^{1} \right\ $					$\sqrt{\frac{p_{\rm P}^{4)}}{70 \rm bar}} \cdot 1.7 \frac{\rm l}{\rm min}$				
Rated flows q _{v ra} with valve press (35 bar/edge)	$^{3)}$, tolerance ±10 % ure differential Δp = 70 bar	5	10	20	30	45	60	75	90		
	ool stroke possible with mechan case of error) related to nomina	120 170 120 150						50			
Feedback syste	m		Mechanical								
Hysteresis (dithe	er-optimized)	≤ 1.5									
Range of invers	ion (dither-optimized)	%	≤ 0.3								
Response sensi	itivity (dither-optimized)	%	≤ 0.2								
Pressure gain w (from the hydrau	vith 1 % spool stroke change ulic zero point)	≥ 30 ≥ 60 ≥ 80							≥ 80		
Zero adjustment operating press	t flow over the entire ure range	%	\leq 3, long-	term ≤ 5							
Zero shift upon	change of:										
Hydraulic fluid	d temperature	% / 20 K	≤ 1								
Ambient temp	perature	% / 20 K	≤ 1								
Operating pre	essure 80 120 % of p _P 4)	% / 100 bar	≤ 2								
Return flow p	ressure 0 … 10 % of $p_{ m P}{}^{4)}$	% / bar	≤ 1								

¹⁾ The cleanliness classes specified for the components must be adhered to in hydraulic systems. Effective filtration prevents faults and at the same time increases the service life of the components. For the selection of the filters see www.boschrexroth.com/filter ²⁾ $q_{V,L}$ = Zero flow in l/min

³⁾ $q_{v rated}$ = Rated flow in I/min

⁴⁾ $p_{\rm P}$ = Operating pressure in bar

Technical data

Protection class according to EN 60529:1991+A1:2000	IP 65 with mating connector correctly mounted and locke						
Type of signal	Analog						
Rated current per coil mA	30						
Resistance per coil Ω	85						
Inductivity with 60 Hz and 100 % rated current Connection in parallel H	0.25						

Information on explosion protection

Range of application as per directive 94/9/EC			II 1G				
Type of protection according to EN 60079-0:2009 / EN 60079-11:2007			Ex ia IIC T4 Ga				
Ambient temperature range		°C	-20 +60				
Hydraulic fluid temperature range		°C	-15 +60				
Electric supply of the valve only from certi-	U _{max} V		9.3				
fied, intrinsically safe electrical circuits with	I _{max} mA		390				
the following maximum values	P _{max}	mW	907				
Conditions for use in zone 0			The valve cap consists of die-cast aluminum. For the use as device of category 1 in zone 0, the valve cap must be protected so that even with rarely occurring malfunc- tions, no ignitable sparks from friction, impact or grinding can be produced.				
			Important: The ignition temperature of the hydraulic fluid used must at least be 150 °C.				
Necessary clearance area for burst protection	1		The specified clearance area for the burst protection (see page 12) must remain free so that in case of error, overpressure can leak through the blanking plug from the valve cap.				

External control electronics

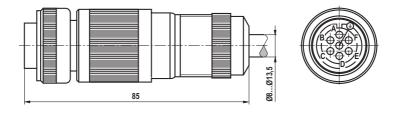
Servo amplifier 1) in modular design	Analog	Type VT 11021 according to data sheet 29743
Recommended safety barrier 1)	Single-channel	Company Stahl, type 9001/02-093-390-101

A WARNING - Risk of explosion

- The servo amplifier and the safety barrier must be operated outside the explosive area!

1) Order separately

Hydraulics | Bosch Rexroth AG 7/14


Mating connector

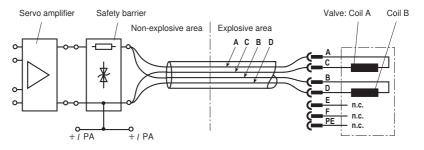
Mating connector according to EN 175201-804 Metal version

Separate order under the Material no. R900223890

Connection:

Solder contacts with connection cross-section for litz wires 0.5 \ldots 1.5 $\rm mm^2$

Electrical connection


The coils may only be connected in parallel.

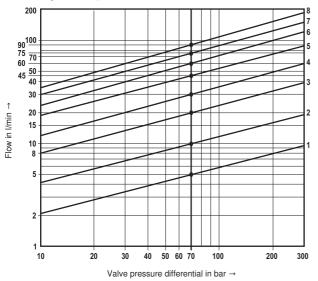
The electrical control with plus (+) at A and B and minus (-) at C and D results in

the flow direction $P \rightarrow A$ and $B \rightarrow T$.

The reverse electrical control causes flow direction from P \rightarrow B and A \rightarrow T.

Pins E, F and PE at the connector are not connected.

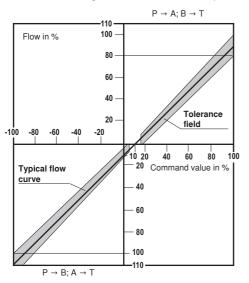
Important


For intrinsically safe electric circuits, only cables and lines approved of for that purpose may be used.

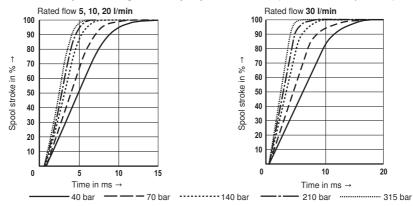
Characteristic curves (measured with HLP32, $\vartheta_{oil} = 40 \text{ °C} \pm 5 \text{ °C}$)

Flow/load function (tolerance ±10 %) with 100 % command value signal

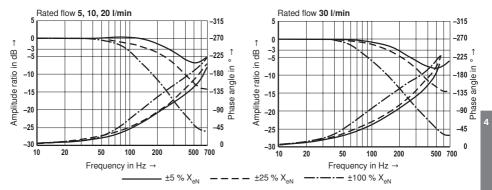
Important:

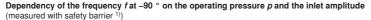

Observe flow values in the max. command value range (see tolerance field of the flow/signal function)

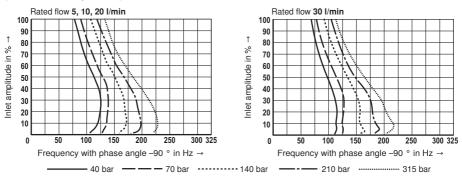
Ordering code	Rated flow	Curve
5	5 l/min	1
10	10 l/min	2
20	20 l/min	3
30	30 l/min	4
45	45 l/min	5
60	60 l/min	6
75	75 l/min	7
90	90 l/min	8


 $\Delta p = \text{Valve pressure differential} \\ (inlet pressure p_p minus \\ load pressure p_L minus \\ return flow pressure p_T)$

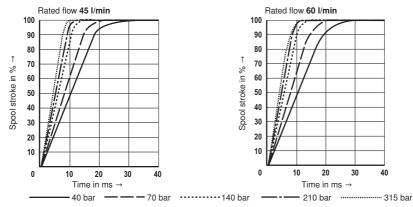
Tolerance field of the flow/signal function at constant valve pressure differential Δp

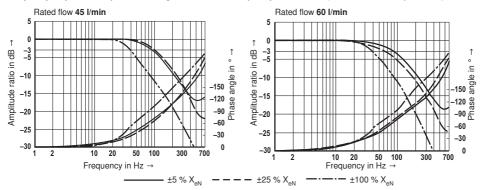


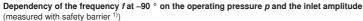

Characteristic curves (measured with HLP 32, $\vartheta_{oil} = 40 \text{ °C} \pm 5 \text{ °C}$)

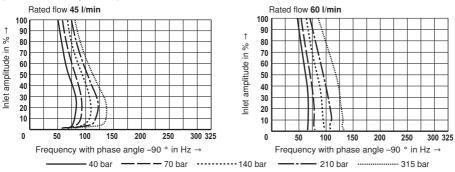

Transition function with pressure rating 315 bar, step response without flow (measured with safety barrier ¹⁾)

Frequency response with pressure rating 315 bar, stroke frequency without flow (measured with safety barrier 1))

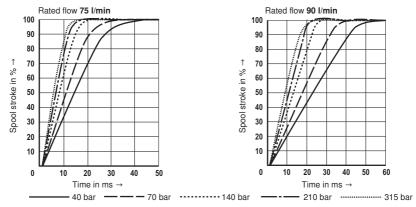



¹⁾ For information on the safety barrier see page 6 and 7

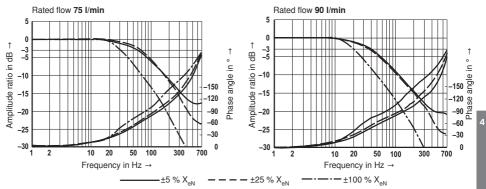

Characteristic curves (measured with HLP 32, their = 40 °C ± 5 °C)

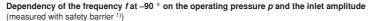

Transition function with pressure rating 315 bar, step response without flow (measured with safety barrier 1))

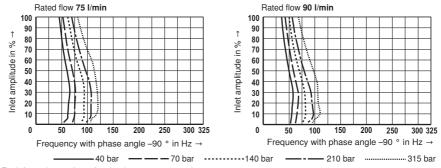
Frequency response with pressure rating 315 bar, stroke frequency without flow (measured with safety barrier ¹⁾)



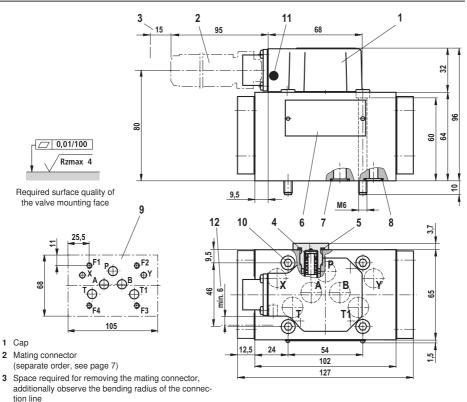
1) For information on the safety barrier see page 6 and 7


596


Characteristic curves (measured with HLP 32, $\vartheta_{oil} = 40 \ ^{\circ}C \pm 5 \ ^{\circ}C$)


Transition function with pressure rating 315 bar, step response without flow (measured with safety barrier 1))

Frequency response with pressure rating 315 bar, stroke frequency without flow (measured with safety barrier 1)



1) For information on the safety barrier see page 6 and 7

597

Unit dimensions (dimensions in mm)

- 4 Exchangeable filter element with seals Material no.: R961001950
- 5 Profile seal for filter screw M16 x 1.5, part of item 4
- 6 Name plate
- 7 Identical seal rings for ports P, A, B, T and T1
- 8 Identical seal rings for ports X and Y Ports X and Y are also pressurized in case of "internal" pilot oil supply and return.
- 9 Processed valve mounting face Porting pattern according to ISO 4401-05-05-0-05 Port T1 is optional and is recommended for reducing the pressure differential from B \rightarrow T with rated flows > 45 l/min.
- 10 Valve mounting screws
 For reasons of stability, exclusively the following valve mounting screws may be used:
 4 hexagon socket head cap screws
 ISO 4762-M6x70-10.9-fiIzn-240h-L
 (Friction coefficient 0.09 0.14 according to VDA 235-101) (included in the delivery)

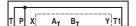
- 11 Burst protection
- 12 Clearance area for burst protection

Subplates

G 66/01 FE/ZN (G3/8) G 67/01 FE/ZN (G1/2)

with ports X and Y: G 535/01 FE/ZN (G3/4) G 535/02 FE/ZN (M27 x 2) G 536/01 FE/ZN (G1) G 536/02 FE/ZN (M33 x 2) with dimensions like in data sheet 4505

with dimensions like in data sheet 45054 (must be ordered separately)

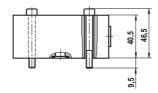

Important:

Subplates are no components in the sense of directive 94/9/EC and can be used after the manufacturer of the overall system has assessed the risk of ignition.

The G...FE/ZN versions are free from aluminum and/or magnesium and galvanized.

Flushing plate with porting pattern according to ISO 4401-05-05-0-05 (dimensions in mm)

```
Symbol
```



Ordering code and more information

- Material number: R900912450
- Weight: 2 kg
- Identical seal rings for ports P, A, B, T and T1
- Identical seal rings for ports X and Y
- Mounting screws
 For reasons of stability, exclusively the following mounting screws may be used:
 4 hexagon socket head cap screws
 ISO 4762-M6x50-10.9-fIZn-240h-L (friction coefficient 0.09 - 0.14 according to VDA 235-101) (included in the delivery)

Important

Before the assembly, observe the information in the Productspecific instructions 29583-XH-100-B3, section 3.2.

Bosch Rexroth AG Hydraulics Zum Eisengießer 1 97816 Lohr am Main, Germany Phone +49 (0) 93 52 / 18-0 Fax +49 (0) 93 52 / 18-23 58 documentation@boschrexroth.de © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Electric Drives and Controls

Hydraulics

601

Pneumatics

Service

Rexroth Bosch Group

RE 29583-XH-102-B2/12.11 Replaces: 07.11

1/14

4/3 directional servo-valve with mechanical position feedback

Type 4WS2EM 10...XH...-102

Size 10 Component series 5X Maximum operating pressure 315 bar Maximum flow 180 l/min

ATEX units For explosive areas

Part II Data sheet

Information on explosion protection:

Range of application in accordance with the Explosion Protection Directive 94/9/EC

II 1G: Type of protection Ex ia IIC T4 Ga according to EN 60079-0:2009 / EN 60079-11:2007

What you need to know about these operating instructions

These operating instructions apply to the explosion-proof version of Rexroth valves and consist of the following three parts:

Part I General information 07010-X-B1

Part II Data sheet 29583-XH-102-B2

Part III Product-specific instructions 29583-XH-102-B3

Operating instructions 29583-XH-102-B0

You can find further information on the correct handling of Rexroth hydraulic products in our publication "General product information on hydraulic products" 07008.

Table of contents

Content	Page
Features	2
Ordering code and scope of delivery	3
Symbol	3
Function, section	4
Technical data	5 and 6
Information on explosion protection	6
External control electronics	6
Mating connector	7
Electrical connection	7
Characteristic curves	8 to 11
Unit dimensions	12
Flushing plate	13

Features

- Directional servo-valve for proper use in explosive areas of zone 0
- Valve to control position, force, pressure or velocity
- 2-stage servo valve with mechanical feedback
- 1st stage as nozzle flapper plate amplifier
- For subplate mounting, porting pattern according to ISO 4401-05-05-0-05 with ports X and Y suplates available in FE/ZN version (see page 12)
- Dry control motor, no contamination of the solenoid gaps by the hydraulic fluid
- Can also be used as 3-way version
- Wear-free spool feedback element
- Control: External control electronics in modular design, additional safety barrier (separate order), see page 6
- Valve is adjusted and tested
- Internal/external pilot oil supply and return can be ordered individually
- Spool with flow force compensation
- Control sleeve centrically fixed, thus low susceptibility to temperature and pressure
- Pressure chambers at the control sleeve with gap seal, therefore no wear of the seal ring
- Filter for 1st stage freely accessible from the outside

Hydraulics Bosch Rexroth AG 3/14

Ordering code and scope of delivery

1					V		Τ.						<u> </u>				
	4WS2E	E I	M	10-	<mark>-</mark> 5X/	В	11	1 X	H		K	31		V – 1	02		
Electrically opera 2-stage servo val directional desigr external control	lve in 4/3 n for													V =	102		Specia number ⁶ Seal material FKM seals
Mechanical feed	back	= M													Suita	able f	or mineral oi
Size			- = 10												(HL,	HLP)	according to DIN 51524
Component serie (50 to 59: unchar nection dimensio	nged installa	ation a	ind c	= 5 :on-	x								E = D =			0.	ol overlap ⁵ 5 % negative .5 % positive
Rated flow 1)													C =				5 % positive
5 l/min 10 l/min					= 5 = 10							K31	=	Ele	ctric	al cor	nnection via
20 l/min					= 10												connector
30 l/min 45 l/min					= 30 = 45							(Order	matin	g con	necto	or separately see page 7
60 l/min					= 60							Inlet	press	ure ra	ange	to th	e 1st stage 4
75 l/min 90 l/min					= 75 = 90						210 315						10 to 210 bai 10 to 315 bai
Valve for externa	al control ele	ectron	ics										F	Pilot d	il su	s vlao	and return 3
Coil no. 11 (30 m	nA/85 Ω per	coil) ²	:)			= 1	11			-=							eturn externa
										E =			S	upply	interr	nal, re	eturn externa
Included in the	deliverv:									T = ET =							eturn interna eturn interna

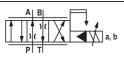
Included in the delivery:

- Valve mounting screws

 Valve operating instructions with declaration of conformity in part III

1) Rated flow

The rated flow refers to a 100 % command value signal at 70 bar valve pressure differential (35 bar per control edge). The valve pressure differential must be regarded as reference. Other values result in the flow being changed. A possible rated flow tolerance of ± 10 % must be taken into account (see flow signal function page 8).


2) External control electronics

The actuating signal must be created from a flow-controlled output stage with a superimposed dither signal. Control electronics (servo amplifier) see page 6.

3) Pilot oil

Care should be taken that the pilot pressure is as constant as possible. An external pilot control via port X is thus often advantageous.

Symbol

The valve can be operated with a higher pressure at X than at P in order to influence the dynamics in a positive form. Important:

For details see information on the explosion protection,

(ET = Standard version)

page 6

Л

Explosion protection "type ia"

The ports X and Y are also pressurized in case of "internal" pilot oil supply and return.

4) Inlet pressure range

XH =

Care should be taken that the system pressure is as constant as possible.

Pilot pressure range: 10 ... 210 bar or 10 ... 315 bar

With regard to the dynamics, the frequency response dependency must be observed within the admissible pressure range.

5) Spool overlap

The spool overlap is specified in % of the control spool stroke.

6) Special number "102"

Without actuation (de-energized condition), channels $P \rightarrow A$ and $B \rightarrow T$ are open for 10 % of the nominal quantity.

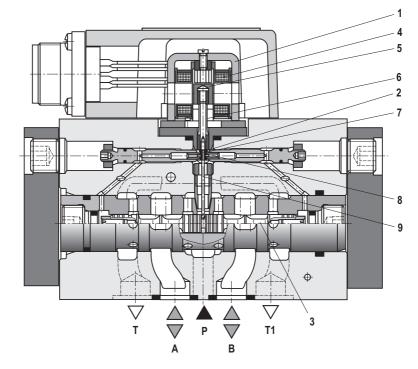
603

Function, section

4WS2EM 10...XH...-102

Valves of this type are electrically operated, 2-stage directional servo-valves with porting pattern according to ISO 4401-05-05-0-05. They are mainly used to control position, force, pressure or velocity.

These valves are made of an electro-mechanical converter (torque motor) (1), a hydraulic amplifier (principle: nozzle flapper plate) (2) and a control spool (3) in a bushing (2nd stage) which is connected with the torque motor via a mechanical feedback.


An electrical input signal at the coils (4) of the torque motor generates a force by means of a permanent magnet which acts on the armature (5), and in connection with a torque tube (6) results in a torque. This causes the flapper plate (7) which is connected to the torque tube (6) via a pin to move from the central position between the two control nozzles (8), and a pressure differential is created across the front faces of the control spool (3). The pressure differential results in the spool changing its position, which results in the pressure port being connected to one actuator port and, at the same time, the other actuator port being connected to the return flow port.

The control spool is connected to the flapper plate or the torque motor by means of a bending spring (mechanical feedback) (9). The position of the spool is changed until the feedback torque across the bending spring and the electro-magnetic torque of the torque motor are balanced and the pressure differential at the nozzle flapper plate system becomes zero.

The stroke of the control spool and consequently the flow of the servo valve are controlled in proportion to the electrical input signal. It must be noted that the flow depends on the valve pressure drop.

External control electronics (separate order)

External control electronics (servo amplifier) serve the actuation of the valve, amplifying an analog input signal (command value) so that with the output signal, the servo valve is actuated in a flow-controlled form.

Type 4WS2EM 10...XH...-102

Hydraulics Bosch Rexroth AG 5/14

Technical data

general			
Porting pattern			ISO 4401-05-05-0-05
Installation position			Any (Ensure that upon system start-up, the pilot control is supplied with enough pressure (≥10 bar)!)
Surface protection	Valve body, cover, filter screw		Nitro-carburated
	Сар		Anodized
Storage temperature	range	°C	-20 +70
Ambient temperature	range	°C	-20 +60
Weight		kg	3.56

hydraulic (measured with HLP 32, ϑ_{oil} = 40 °C ± 5 °C)

Operating	Pilot control stage, pilot oil sup	ply bar	10 210	or 10 31	15					
pressure	Main valve, ports P, A, B	bar	up to 315							
Return flow	Port T									
pressure	Pilot oil return internal	bar	Pressure	peaks < 10	0 perm	nitted				
	Pilot oil return external	bar	up to 315							
	Port Y	bar	Pressure	peaks < 10	0 perm	nitted,	static	< 10		
Hydraulic fluid			I (HL, HLP) mperature :			DIN	51524			
Hydraulic fluid	temperature range	°C	-15 +60	0; preferabl	y +40 .	+50)			
Viscosity range	e	mm²/s	15 380	; preferably	30 4	45				
	nissible degree of contamination of cleanliness class according to IS		Class 18/	16/13 ¹⁾						
	rlap E nout dither signal	l/min	$ \frac{p_{p}^{4}}{70} \bullet 0.7 \frac{l}{\min} \left\ \frac{p_{p}^{4}}{70 \text{ bar}} \bullet 0.9 \frac{l}{\min} \right\ \sqrt{\frac{p_{p}^{4}}{70 \text{ bar}}} \bullet 1.2 \frac{l}{\min} \ \overline{77} + 1.2 \frac{l}{10 \text{ bar}} + 1.2 $				70 bar	1.5 <u>—</u> min	$\sqrt{\frac{p_{\rm p}^{4)}}{70 \rm bar}} \cdot 1.7 \frac{\rm l}{\rm min}$	
Rated flows q with valve pres (35 bar/edge)	$p_{rated}^{3)}$, tolerance ±10 % ssure differential Δp = 70 bar	l/min	5	10	20	30	45	60	75	90
	pool stroke possible with mechan n case of error) related to nomina		120 170 120 150					50		
Feedback syst	tem		Mechanic	al						
Hysteresis (dit	her-optimized)	%	≤ 1.5							
Range of inver	rsion (dither-optimized)	%	≤ 0.3							
Response sen	sitivity (dither-optimized)	%	≤ 0.2							
	Pressure gain with 1 % spool stroke change (from the hydraulic zero point) % of p_p^{-4}			≥ 30 ≥ 60 ≥ 80					≥ 80	
Zero adjustme operating pres	%	≤ 3, long-i	term ≤ 5							
Zero shift upor	n change of:									
Hydraulic flu	uid temperature	% / 20 K	≤ 1							
Ambient ten	nperature	% / 20 K	≤ 1							
Operating p	ressure 80 120 % of $p_{ m P}{}^{4)}$	% / 100 bar	≤ 2							
Return flow	pressure 0 10 % of pp 4)	% / bar	≤ 1							
			-							

¹⁾ The cleanliness classes specified for the components must be adhered to in hydraulic systems. Effective filtration prevents faults and at the same time increases the service life of the components. For the selection of the filters see www.boschrexroth.com/filter ²⁾ $q_{V,L}$ = Zero flow in I/min

³⁾ $q_{v rated}$ = Rated flow in I/min

⁴⁾ $p_{\rm P}$ = Operating pressure in bar

605

Technical data

electric	
Protection class according to EN 60529:1991+A1:2000	IP 65 with mating connector correctly mounted and locked
Type of signal	Analog
Rated current per coil mA	30
Resistance per coil Ω	85
Inductivity with 60 Hz and 100 % rated current Connection in parallel H	0.25
In case of actuation using non-Rexroth amplifiers, we recomme	end a superimposed dither signal

Information on explosion protection

Range of application as per directive 94/9/EC			II 1G				
Type of protection according to EN 60079-0:2009 / EN 60079-11:2007			Ex ia IIC T4 Ga				
Ambient temperature range		°C	-20 +60				
Hydraulic fluid temperature range		°C	-15 +60				
Electric supply of the valve only from certi-	U _{max} V		9.3				
fied, intrinsically safe electrical circuits with	I _{max} mA		390				
the following maximum values	P _{max}	mW	907				
Conditions for use in zone 0			The valve cap consists of die-cast aluminum. For the use as device of category 1 in zone 0, the valve cap must be protected so that even with rarely occurring malfunc- tions, no ignitable sparks from friction, impact or grinding can be produced.				
			Important: The ignition temperature of the hydraulic fluid used must at least be 150 °C.				
Necessary clearance area for burst protection	I		The specified clearance area for the burst protection (see page 12) must remain free so that in case of error, overpressure can leak through the blanking plug from the valve cap.				

External control electronics

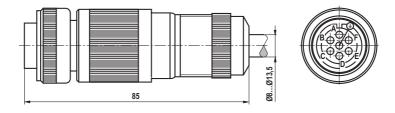
Servo amplifier 1) in modular design	Analog	Type VT 11021 according to data sheet 29743
Recommended safety barrier 1)	Single-channel	Company Stahl, type 9001/02-093-390-101

A WARNING - Risk of explosion

- The servo amplifier and the safety barrier must be operated outside the explosive area!

1) Order separately

Hydraulics Bosch Rexroth AG 7/14


Mating connector

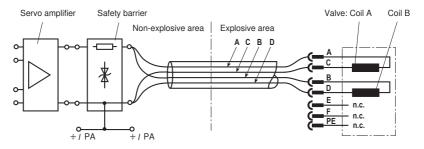
Mating connector according to EN 175201-804 Metal version

Separate order under the Material no. R900223890

Connection:

Solder contacts with connection cross-section for litz wires 0.5 \dots 1.5 mm²

Electrical connection


The coils may only be connected in parallel.

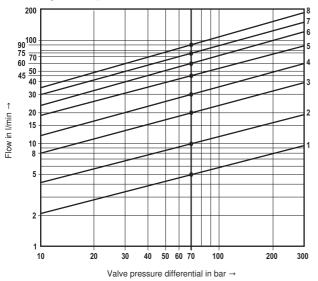
The electrical control with plus (+) at A and B and minus (–) at C and D results in

the flow direction P \rightarrow A and B \rightarrow T.

The reverse electrical control causes flow direction from P \rightarrow B and A \rightarrow T.

Pins E, F and PE at the connector are not connected.

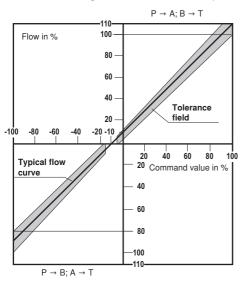
Important


For intrinsically safe electric circuits, only cables and lines approved of for that purpose may be used.

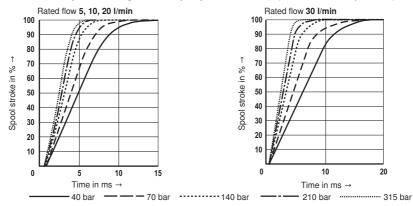
Characteristic curves (measured with HLP32, $\vartheta_{oil} = 40 \text{ °C} \pm 5 \text{ °C}$)

Flow/load function (tolerance ±10 %) with 100 % command value signal

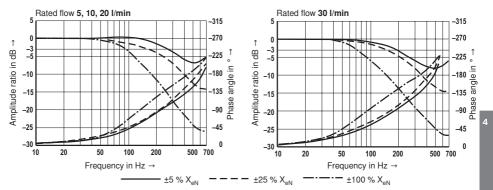
Important:

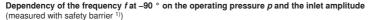

Observe flow values in the max. command value range (see tolerance field of the flow/signal function)

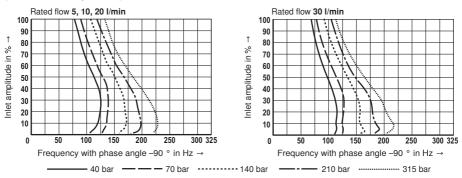
Ordering code	Rated flow	Curve
5	5 l/min	1
10	10 l/min	2
20	20 l/min	3
30	30 l/min	4
45	45 l/min	5
60	60 l/min	6
75	75 l/min	7
90	90 l/min	8


 $\Delta p = \text{Valve pressure differential} \\ (inlet pressure p_p minus \\ load pressure p_L minus \\ return flow pressure p_T)$

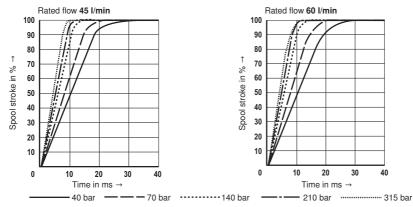
Tolerance field of the flow/signal function at constant valve pressure differential Δp

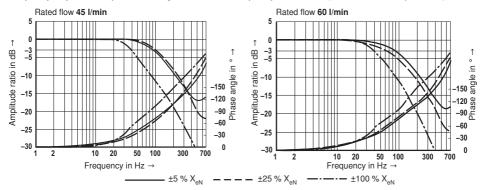


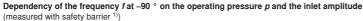

Characteristic curves (measured with HLP 32, $\vartheta_{oil} = 40 \ ^\circ\text{C} \pm 5 \ ^\circ\text{C})$

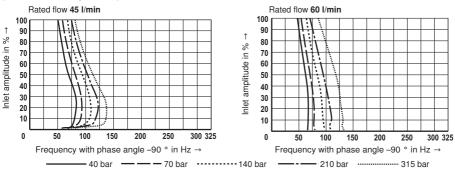

Transition function with pressure rating 315 bar, step response without flow (measured with safety barrier ¹⁾)

Frequency response with pressure rating 315 bar, stroke frequency without flow (measured with safety barrier 1))

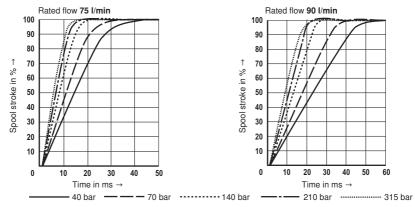



¹⁾ For information on the safety barrier see page 6 and 7

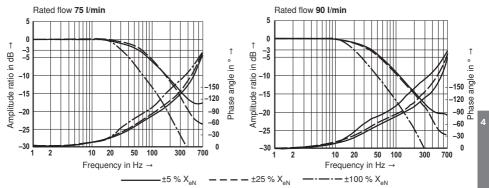

Characteristic curves (measured with HLP 32, their = 40 °C ± 5 °C)

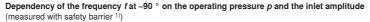

Transition function with pressure rating 315 bar, step response without flow (measured with safety barrier 1))

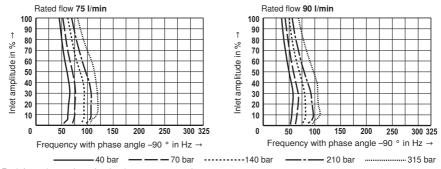
Frequency response with pressure rating 315 bar, stroke frequency without flow (measured with safety barrier ¹⁾)



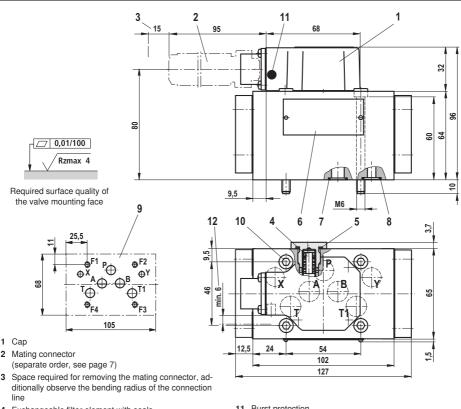
1) For information on the safety barrier see page 6 and 7


610


Characteristic curves (measured with HLP 32, $\vartheta_{oil} = 40 \ ^{\circ}C \pm 5 \ ^{\circ}C$)


Transition function with pressure rating 315 bar, step response without flow (measured with safety barrier 1))

Frequency response with pressure rating 315 bar, stroke frequency without flow (measured with safety barrier 1)



1) For information on the safety barrier see page 6 and 7

611

Unit dimensions (dimensions in mm)

- 4 Exchangeable filter element with seals Material no.: **R961001950**
- 5 Profile seal for filter screw M16 x 1.5, part of item 4
- 6 Name plate
- 7 Identical seal rings for ports P, A, B, T and T1
- 8 Identical seal rings for ports X and Y Ports X and Y are also pressurized in case of "internal" pilot oil supply and return.
- 10 Valve mounting screws
 For reasons of stability, exclusively the following valve mounting screws may be used:
 4 hexagon socket head cap screws
 ISO 4762-M6x70-10.9-fIZn-240h-L
 (Friction coefficient 0.09 0.14 according to VDA 235-101) (included in the delivery)

- 11 Burst protection
- 12 Clearance area for burst protection

Subplates

G 66/01 FE/ZN (G3/8) G 67/01 FE/ZN (G1/2)

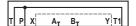
with ports X and Y: G 535/01 FE/ZN (G3/4)

G 535/02 FE/ZN (M27 x 2)

G 536/01 FE/ZN (G1) G 536/02 FE/ZN (M33 x 2)

with dimensions like in data sheet 45054 (must be ordered separately)

Important:

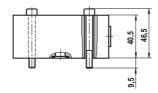

Subplates are no components in the sense of directive 94/9/EC and can be used after the manufacturer of the overall system has assessed the risk of ignition.

The G...FE/ZN versions are free from aluminum and/or magnesium and galvanized.

Flushing plate with porting pattern according to ISO 4401-05-05-0-05 (dimensions in mm)

613

```
Symbol
```



Ordering code and more information

- Material number: R900912450
- Weight: 2 kg
- Identical seal rings for ports P, A, B, T and T1
- Identical seal rings for ports X and Y
- Mounting screws
 For reasons of stability, exclusively the following mounting screws may be used:
 4 hexagon socket head cap screws
 ISO 4762-M6x50-10.9-flZn-240h-L (friction coefficient 0.09 - 0.14 according to VDA 235-101) (included in the delivery)

Important

Before the assembly, observe the information in the Productspecific instructions 29583-XH-102-B3, section 3.2.

Bosch Rexroth AG Hydraulics Zum Eisengießer 1 97816 Lohr am Main, Germany Phone +49 (0) 93 52 / 18-0 Fax +49 (0) 93 52 / 18-23 58 documentation@boschrexroth.de © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Electric Drives and Controls

Hydraulics

Pneumatics

Service

Rexroth Bosch Group

RE 29583-XH-104-B2/12.11 Replaces: 07.11

1/14

3/3 directional servo-valve with mechanical position feedback

Type 4WS2EM 10...XH...-104

Size 10 Component series 5X Maximum operating pressure 315 bar Maximum flow 180 l/min

ATEX units For explosive areas

Part II Data sheet

Information on explosion protection:

Range of application in accordance with the Explosion Protection Directive 94/9/EC

II 1G: Type of protection Ex ia IIC T4 Ga according to EN 60079-0:2009 / EN 60079-11:2007

What you need to know about these operating instructions

These operating instructions apply to the explosion-proof version of Rexroth valves and consist of the following three parts:

Part I General information 07010-X-B1

Part II Data sheet 29583-XH-104-B2

Part III Product-specific instructions 29583-XH-104-B3

Operating instructions 29583-XH-104-B0

You can find further information on the correct handling of Rexroth hydraulic products in our publication "General product information on hydraulic products" 07008.

Table of contents

Content	Page
Features	2
Ordering code and scope of delivery	3
Symbol	3
Function, section	4
Technical data	5 and 6
Information on explosion protection	6
External control electronics	6
Mating connector	7
Electrical connection	7
Characteristic curves	8 to 11
Unit dimensions	12
Flushing plate	13

Features

- Directional servo-valve for proper use in explosive areas of zone 0
- Valve to control position, force, pressure or velocity
- 2-stage servo valve with mechanical feedback
- 1st stage as nozzle flapper plate amplifier
- For subplate mounting, porting pattern according to ISO 4401-05-05-0-05 with ports X and Y suplates available in FE/ZN version (see page 12)
- Dry control motor, no contamination of the solenoid gaps by the hydraulic fluid
- Wear-free spool feedback element
- Control: External control electronics in modular design, additional safety barrier (separate order), see page 6
- Valve is adjusted and tested
- Internal/external pilot oil supply and return can be ordered individually
- Spool with flow force compensation
- Control sleeve centrically fixed, thus low susceptibility to temperature and pressure
- Pressure chambers at the control sleeve with gap seal, therefore no wear of the seal ring
- Filter for 1st stage freely accessible from the outside

Hydraulics Bosch Rexroth AG 3/14

Ordering code and scope of delivery

4	WS2E	: I	M	10	<mark>-</mark> 5	X/	В	1	1)	H		K	31		V – 1	04		
Electrically operated 2-stage servo valve directional design fo nal control electronic Mechanical feedbac Size	in 3/3 r exter- cs k		= 10	-											V =		able	Special number ⁶⁾ Seal material FKM seals for mineral oil according to DIN 51524
Component series 5 (50 to 59: unchange nection dimensions) Rated flow ¹⁾		ation a	Ind	= { con-	5X									E = D =				5 % negative
5 l/min 10 l/min 20 l/min 30 l/min 45 l/min					=	= 5 = 10 = 20 = 30 = 45							K31				al co	5 % positive nnection via connector or separately, see page 7
60 l/min 75 l/min 90 l/min					-	= 60 = 75 = 90						210 315	=					10 to 210 bar 10 to 315 bar
Valve for external or Coil no. 11 (30 mA/8 Included in the deli	5Ωper						 = 1	1			-= E= T= ET=			S	upply upply upply Supply	exteri interi exter inter	nal, re nal, re mal, r mal, r	and return ³⁾ eturn external eturn external return internal return internal

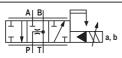
- Valve mounting screws

 Valve operating instructions with declaration of conformity in part III

1) Rated flow

The rated flow refers to a 100 % command value signal at 35 bar valve pressure differential per control edge. The valve pressure differential must be regarded as reference. Other values result in the flow being changed. A possible rated flow tolerance of ± 10 % must be taken into account (see flow signal function page 8).

2) External control electronics


The actuating signal must be created from a flow-controlled output stage with a superimposed dither signal. Control electronics (servo amplifier) see page 6.

3) Pilot oil

Care should be taken that the pilot pressure is as constant as possible. An external pilot control via port X is thus often advantageous.

The valve can be operated with a higher pressure at X than

Symbol

at P in order to influence the dynamics in a positive form. **Important:**

The ports X and Y are also pressurized in case of "internal" pilot oil supply and return.

For details see information on the explosion protection,

4) Inlet pressure range

XH =

Care should be taken that the system pressure is as constant as possible. Pilot pressure range: 10 ... 210 bar or 10 ... 315 bar

With regard to the dynamics, the frequency response dependency must be observed within the admissible pressure range.

5) Spool overlap

The spool overlap is specified in % of the control spool stroke.

6) Special number "104"

Without command value actuation (0 mA), channel B is set to half the operating pressure. In the control area, channel A is always blocked.

617

page 6

(ET = Standard version)

Explosion protection "type ia"

Function, section

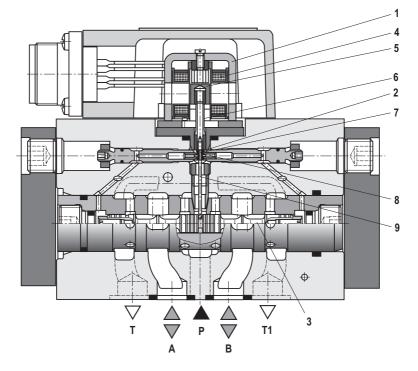
4WS2EM 10...XH...-104

Valves of this type are electrically operated, 2-stage directional servo-valves with porting pattern according to ISO 4401-05-05-0-05. They are mainly used to control position, force, pressure or velocity.

These valves are made of an electro-mechanical converter (torque motor) (1), a hydraulic amplifier (principle: nozzle flapper plate) (2) and a control spool (3) in a bushing (2nd stage) which is connected with the torque motor via a mechanical feedback.

An electrical input signal at the coils (4) of the torque motor generates a force by means of a permanent magnet which acts on the armature (5), and in connection with a torque tube (6) results in a torque. This causes the flapper plate (7) which is connected to the torque tube (6) via a pin to move from the central position between the two control nozzles (8), and a pressure differential is created across the front faces of the control spool (3). The pressure differential results in the spool changing its position, which results in the pressure port being connected to one actuator port and, at the same time, the other actuator port being connected to the return flow port.

Special number 104 is a 3/3 directional servo-valve so that depending on the input signal either P to B or B to T is connected. In the control area, channel A is always blocked.


The control spool is connected to the flapper plate or the torque motor by means of a bending spring (mechanical feedback) (9). The position of the spool is changed until the feedback torque across the bending spring and the electro-magnetic torque of the torque motor are balanced and the pressure differential at the nozzle flapper plate system becomes zero.

The stroke of the control spool and consequently the flow of the servo valve are controlled in proportion to the electrical input signal. It must be noted that the flow depends on the valve pressure drop.

External control electronics (separate order)

External control electronics (servo amplifier) serve the actuation of the valve, amplifying an analog input signal (command value) so that with the output signal, the servo valve is actuated in a flow-controlled form.

Technical data

general								
Porting pattern		ISO 4401-05-05-0-05						
Installation position Any (Ensure that upon system start-up, the pi is supplied with enough pressure (≥10 ba								
Surface protection	Valve body, cover, filter screw	Nitro-carburated						
	Сар	Anodized						
Storage temperature	range °C	-20 +70						
Ambient temperature	range °C	-20 +60						
Weight	k	3.56						

hydraulic (measured with HLP 32, $\vartheta_{oil} = 40 \text{ °C} \pm 5 \text{ °C})$

	2 OII									
Operating	Pilot control stage, pilot oil sup	ply bar	10 210	or 10 31	5					
pressure	Main valve, ports P, A, B	up to 315								
Return flow	Port T									
pressure	Pilot oil return internal	bar	Pressure peaks < 100 permitted							
	Pilot oil return external	bar	up to 315							
	Port Y	Pressure	peaks < 100	0 permit	ted, st	atic	< 10			
Hydraulic fluid			I (HL, HLP) mperature :			DIN	51524			
Hydraulic fluid	temperature range	°C	-15 +60); preferably	y +40	+50				
Viscosity range	e	mm²/s	15 380;	preferably	30 45	5				
	issible degree of contamination o cleanliness class according to IS		Class 18/1	16/13 ¹⁾						
Zero flow q _{V, L} with spool ove measured with	²⁾ rlap E iout dither signal	$ \left\ \frac{\left \overline{\rho_{p}}^{4} \right }{70 \text{ ba}^{4}} \cdot 0.6 \frac{l}{\min} \right\ \frac{\left \overline{\rho_{p}}^{4} \right }{70 \text{ ba}^{4}} \cdot 0.7 \frac{l}{\min} \right\ \sqrt{\frac{\rho_{p}}{70}} \frac{\left \overline{\rho_{p}}^{4} \right }{70 \text{ ba}^{4}} \cdot 0.9 \frac{l}{\min} \ \sqrt{\frac{\rho_{p}}{70}} \frac{1}{10 \text{ ba}^{4}} \cdot 1.1 \frac{l}{\min} \ \sqrt{\frac{\rho_{p}}{70}} \frac{1}{10 \text{ ba}^{4}} \frac{1}{10 \text{ ba}^$						$\sqrt{\frac{p_{\rm P}^{4)}}{70 \rm bar}} \cdot 1.3 \frac{\rm l}{\rm min}$		
Rated flows q _v with valve pres	$_{\rm rated}$ ³⁾ , tolerance ±10 % soure differential Δp = 35 bar/edge	e l/min	5	10	20	30	45	60	75	90
	bool stroke possible with mechani n case of error) related to nomina		120 170 120 150							
Feedback syst	em		Mechanical							
Hysteresis (dit	her-optimized)	%	≤ 1.5							
Range of inver	sion (dither-optimized)	%	≤ 0.3							
Response sen	sitivity (dither-optimized)	%	≤ 0.2							
	with 1 % spool stroke change aulic zero point)	≥ 15 ≥ 30 ≥ 40								
Zero adjustme operating pres	nt flow over the entire sure range	≤ 3, long-term ≤ 5								
Zero shift upor	n change of:									
Hydraulic flu	id temperature	< ≤ 1								
Ambient terr	nperature	< ≤ 1								
Operating pr	ressure 80 120 % of $p_{\rm P}^{\rm 4)}$	≤ 2								
Return flow	pressure 0 10 % of $p_{\rm P}^{4)}$	% / bar	≤ 1							

¹⁾ The cleanliness classes specified for the components must be adhered to in hydraulic systems. Effective filtration prevents faults and at the same time increases the service life of the components. For the selection of the filters see www.boschrexroth.com/filter ²⁾ $q_{V,L}$ = Zero flow in l/min

³⁾ $q_{v rated}$ = Rated flow in I/min

⁴⁾ $p_{\rm P}$ = Operating pressure in bar

Technical data

IP 65 with mating connector correctly mounted and locked
• ·
Analog
30
85
0.25
30 85

Information on explosion protection

Range of application as per directive 94/9/EC			II 1G				
Type of protection according to EN 60079-0:2009 / EN 60079-11:2007			Ex ia IIC T4 Ga				
Ambient temperature range		°C	-20 +60				
Hydraulic fluid temperature range		°C	-15 +60				
Electric supply of the valve only from certi-	U _{max}	V	9.3				
fied, intrinsically safe electrical circuits with the following maximum values		mA	390				
		mW	907				
Conditions for use in zone 0	P _{max}		The valve cap consists of die-cast aluminum. For the use as device of category 1 in zone 0, the valve cap must be protected so that even with rarely occurring malfunc- tions, no ignitable sparks from friction, impact or grinding can be produced.				
			The ignition temperature of the hydraulic fluid used must at least be 150 °C.				
Necessary clearance area for burst protection			The specified clearance area for the burst protection (see page 12) must remain free so that in case of error, overpres- sure can leak through the blanking plug from the valve cap.				

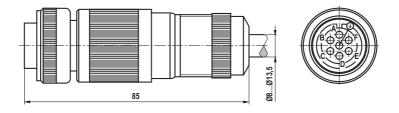
External control electronics

Servo amplifier 1) in modular design	Analog	Type VT 11021 according to data sheet 29743
Recommended safety barrier 1)	Single-channel	Company Stahl, type 9001/02-093-390-101

A WARNING - Risk of explosion

- The servo amplifier and the safety barrier must be operated outside the explosive area!

1) Order separately

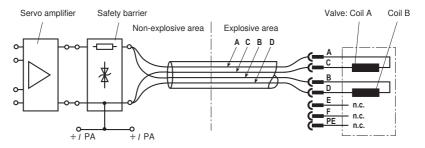

Mating connector

Mating connector according to EN 175201-804 Metal version

Separate order under the Material no. R900223890

Connection:

Solder contacts with connection cross-section for litz wires 0.5 \dots 1.5 \mbox{mm}^2


621

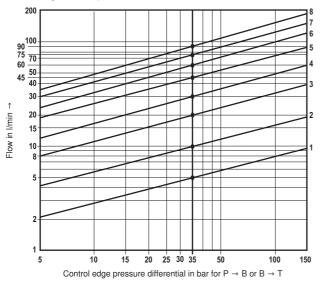
Electrical connection

The coils may only be connected in parallel.

The electrical control with plus (+) at A and B and minus (-) at C and D results in the flow direction $B \rightarrow T$. Reverse electrical control results in the flow direction $P \rightarrow B$.

Pins E, F and PE at the connector are not connected.

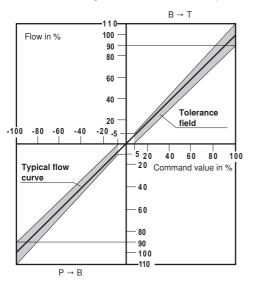
Important


For intrinsically safe electric circuits, only cables and lines approved of for that purpose may be used.

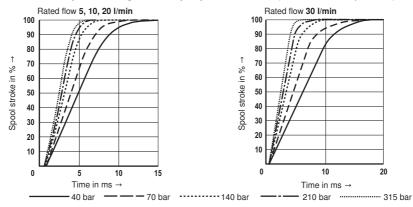
Characteristic curves (measured with HLP32, $\vartheta_{oil} = 40 \text{ °C} \pm 5 \text{ °C}$)

Flow/load function (tolerance ±10 %) with 100 % command value signal

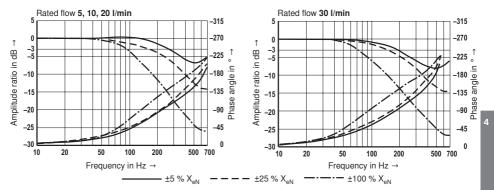
Important:

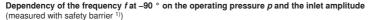

Observe flow values in the max. command value range (see tolerance field of the flow/signal function)

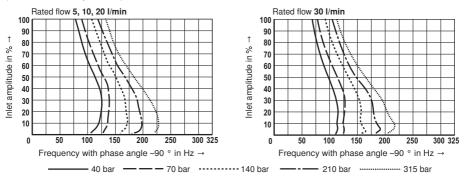
Ordering code Rated flow Curve 5 5 l/min 1 10 10 l/min 2 20 20 l/min 3 30 30 l/min 4 45 45 l/min 5 60 60 l/min 6 75 75 l/min 7					
10 10 l/min 2 20 20 l/min 3 30 30 l/min 4 45 45 l/min 5 60 60 l/min 6		Rated flow	Curve		
20 20 I/min 3 30 30 I/min 4 45 45 I/min 5 60 60 I/min 6	5	5 l/min	1		
30 30 l/min 4 45 45 l/min 5 60 60 l/min 6	10	10 l/min	2		
45 45 l/min 5 60 60 l/min 6	20	20 l/min	3		
60 60 l/min 6	30	30 l/min	4		
	45	45 l/min	5		
75 75 l/min 7	60	60 l/min	6		
	75	75 l/min	7		
90 90 l/min 8	90	90 l/min	8		


 $\Delta p = \text{Valve pressure differential} \\ (inlet pressure p_{P} minus \\ load pressure p_{L} minus \\ return flow pressure p_{T})$

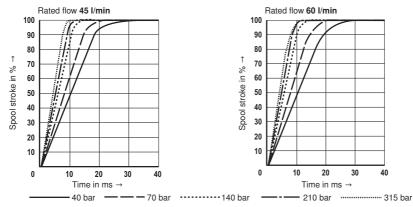
Tolerance field of the flow/signal function at constant valve pressure differential Δp

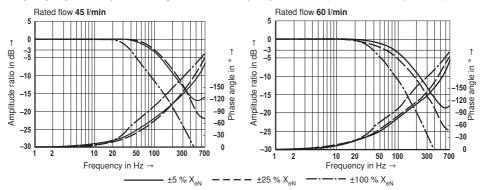


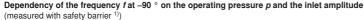

Characteristic curves (measured with HLP 32, $\vartheta_{oil} = 40 \text{ °C} \pm 5 \text{ °C})$

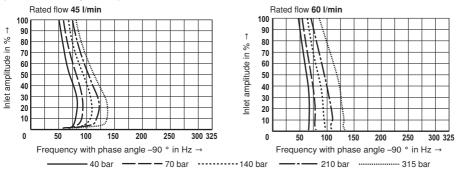

Transition function with pressure rating 315 bar, step response without flow (measured with safety barrier ¹⁾)

Frequency response with pressure rating 315 bar, stroke frequency without flow (measured with safety barrier 1))

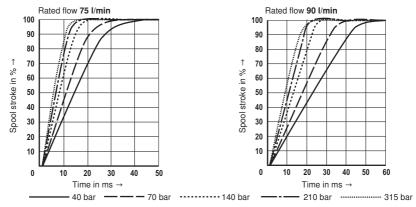



¹⁾ For information on the safety barrier see page 6 and 7

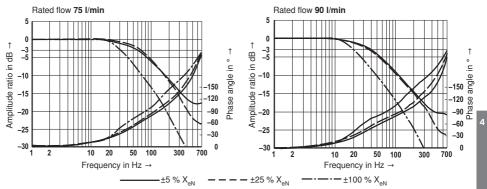

Characteristic curves (measured with HLP 32, their = 40 °C ± 5 °C)

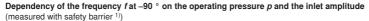

Transition function with pressure rating 315 bar, step response without flow (measured with safety barrier 1))

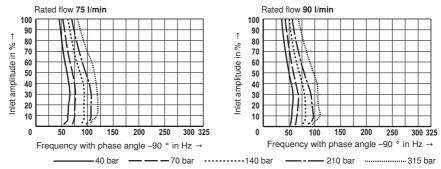
Frequency response with pressure rating 315 bar, stroke frequency without flow (measured with safety barrier ¹⁾)



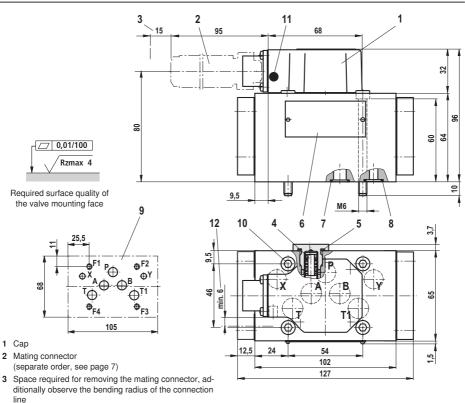
1) For information on the safety barrier see page 6 and 7


624


Characteristic curves (measured with HLP 32, $\vartheta_{oil} = 40 \ ^{\circ}C \pm 5 \ ^{\circ}C$)


Transition function with pressure rating 315 bar, step response without flow (measured with safety barrier 1))

Frequency response with pressure rating 315 bar, stroke frequency without flow (measured with safety barrier 1)



1) For information on the safety barrier see page 6 and 7

Unit dimensions (dimensions in mm)

- 4 Exchangeable filter element with seals Material no.: R961001950
- 5 Profile seal for filter screw M16 x 1.5, part of item 4
- 6 Name plate
- 7 Identical seal rings for ports P, A, B, T and T1
- 8 Identical seal rings for ports X and Y Ports X and Y are also pressurized in case of "internal" pilot oil supply and return.
- 9 Processed valve mounting face Porting pattern according to ISO 4401-05-05-0-05 Port T1 is optional and is recommended for reducing the pressure differential from B \rightarrow T with rated flows > 45 l/min.
- 10 Valve mounting screws
 For reasons of stability, exclusively the following valve mounting screws may be used:
 4 hexagon socket head cap screws
 ISO 4762-M6x70-10.9-fiIzn-240h-L
 (Friction coefficient 0.09 0.14 according to VDA 235-101)(included in the delivery)

- 11 Burst protection
- 12 Clearance area for burst protection

Subplates

G 66/01 FE/ZN (G3/8) G 67/01 FE/ZN (G1/2)

with ports X and Y: G 535/01 FE/ZN (G3/4)

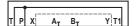
G 535/02 FE/ZN (M27 x 2)

G 536/01 FE/ZN (G1)

G 536/02 FE/ZN (M33 x 2)

with dimensions like in data sheet 45054 (must be ordered separately)

Important:

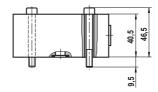

Subplates are no components in the sense of directive 94/9/EC and can be used after the manufacturer of the overall system has assessed the risk of ignition.

The G...FE/ZN versions are free from aluminum and/or magnesium and galvanized.

Flushing plate with porting pattern according to ISO 4401-05-05-0-05 (dimensions in mm)

627

```
Symbol
```



Ordering code and more information

- Material number: R900912450
- Weight: 2 kg
- Identical seal rings for ports P, A, B, T and T1
- Identical seal rings for ports X and Y
- Mounting screws
 For reasons of stability, exclusively the following mounting screws may be used:
 4 hexagon socket head cap screws
 ISO 4762-M6x50-10.9-fIZn-240h-L (friction coefficient 0.09 - 0.14 according to VDA 235-101) (included in the delivery)

Important

Before the assembly, observe the information in the Productspecific instructions 29583-XH-104-B3, section 3.2.

Bosch Rexroth AG Hydraulics Zum Eisengießer 1 97816 Lohr am Main, Germany Phone +49 (0) 93 52 / 18-2 Fax +49 (0) 93 52 / 18-23 58 documentation@boschrexroth.de © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Electric Drives and Controls

Hydraulics

629

Pneumatics

Service

Rexroth Bosch Group

1/12

4/3 directional servo-valve with mechanical position feedback

RE 29583-XN-B2/09.10 Replaces: 03.07

Type 4WS2EM 10...XN

Size 10 Component series 5X Maximum operating pressure 315 bar Maximum flow 180 l/min

ATEX units For explosive areas

Part II Data sheet

Information on explosion protection:

Range of application in accordance with the Explosion Protection Directive 94/9/EC

II3G: Type of protection Ex nA II T5X according to EN 60079-0:2006 / EN 60079-15:2005

II3D: Type of protection Ex tD A22 IP 65 TX according to EN 61241-0:2006 / EN 61241-1:2004

What you need to know about these operating instructions

These operating instructions apply to the explosion-proof version of Rexroth valves and consist of the following three parts:

Part I General information 07010-X-B1

Part II Data sheet 29583-XN-B2

Part III Product-specific instructions 29583-XN-B3

Operating instructions 29583-XN-B0

You can find further information on the correct handling of Rexroth hydraulic products in our publication "General product information on hydraulic products" 07008.

Table of contents

Content	Page
Features	2
Ordering code and scope of delivery	3
Symbol	3
,	-
Function, section	4
Technical data	5 and 6
Information on explosion protection	6
External control electronics	6
Mating connector	6
Electrical connection	6
Characteristic curves	7 to 10
Unit dimensions	11
Flushing plate	12

Features

- Directional servo-valve for proper use in explosive areas of zone 2 and 22
- Valve to control position, force, pressure or velocity
- 2-stage servo valve with mechanical feedback
- 1st stage as nozzle flapper plate amplifier
- For subplate mounting, porting pattern according to ISO 4401-05-05-0-05 with ports X and Y suplates available in FE/ZN version (see page 11)
- Dry control motor, no contamination of the solenoid gap by the hydraulic fluid
- Can also be used as 3-way version
- Wear-free spool feedback element
- Control: External control electronics in Eurocard format or in modular design (separate order), see page 6
- Valve is adjusted and tested
- Internal/external pilot oil supply and return can be ordered individually
- Spool with flow force compensation
- Control sleeve centrically fixed; thus low susceptibility to temperature and pressure
- Pressure chambers at the control sleeve with gap seals, therefore no wear of the seal ring
- Filter for 1st stage freely accessible from the outside

Ordering code and scope of delivery

										<u> </u>	 								
	4WS2E	: 1	M	10	÷5)	(/	B	·	11	XN		K	31		· '	V			
Electrically actua 2-stage servo va	lve in					-	•									v.	-	FK	material
4/3 directional de external control	electronics																	LP) acco	ineral oil ording to N 51524
Mechanical feed	back	= M]																verlap 5)
Size			= 10												E =			•	negative
Component serie (50 to 59: unchat connection dime	nged installa	ition a	and	= {	5X										D = C =		0.	0.5 %	positive positive
	nsions)																Electri	ical con	nection
Rated flow 1)													K	31	=			with co	onnector
5 l/min						= 5								N	Mating	g coi	nnector -	- separa	te order,
10 l/min						10												see	e page 6
20 l/min 30 l/min						20 30							Inl	et i	press	ure	range to	the 1st	stage 4)
30 i/min 45 i/min						30 45						210					5		210 bar
40 l/min						60						315	=					10 to	315 bar
75 l/min						75						L			F	Pilot	oil supr	olv and	return 3)
90 l/min					-	90					-=								external
Valve for extern	al control ele	ectron	lics				1				E =								external
coil no. 11 (30 m							=	11			T =								n internal
)									ET =						,	,	n internal

Included in the delivery:

- Valve mounting screws
- Valve operating instructions with declaration of conformity in part III

1) Rated flow

The rated flow refers to a 100% command value signal at 70 bar valve pressure differential (35 bar per control edge). The valve pressure differential must be regarded as reference. Other values result in the flow being changed. A possible rated flow tolerance of ±10% must be taken into account (see flow signal function page 7).

2) External control electronics

The actuating signal must be created from a flow-controlled output stage with a superimposed dither signal. Control electronics (servo amplifier) see page 6.

3) Pilot oil

Care should be taken that the pilot pressure is as constant as possible. An external pilot control via port X is thus often advantageous.

Symbol

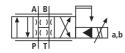
			D = C =	0 0.5 % positive 3 5 % positive
		K31		Electrical connection with connector onnector – separate order, see page 6
		Inlet	pressur	e range to the 1 st stage 4)
		210 = 315 =		10 to 210 bar 10 to 315 bar
			Pilo	ot oil supply and return 3)
	-=		Supp	ly external, return external
	E =			ply internal, return external
	T =			ply external, return internal
	ET =		Sup	pply internal, return internal (ET = Standard version)
XN =			Exp	losion protection "type nA"
			For det	ails see information on the

The valve can be operated with a higher pressure at X than at P in order to influence the dynamics in a positive form. Important:

explosion protection, page 6

4

The ports X and Y are also pressurized in case of "internal" pilot oil supply and return.


4) Inlet pressure range

Care should be taken that the system pressure is as constant as possible. Pilot pressure range: 10 ... 210 bar or 10 ... 315 bar

With regard to the dynamics, the frequency response dependency must be observed within the admissible pressure range.

5) Spool overlap

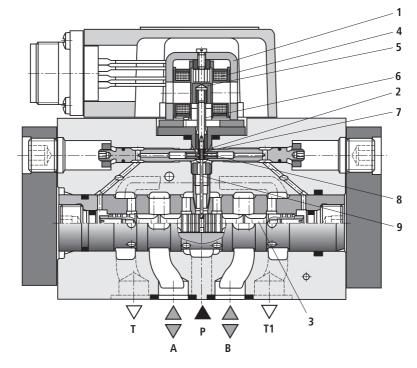
The spool overlap is specified in % of the control spool stroke.

Function, section

4WS2EM 10-5X/...XN

Valves of this type are electrically operated, 2-stage directional servo-valves with porting pattern according to ISO 4401-05-05-0-05. They are mainly used to control position, force, pressure or velocity.

These valves are made of an electro-mechanical converter (torque motor) (1), a hydraulic amplifier (principle: nozzle flapper plate) (2) and a control spool (3) in a sleeve (2nd stage) which is connected with the torque motor via a mechanical feedback.


An electrical input signal at the coils (4) of the torque motor generates a force by means of a permanent magnet which acts on the armature (5), and in connection with a torque tube (6) results in a torque. This causes the flapper plate (7) which is connected to the torque tube (6) via a pin to move from the central position between the two control nozzles (8), and a pressure differential is created across the front faces of the control spool (3). The pressure differential results in the spool changing its position, which results in the pressure port being connected to one actuator port and, at the same time, the other actuator port being connected to the return flow port.

The control spool is connected to the flapper plate or the torque motor by means of a bending spring (mechanical feedback) (9). The position of the spool is changed until the feedback torque across the bending spring and the electro-magnetic torque of the torque motor are balanced and the pressure differential at the nozzle flapper plate system becomes zero.

The stroke of the control spool and consequently the flow of the servo valve are controlled in proportion to the electrical input signal. It must be noted that the flow depends on the valve pressure drop.

External control electronics (separate order)

External control electronics (servo amplifier) serve the actution of the valve, amplifying an analog input signal (command value) so that with the output signal, the servo valve is actuated in a flow-controlled form.

Type 4WS2EM 10...XN

4

Technical data

general								
Porting pattern		ISO 4401-05-05-0-05						
Installation position		Any (Ensure that upon system start-up, the pilot control is supplied with enough pressure (≥10 bar)!)						
Surface protection	Valve body, cover, filter screw	Nitro-carburated						
	Сар	Anodized						
Storage temperature	range °C	-20 +80						
Ambient temperature	range °C	-30 +80						
Weight	kg	3.56						

hydraulic (measured with HLP 32, $\vartheta_{oil} = 40^{\circ}C \pm 5^{\circ}C$)

			/							
Operating	Pilot control stage, pilot oil s	upply bar	10 210	or 10 31	5					
pressure	Main valve, ports P, A, B bar		to 315							
Return flow Port T										
pressure	Pilot oil return internal	bar	Pressure	peaks <100) perm	itted				
	Pilot oil return external	bar	to 315							
	Port Y	bar	Pressure	peaks <100) perm	itted, s	static ·	< 10		
Hydraulic fluid				I (HL, HLP) mperature			o DIN	51524		
Hydraulic fluid te	mperature range	°C	-15 +80	; preferably	/ +40 .	+50				
Viscosity range		mm²/s	15 380;	preferably	30	45				
	sible degree of contamination c leanliness class according to IS		Class 18/1	16/13 ¹⁾						
Zero flow $q_{V,L}^{(2)}$ with spool overlar measured without	l/min	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					$\sqrt{\frac{p_{\rm P}^{4)}}{70 \rm bar}} \cdot 1.7 \frac{\rm I}{\rm min}$			
Rated flows $q_{v rai}$ with valve press (35 bar/edge)	l/min	5	10	20	30	45	60	75	90	
	ol stroke possible with mechan case of error) related to nomina		120 170 120 150							
Feedback syster	n		Mechanical							
Hysteresis (dithe	er-optimized)	%	∮ ≤ 1,5							
Range of inversi	on (dither-optimized)	%	≤ 0.3							
Response sensit	tivity (dither-optimized)	%	≤ 0.2							
Pressure gain with 1 % spool stroke change (from the hydraulic zero point) % of p_p^{-4}			≥ 30 ≥ 60 ≥ 80					≥ 80		
Zero adjustment flow over the entire % operating pressure range			≤ 3, long-term ≤ 5							
Zero shift upon c	change of:									
Hydraulic fluid	temperature	% / 20 K	≤ 1							
Ambient temp	erature	% / 20 K	≤ 1							
Operating pres	ssure 80 120 % of p _P 4)	% / 100 bar	≤ 2							
Return flow pr	essure 0 10 % of p _P ⁴⁾	% / bar	≤ 1							
	· · · · · · · · · · · · · · · · · · ·									

¹⁾ The cleanliness classes specified for the components must be adhered to in hydraulic systems. Effective filtration prevents faults and at the same time increases the service life of the components. For the selection of filters, see www. boschrexroth.com/filter

- ²⁾ $q_{\rm V,L}$ = Zero flow in l/min
- ³⁾ $q_{\rm v rated}$ = Rated flow in l/min
- ⁴⁾ $p_{\rm P}$ = Operating pressure in bar

Technical data

electric						
Protection class according	to EN 60529:1991+A1:2000	IP 65 with mating connector correctly mounted and locked				
Type of signal		Analog				
Rated current per coil mA			30			
Resistance per coil		85				
Inductivity with 60 Hz	Connection in series	Н	1.0			
and 100% rated current	Connection in parallel	Н	0.25			
In case of actuating using non-Rexroth amplifiers, we recommend a superimposed dither signal						

Information on explosion protection

• •		
Range of application as per directive 94/9/EC		II 3 G; II 3 D
Type of protection according to EN 60079-0:2006 / EN 60079-15:2005		Ex nA II T5X
Type of protection according to EN 61241-0:2006 / EN 61241-1:2004		Ex tD A22 IP 65 TX
Maximum surface temperature	°C	100
Ambient temperature range	°C	-30 +80
Hydraulic fluid temperature range	°C	-15 +80
Max. admissible operating voltage of the servo amplifier	V	32 (DC)

External control electronics

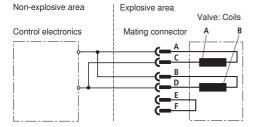
Servo amplifier	Eurocard format	analog	Type VT-SR2-1X/.60 according to data sheet 29980						
(separate order)	Modular design	analog	Type VT 11021 according to data sheet 29743						
The coils of the valve may	The coils of the valve may only be connected in parallel to these amplifiers!								

MARNING – Risk of explosion

- The external servo amplifier must be operated outside the explosive area!

Mating connector

The servo valve may only be supplied through this mating connector.


Electrical connection acc. to EN 175201-804

Metal version Separate order under the material no. **R901044595**

Connection: Contact sockets with soldered joints for litz wires 0.5 ... 1.5 mm²

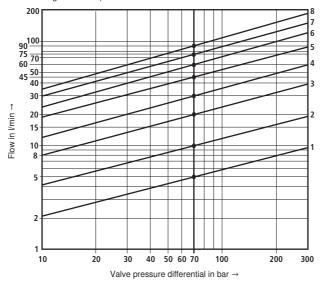
Lock screw

Electrical connection (example of parallel connection)

The coils are connected in parallel in the mating connector or at the amplifier (see figure).

In case of serial connection, contacts ${\sf B}$ and ${\sf C}$ must be connected.

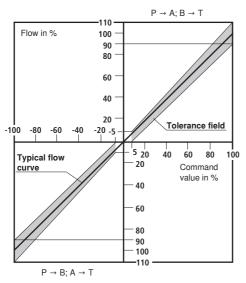
The E-F bridge can be used for the electrical determination of the correct connection of the plug-in connector and/or for the identification of cable break.


The electrical actuation from A (+) to D (–) causes flow direction from P \rightarrow A and B \rightarrow T. The reverse electrical actuation causes flow direction from P \rightarrow B and A \rightarrow T.

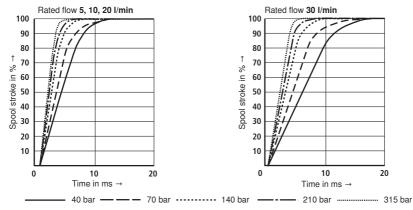
Characteristic curves (measured with HLP 32, $\vartheta_{oil} = 40^{\circ}C \pm 5^{\circ}C$)

Flow/load function (tolerance ±10 %) with 100 % command value signal

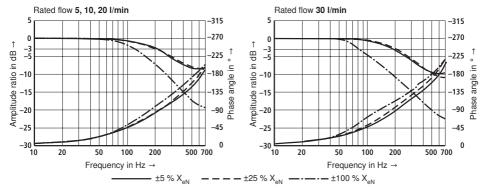
Important:


Observe flow values in the max. command value range (see tolerance field of the flow/signal function)

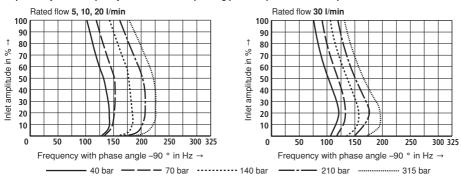
Ordering code	Rated flow	Curve
5	5 l/min	1
10	10 l/min	2
20	20 l/min	3
30	30 l/min	4
45	45 l/min	5
60	60 l/min	6
75	75 l/min	7
90	90 l/min	8


$$\begin{split} \Delta \rho = \text{Valve pressure differential} \\ (\text{inlet pressure } p_{\text{P}} \text{ minus} \\ \text{load pressure } p_{\text{L}} \text{ minus} \\ \text{return flow pressure } p_{\text{T}} \end{split}$$

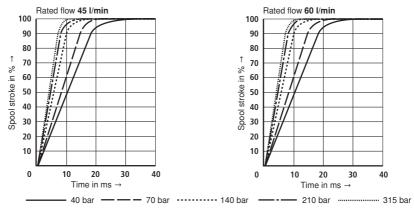
Tolerance field of the flow/signal function at constant valve pressure differential Δp



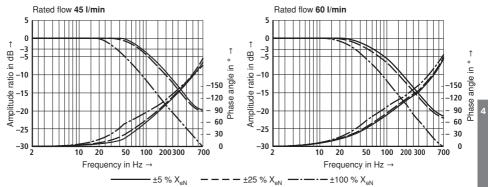
Characteristic curves (measured with HLP 32, $\vartheta_{oil} = 40 \degree C \pm 5 \degree C$)


Transition function with pressure rating 315 bar, step response without flow

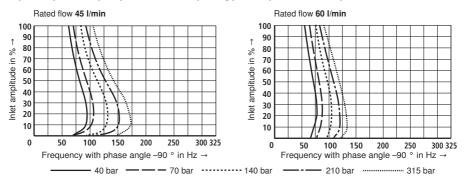
Frequency response with pressure rating 315 bar, stroke frequency without flow

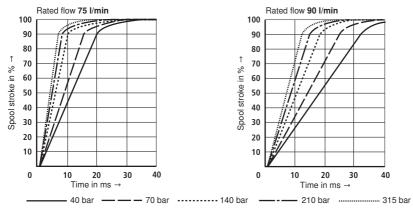


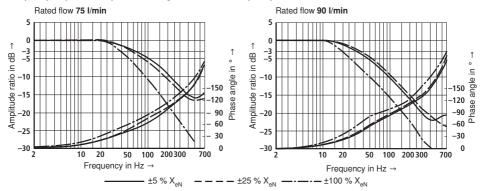
Dependency of the frequency f at -90° on the operating pressure p and the inlet amplitude



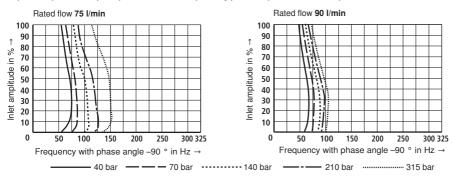
Characteristic curves (measured with HLP 32, $\vartheta_{oil} = 40 \,^\circ\text{C} \pm 5 \,^\circ\text{C}$)

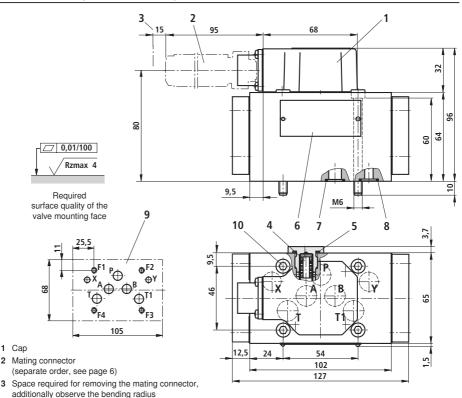

Transition function with pressure rating 315 bar, step response without flow


Dependency of the frequency f at -90° on the operating pressure p and the inlet amplitude


637

Characteristic curves (measured with HLP 32, 0_{oil} = 40 °C ±5 °C)


Transition function with pressure rating 315 bar, step response without flow


Frequency response with pressure rating 315 bar, stroke frequency without flow

Unit dimensions (dimensions in mm)

Subplates

G 66/01 FE/ZN (G3/8) G 67/01 FE/ZN (G1/2)

with ports X and Y: G 535/01 FE/ZN (G3/4) G 535/02 FE/ZN (M27 x 2) G 536/01 FE/ZN (G1) G 536/02 FE/ZN (M33 x 2)

with dimensions as in the data sheet 45054 (must be ordered separately)

Important:

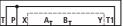
Subplates are no components in the sense of directive 94/9/EC and can be used after the manufacturer of the overall system has assessed the risk of ignition.

The G...FE/ZN versions are free from aluminum and/or magnesium and galvanized.

4

4 Exchangeable filter element material no.: R900306843

of the connection line

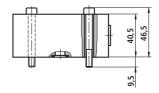

- 5 Profile seal for filter screw M16 x 1.5 material no.: R900012503 (FKM seal)
- 6 Name plate

1 Cap

- 7 Identical seal rings for ports P, A, B, T and T1
- 8 Identical seal rings for ports X and Y Ports X and Y are also pressurized in case of "internal" pilot oil supply and return.
- 9 Processed valve mounting face Porting pattern according to ISO 4401-05-05-0-05 Port T1 is optional and is recommended for reducing the pressure drop from $B \rightarrow T$ with rated flows > 45 l/min.
- 10 Valve mounting screws For reasons of stability, exclusively the following valve mounting screws may be used: 4 hexagon socket head cap screws ISO 4762-M6x70-10.9-flZn-240h-L (Friction coefficient 0.09 - 0.14 according to VDA 235-101) (included in the delivery)

Flushing plate with porting pattern according to ISO 4401-05-05-0-05 (dimensions in mm)

```
Symbol
```



Ordering code and more information

- Material number: R900912450
- Weight: 2 kg
- Identical seal rings for ports P, A, B, T and T1
- Identical seal rings for ports X and Y
- Mounting screws
 For reasons of stability, exclusively the following mounting screws may be used:
 4 hexagon socket head cap screws
 ISO 4762-M6x50-10.9-fIZn-240h-L (friction coefficient 0.09 - 0.14 according to VDA 235-101) (included in the delivery)

Important

Before the assembly, observe the information in the Productspecific instructions 29583-XN-B3, section 3.2.

Bosch Rexroth AG Hydraulics Zum Eisengießer 1 97816 Lohr am Main, Germany Phone +49 (0) 93 52 / 18-0 Fax +49 (0) 93 52 / 18-23 58 documentation@boschrexroh.de © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Electric Drives and Controls

Hydraulics

Service

Rexroth Bosch Group

1/12

4/3 directional servo-valve with mechanical position feedback

Type 4WS2EM 10...XN...-100

Size 10 Component series 5X Maximum operating pressure 315 bar Maximum flow 180 l/min

ATEX units For explosive areas

Part II Data sheet

Information on explosion protection:

Range of application in accordance with the Explosion Protection Directive 94/9/EC

- II3G: Type of protection Ex nA II T5X according to EN 60079-0:2006 / EN 60079-15:2005
- II3D: Type of protection Ex tD A22 IP 65 TX according to EN 61241-0:2006 / EN 61241-1:2004

What you need to know about these operating instructions

These operating instructions apply to the explosion-proof version of Rexroth valves and consist of the following three parts:

Part I General information 07010-X-B1

Part II Data sheet 29583-XN-100-B2

Part III Product-specific instructions 29583-XN-100-B3

Operating instructions 29583-XN-100-B0

You can find further information on the correct handling of Rexroth hydraulic products in our publication "General product information on hydraulic products" 07008.

641

RE 29583-XN-100-B2/10.10

Table of contents

Content	Page
Features	2
Ordering code and scope of delivery	3
Symbol	3
Function, section	4
Technical data	5 and 6
Information on explosion protection	6
External control electronics	6
Mating connector	6
Electrical connection	6
Characteristic curves	7 to 10
Unit dimensions	11
Flushing plate	12

Features

- Directional servo-valve for proper use in explosive areas of zone 2 and 22
- Valve to control position, force, pressure or velocity
- 2-stage servo valve with mechanical feedback
- 1st stage as nozzle flapper plate amplifier
- For subplate mounting, porting pattern according to ISO 4401-05-05-0-05 with ports X and Y suplates available in FE/ZN version (see page 11)
- Dry control motor, no contamination of the solenoid gap by the hydraulic fluid
- Can also be used as 3-way version
- Wear-free spool feedback element
- Control: External control electronics in Eurocard format or in modular design (separate order), see page 6
- Valve is adjusted and tested
- Internal/external pilot oil supply and return can be ordered individually
- Spool with flow force compensation
- Control sleeve centrically fixed; thus low susceptibility to temperature and pressure
- Pressure chambers at the control sleeve with gap seals, therefore no wear of the seal ring
- Filter for 1st stage freely accessible from the outside

Ordering code and scope of delivery

[4WS2E		М	10-	- 5X	/	в	11	X	N		K	31		V - 1	00			
Electrically actua 2-stage servo val 4/3 directional de external control	lve in sign for														V =	100		nur Seal m	Special nber ⁶⁾ aterial
Mechanical feed	back	M													v -	suit	able f	for min	
Size			= 10													(HL,	HLP)		ding to 51524
Component serie (50 to 59: unchar connection dimen Rated flow ¹⁾	nged installa	ition a	Ind	= 5										E = D =				5 % ne).5 % p	erlap ⁵⁾ egative ositive
5 l/min					=	5								C =		Flee		. 5 % p I conn	ositive
10 l/min 20 l/min 30 l/min 45 l/min					= 1 = 2 = 3 = 4	20 30							K31		g coni		W	ith cor	order,
60 l/min					= 6								Inlet	press	ure r	ange	to th	e 1 st s	tage 4)
75 l/min 90 l/min					= 7 = 9	-						210 315						10 to 2 10 to 3	10 bar 15 bar
Valve for externa																			turn 3)
coil no. 11 (30 m	A/85 12 per 0	2011) ^{2,}	, 				= 11				- = E =								xternal
Included in the	deliverv:										T = ET =			S	upply	exter	mal, r	eturn i	xternal nternal nternal

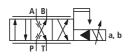
Included in the delivery:

- Valve mounting screws
- Valve operating instructions with declaration of conformity in part III

1) Rated flow

The rated flow refers to a 100% command value signal at 70 bar valve pressure differential (35 bar per control edge). The valve pressure differential must be regarded as reference. Other values result in the flow being changed. A possible rated flow tolerance of $\pm 10\%$ must be taken into account (see flow signal function page 7).

2) External control electronics


The actuating signal must be created from a flow-controlled output stage with a superimposed dither signal. Control electronics (servo amplifier) see page 6.

3) Pilot oil

Care should be taken that the pilot pressure is as constant as possible. An external pilot control via port X is thus often advantageous.

The valve can be operated with a higher pressure at X than at P in order to influence the dynamics in a positive form.

Symbol

Important:

XN =

The ports X and Y are also pressurized in case of "internal" pilot oil supply and return.

For details see information on the explosion protection,

4) Inlet pressure range

Care should be taken that the system pressure is as constant as possible. Pilot pressure range: 10 \dots 210 bar or 10 \dots 315 bar

With regard to the dynamics, the frequency response dependency must be observed within the admissible pressure range.

5) Spool overlap

The spool overlap is specified in % of the control spool stroke.

6) Special number "100"

Without actuation (de-energized condition), channels $P \rightarrow B$ and $A \rightarrow T$ are open for 10 % of the nominal quantity.

page 6

(ET = Standard version)

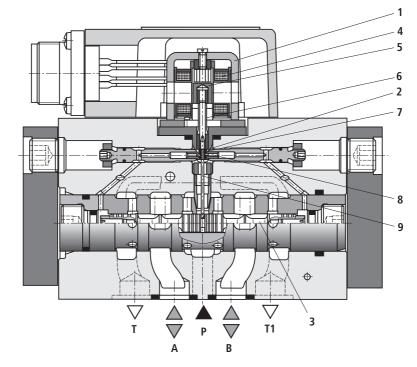
Explosion protection "type nA"

Function, section

4WS2EM 10-5X/...XN...-100

Valves of this type are electrically operated, 2-stage directional servo-valves with porting pattern according to ISO 4401-05-05-0-05. They are mainly used to control position, force, pressure or velocity.

These valves are made of an electro-mechanical converter (torque motor) (1), a hydraulic amplifier (principle: nozzle flapper plate) (2) and a control spool (3) in a sleeve (2nd stage) which is connected with the torque motor via a mechanical feedback.


An electrical input signal at the coils (4) of the torque motor generates a force by means of a permanent magnet which acts on the armature (5), and in connection with a torque tube (6) results in a torque. This causes the flapper plate (7) which is connected to the torque tube (6) via a pin to move from the central position between the two control nozzles (8), and a pressure differential is created across the front faces of the control spool (3). The pressure differential results in the spool changing its position, which results in the pressure port being connected to one actuator port and, at the same time, the other actuator port being connected to the return flow port.

The control spool is connected to the flapper plate or the torque motor by means of a bending spring (mechanical feedback) (9). The position of the spool is changed until the feedback torque across the bending spring and the electro-magnetic torque of the torque motor are balanced and the pressure differential at the nozzle flapper plate system becomes zero.

The stroke of the control spool and consequently the flow of the servo valve are controlled in proportion to the electrical input signal. It must be noted that the flow depends on the valve pressure drop.

External control electronics (separate order)

External control electronics (servo amplifier) serve the actution of the valve, amplifying an analog input signal (command value) so that with the output signal, the servo valve is actuated in a flow-controlled form.

Type 4WS2EM 10...XN...-100

4

Technical data

general						
Porting pattern		ISO 4401-05-05-0-05				
Installation position		Any (Ensure that upon system start-up, the pilot control is supplied with enough pressure (≥10 bar)!)				
Surface protection	Valve body, cover, filter screw	Nitro-carburated				
	Сар	Anodized				
Storage temperature	range °C	-20 +80				
Ambient temperature	range °C	-30 +80				
Weight	kç	3.56				

hydraulic (measure<u>d with HLP 32</u>, $\vartheta_{oil} = 40 \degree C \pm 5 \degree C$)

Operating	Pilot control stage, pilot oil	supply bar	10 210	or 10 31	5						
pressure	Main valve, ports P, A, B	bar	to 315								
Return flow	Port T										
pressure	Pilot oil return internal	bar	Pressure	peaks <100) perm	itted					
	Pilot oil return external	bar									
	Port Y	bar	Pressure	peaks <100) perm	itted, :	static	< 10			
Hydraulic fluid				I (HL, HLP) mperature			o DIN	51524			
Hydraulic fluid te	mperature range	°C	-15 +80	; preferably	/ +40	+50					
Viscosity range		mm²/s	15 380;	preferably	30	45					
	sible degree of contamination leanliness class according to I		Class 18/1	16/13 ¹⁾							
Zero flow q _{V,L} ²⁾ with spool overlap E measured without dither signal			$\frac{p_{\rm p}^{4)}}{70 \rm bar}$ $^{+}0.7 \frac{1}{\rm min.}$	1 70 bar •0,9 <u>l</u> min.	р _Р 70	4) •1,2- •bar m	l iin.	70 bar	 1.5 <u>—</u> min.	1.7 bar 1.7 l	
Rated flows $q_{v \text{ rated}}$ ³⁾ , tolerance ±10 % with valve pressure differential Δp = 70 bar (35 bar/edge)			5	10	20	30	45	60	75	90	
	ol stroke possible with mecha case of error) related to nomin		120 170 120 150								
Feedback system	n		Mechanical								
Hysteresis (dithe	er-optimized)	%	∮ ≤ 1,5								
Range of inversion	on (dither-optimized)	%	≤ 0.3								
Response sensit	tivity (dither-optimized)	%	≤ 0.2								
Pressure gain with 1 % spool stroke change (from the hydraulic zero point) % of		% of $p_{\rm P}{}^{\rm 4)}$	≥ 30 ≥ 60 ≥ 80						≥ 80		
Zero adjustment flow over the entire operating pressure range %			\leq 3, long-term \leq 5								
,		%	\leq 3, long-t	term ≤ 5							
,	ire range	%	≤ 3, long-t	term ≤ 5							
operating pressu	ire range change of:	% % / 20 K	≤ 3, long-t ≤ 1	term ≤ 5							
operating pressu Zero shift upon c	ire range change of: temperature			term ≤ 5							
operating pressu Zero shift upon c Hydraulic fluid Ambient tempe	ire range change of: temperature	% / 20 K	≤ 1	term ≤ 5							

¹⁾ The cleanliness classes specified for the components must be adhered to in hydraulic systems. Effective filtration prevents faults and at the same time increases the service life of the components. For the selection of filters, see www. boschrexroth.com/filter

- ²⁾ $q_{V,L}$ = Zero flow in l/min
- ³⁾ $q_{\rm v rated}$ = Rated flow in l/min
- ⁴⁾ $p_{\rm P}$ = Operating pressure in bar

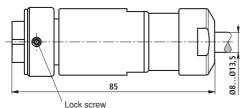
Technical data

electric						
Protection class according	to EN 60529:1991+A1:2000	IP 65 with mating connector correctly mounted and locked				
Type of signal		Analog				
Rated current per coil mA			30			
Resistance per coil		85				
Inductivity with 60 Hz	Connection in series	Н	1.0			
and 100% rated current	Connection in parallel	Н	0.25			
In case of actuating using non-Rexroth amplifiers, we recommend a superimposed dither signal						

Information on explosion protection

• •		
Range of application as per directive 94/9/EC		II 3 G; II 3 D
Type of protection according to EN 60079-0:2006 / EN 60079-15:2005		Ex nA II T5X
Type of protection according to EN 61241-0:2006 / EN 61241-1:2004		Ex tD A22 IP 65 TX
Maximum surface temperature	°C	100
Ambient temperature range	°C	-30 +80
Hydraulic fluid temperature range	°C	-15 +80
Max. admissible operating voltage of the servo amplifier	V	32 (DC)

External control electronics


Servo amplifier	Eurocard format	analog	Type VT-SR2-1X/.60 according to data sheet 29980					
(separate order)	Modular design	analog	Type VT 11021 according to data sheet 29743					
The coils of the valve may only be connected in parallel to these amplifiers!								

A WARNING – Risk of explosion

- The external servo amplifier must be operated outside the explosive area!

Mating connector

The servo valve may only be supplied through this mating connector.

Electrical connection acc. to EN 175201-804

Metal version Separate order under the

material no. R901044595 Connection: Contact sockets with sol-

dered joints for litz wires 0.5 ... 1.5 mm²

Electrical connection (example of parallel connection)

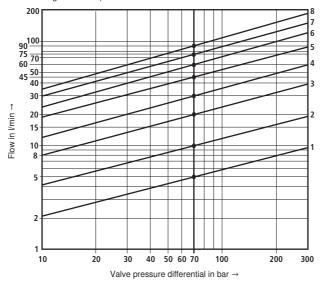
Non-explosive area Explosive area Valve: Coils Control electronics Mating connector

The coils are connected in parallel in the mating connector or at the amplifier (see figure).

In case of serial connection, contacts B and C must be connected.

The E-F bridge can be used for the electrical determination of the correct connection of the plug-in connector and/or for the identification of cable break.

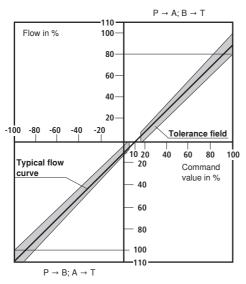
The electrical actuation from A (+) to D (-) causes flow direction from $P \rightarrow A$ and $B \rightarrow T$. The reverse electrical actuation causes flow direction from $P \rightarrow B$ and $A \rightarrow T$.


Characteristic curves (measured with HLP 32, $\vartheta_{oil} = 40^{\circ}C \pm 5^{\circ}C$)

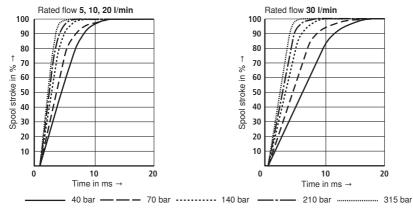
647

Flow/load function (tolerance ±10 %) with 100 % command value signal

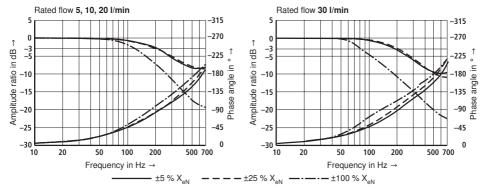
Important:


Observe flow values in the max. command value range (see tolerance field of the flow/signal function)

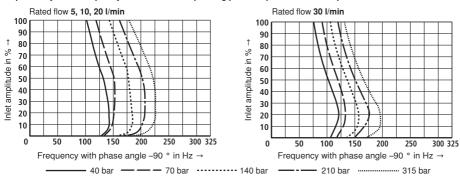
Ordering code	Rated flow	Curve
5	5 l/min	1
10	10 l/min	2
20	20 l/min	3
30	30 l/min	4
45	45 l/min	5
60	60 l/min	6
75	75 l/min	7
90	90 l/min	8


$$\begin{split} \Delta \rho = \text{Valve pressure differential} \\ (\text{inlet pressure } p_{\text{P}} \text{ minus} \\ \text{load pressure } p_{\text{L}} \text{ minus} \\ \text{return flow pressure } p_{\text{T}} \end{split}$$

Tolerance field of the flow/signal function at constant valve pressure differential Δp

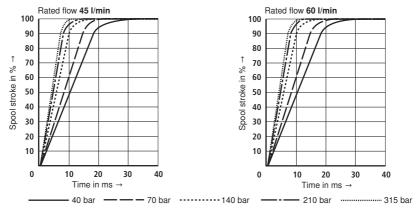

Characteristic curves (measured with HLP 32, $\vartheta_{oil} = 40^{\circ}C \pm 5^{\circ}C$)

Transition function with pressure rating 315 bar, step response without flow

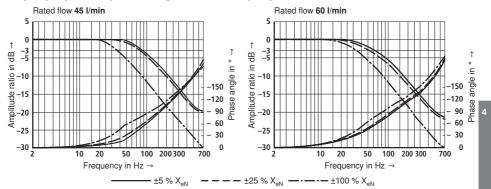


648

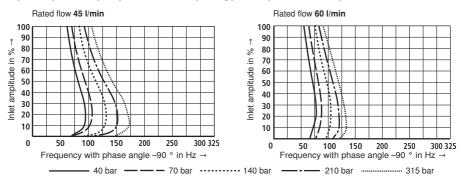
Frequency response with pressure rating 315 bar, stroke frequency without flow



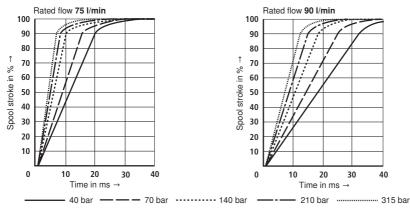
Dependency of the frequency f at -90° on the operating pressure p and the inlet amplitude



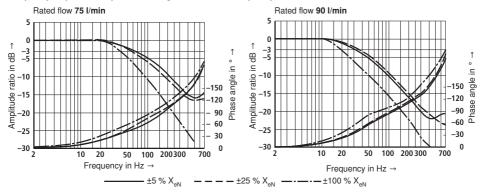
Characteristic curves (measured with HLP 32, $\vartheta_{oil} = 40 \,^\circ\text{C} \pm 5 \,^\circ\text{C}$)


Transition function with pressure rating 315 bar, step response without flow

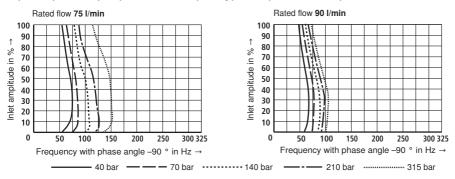
Frequency response with pressure rating 315 bar, stroke frequency without flow

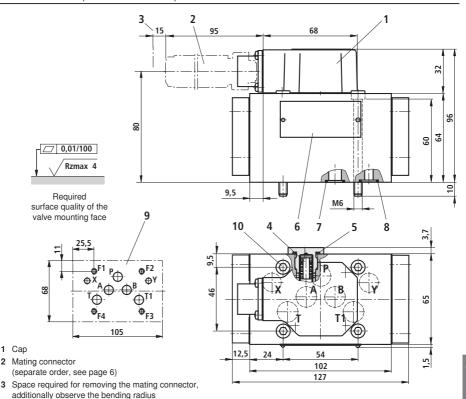


Dependency of the frequency f at -90° on the operating pressure p and the inlet amplitude



Characteristic curves (measured with HLP 32, 0_{oil} = 40 °C ±5 °C)


Transition function with pressure rating 315 bar, step response without flow



Frequency response with pressure rating 315 bar, stroke frequency without flow

Subplates

G 66/01 FE/ZN (G3/8) G 67/01 FE/ZN (G1/2)

with ports X and Y: G 535/01 FE/ZN (G3/4) G 535/02 FE/ZN (M27 x 2) G 536/01 FE/ZN (G1) G 536/02 FE/ZN (M33 x 2) with dimensions as in the dc

with dimensions as in the data sheet 45054 (must be ordered separately)

Important:

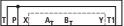
Subplates are no components in the sense of directive 94/9/EC and can be used after the manufacturer of the overall system has assessed the risk of ignition.

The G...FE/ZN versions are free from aluminum and/or magnesium and galvanized.

4

material no.: R900306843
Profile seal for filter screw M16 x 1.5 material no.: R900012503 (FKM seal)

of the connection line

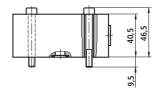

4 Exchangeable filter element

- 6 Name plate
- 7 Identical seal rings for ports P, A, B, T and T1
- 8 Identical seal rings for ports X and Y Ports X and Y are also pressurized in case of "internal" pilot oil supply and return.
- 10 Valve mounting screws
 For reasons of stability, exclusively the following valve mounting screws may be used:
 4 hexagon socket head cap screws
 ISO 4762-M6x70-10.9-fIZn-240h-L
 (Friction coefficient 0.09 0.14 according to
 VDA 235-101) (included in the delivery)

Flushing plate with porting pattern according to ISO 4401-05-05-0-05 (dimensions in mm)

652

```
Symbol
```



Ordering code and more information

- Material number: R900912450
- Weight: 2 kg
- Identical seal rings for ports P, A, B, T and T1
- Identical seal rings for ports X and Y
- Mounting screws
 For reasons of stability, exclusively the following mounting screws may be used:
 4 hexagon socket head cap screws
 ISO 4762-M6x50-10.9-fIZn-240h-L (friction coefficient 0.09 - 0.14 according to VDA 235-101) (included in the delivery)

Important

Before the assembly, observe the information in the Productspecific instructions 29583-XN-100-B3, section 3.2.

Bosch Rexroth AG Hydraulics Zum Eisengießer 1 97816 Lohr am Main, Germany Phone +49 (0) 93 52 / 18-0 Fax +49 (0) 93 52 / 18-23 58 documentation@boschrexroth.de © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Electric Drives and Controls

Hydraulics

Pneumatics

Service

Rexroth Bosch Group

RE 29583-XN-102-B2/10.10

Replaces: 04.07

1/12

4/3 directional servo-valve with mechanical position feedback

Type 4WS2EM 10...XN...-102

Size 10 Component series 5X Maximum operating pressure 315 bar Maximum flow 180 l/min

ATEX units For explosive areas

Part II Data sheet

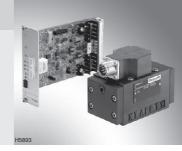
Information on explosion protection:

Range of application in accordance with the Explosion Protection Directive 94/9/EC

- **II3G:** Type of protection Ex nA II T5X according to EN 60079-0:2006 / EN 60079-15:2005
- II3D: Type of protection Ex tD A22 IP 65 TX according to EN 61241-0:2006 / EN 61241-1:2004

What you need to know about these operating instructions

These operating instructions apply to the explosion-proof version of Rexroth valves and consist of the following three parts:


Part I General information 07010-X-B1

Part II Data sheet 29583-XN-102-B2

Part III Product-specific instructions 29583-XN-102-B3

Operating instructions 29583-XN-102-B0

You can find further information on the correct handling of Rexroth hydraulic products in our publication "General product information on hydraulic products" 07008.

Table of contents

Orintent	Dawa
Content	Page
Features	2
Ordering code and scope of delivery	3
Symbol	3
Function, section	4
Technical data	5 and 6
Information on explosion protection	6
External control electronics	6
Mating connector	6
Electrical connection	6
Characteristic curves	7 to 10
Unit dimensions	11
Flushing plate	12

Features

- Directional servo-valve for proper use in explosive areas of zone 2 and 22
- Valve to control position, force, pressure or velocity
- 2-stage servo valve with mechanical feedback
- 1st stage as nozzle flapper plate amplifier
- For subplate mounting, porting pattern according to ISO 4401-05-05-0-05 with ports X and Y suplates available in FE/ZN version (see page 11)
- Dry control motor, no contamination of the solenoid gap by the hydraulic fluid
- Can also be used as 3-way version
- Wear-free spool feedback element
- Control: External control electronics in Eurocard format or in modular design (separate order), see page 6
- Valve is adjusted and tested
- Internal/external pilot oil supply and return can be ordered individually
- Spool with flow force compensation
- Control sleeve centrically fixed; thus low susceptibility to temperature and pressure
- Pressure chambers at the control sleeve with gap seals, therefore no wear of the seal ring
- Filter for 1st stage freely accessible from the outside

Ordering code and scope of delivery

	4WS2E		М	10	<mark>-</mark> 5)	κ/̈́	E	3	11	X	N		K	31		V + 1	02			
Electrically actua 2-stage servo va 4/3 directional de	lve in																102	2 =	nur	Special nber ⁶⁾
external control																v =			Seal m	aterial 1 seals
Mechanical feed	back	_ M														• -	suit	able	for min	
Size			= 10)													(HL,	HL	P) accord	
Component serie	es 50 to 59			= 5	5X															51524
(50 to 59: unchar connection dime		ation a	and												E = D =				0.5 % ne	gative
Rated flow 1)															C =		,		0.5 % p 5 % p	
5 l/min 10 l/min						= 5 10											Elec		al conn	
20 l/min						20								K31	=				with con	nector
30 l/min						30									Matin	g coni	necto	r – s	separate	
45 l/min						45														page 6
60 l/min 75 l/min						60 75									press	sure r	ange	to	the 1 st s	
90 l/min						75 90							210 315						10 to 2 10 to 3	
Valve for externa	al control ele	octron	ics										010	-			vil eu	nnlı	and re	
coil no. 11 (30 m								= 11											return e	
	· · ·	,										E =							return e	
												T =							return ir	
Included in the	deliverv:											ET =			5	Supply	inter	rnal,	return ir	nternal

655

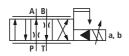
Included in the delivery:

- Valve mounting screws
- Valve operating instructions with declaration of conformity in part III

1) Rated flow

The rated flow refers to a 100% command value signal at 70 bar valve pressure differential (35 bar per control edge). The valve pressure differential must be regarded as reference. Other values result in the flow being changed. A possible rated flow tolerance of $\pm 10\%$ must be taken into account (see flow signal function page 7).

2) External control electronics


The actuating signal must be created from a flow-controlled output stage with a superimposed dither signal. Control electronics (servo amplifier) see page 6.

3) Pilot oil

Care should be taken that the pilot pressure is as constant as possible. An external pilot control via port X is thus often advantageous.

The valve can be operated with a higher pressure at X than at P in order to influence the dynamics in a positive form.

Symbol

Important:

XN =

The ports X and Y are also pressurized in case of "internal" pilot oil supply and return.

For details see information on the explosion protection,

⁴⁾ Inlet pressure range

Care should be taken that the system pressure is as constant as possible. Pilot pressure range: 10 \dots 210 bar or 10 \dots 315 bar

With regard to the dynamics, the frequency response dependency must be observed within the admissible pressure range.

5) Spool overlap

The spool overlap is specified in % of the control spool stroke.

6) Special number "102"

Without actuation (de-energized condition), channels P \rightarrow A and B \rightarrow T are open for 10 % of the nominal quantity.

page 6

(ET = Standard version)

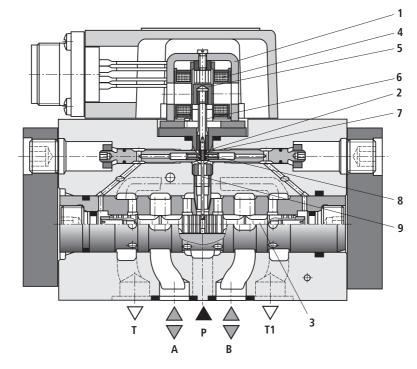
Explosion protection "type nA"

Function, section

4WS2EM 10-5X/...XN...-102

Valves of this type are electrically operated, 2-stage directional servo-valves with porting pattern according to ISO 4401-05-05-0-05. They are mainly used to control position, force, pressure or velocity.

These valves are made of an electro-mechanical converter (torque motor) (1), a hydraulic amplifier (principle: nozzle flapper plate) (2) and a control spool (3) in a sleeve (2nd stage) which is connected with the torque motor via a mechanical feedback.


An electrical input signal at the coils (4) of the torque motor generates a force by means of a permanent magnet which acts on the armature (5), and in connection with a torque tube (6) results in a torque. This causes the flapper plate (7) which is connected to the torque tube (6) via a pin to move from the central position between the two control nozzles (8), and a pressure differential is created across the front faces of the control spool (3). The pressure differential results in the spool changing its position, which results in the pressure port being connected to one actuator port and, at the same time, the other actuator port being connected to the return flow port.

The control spool is connected to the flapper plate or the torque motor by means of a bending spring (mechanical feedback) (9). The position of the spool is changed until the feedback torque across the bending spring and the electro-magnetic torque of the torque motor are balanced and the pressure differential at the nozzle flapper plate system becomes zero.

The stroke of the control spool and consequently the flow of the servo valve are controlled in proportion to the electrical input signal. It must be noted that the flow depends on the valve pressure drop.

External control electronics (separate order)

External control electronics (servo amplifier) serve the actution of the valve, amplifying an analog input signal (command value) so that with the output signal, the servo valve is actuated in a flow-controlled form.

Type 4WS2EM 10...XN...-102

Technical data

general								
Porting pattern		ISO 4401-05-05-0-05						
Installation position	position Any (Ensure that upon system start-up, the pilo is supplied with enough pressure (≥10 bar)							
Surface protection	Valve body, cover, filter screw	Nitro-carburated						
	Сар	Anodized						
Storage temperature	range °C	-20 +80						
Ambient temperature	range °C	-30 +80						
Weight	kç	3.56						

hydraulic (measure<u>d with HLP 32</u>, $\vartheta_{oil} = 40 \degree C \pm 5 \degree C$)

	· 01										
Operating	Pilot control stage, pilot oil s	supply bar	10 210	or 10 31	15						
pressure	Main valve, ports P, A, B	bar	to 315								
Return flow	Port T										
pressure	Pilot oil return internal	bar	Pressure peaks <100 permitted								
	Pilot oil return external	bar	to 315								
	Port Y	bar	Pressure	peaks <100) perm	itted, s	static ·	< 10			
Hydraulic fluid				I (HL, HLP) mperature			o DIN	51524			
Hydraulic fluid te	emperature range	°C	-15 +80	; preferably	/ +40 .	+50					
Viscosity range		mm²/s	15 380;	preferably	30 •	45					
	sible degree of contamination of leanliness class according to IS		Class 18/1	16/13 ¹⁾							
Zero flow $q_{V,L}^{(2)}$ with spool overla measured without		l/min	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					$\sqrt{\frac{p_{\rm P}^{4)}}{70 \rm bar}} \cdot 1.7 \frac{\rm l}{\rm min}$			
Rated flows q _{v ra} with valve press (35 bar/edge)	$_{\rm ted}^{3)}$, tolerance ±10 % ure differential Δp = 70 bar	l/min	5	10	20	30	45	60	75	90	
	ol stroke possible with mechan case of error) related to nomina		120 170 120 150								
Feedback syster	n		Mechanical								
Hysteresis (dithe	er-optimized)	%	≤ 1,5								
Range of inversi	on (dither-optimized)	%	≤ 0.3								
Response sensit	tivity (dither-optimized)	%	≤ 0.2								
Pressure gain w (from the hydrau	ith 1 % spool stroke change Ilic zero point)	% of $p_{\rm P}{}^{4)}$	≥ 30 ≥ 60 ≥ 80						≥ 80		
Zero adjustment operating pressu	flow over the entire ure range	≤ 3, long-term ≤ 5									
Zero shift upon o	change of:										
Hydraulic fluid	temperature	≤ 1									
Ambient temp	erature	≤ 1									
Operating pres	ssure 80 120 % of p _P 4)	≤ 2									
Return flow pr	essure 0 10 % of $p_{\rm P}^{4)}$	% / bar	≤ 1								

¹⁾ The cleanliness classes specified for the components must be adhered to in hydraulic systems. Effective filtration prevents faults and at the same time increases the service life of the components. For the selection of filters, see www. boschrexroth.com/filter

- ²⁾ $q_{V,L}$ = Zero flow in l/min
- ³⁾ $q_{\rm v rated}$ = Rated flow in l/min
- ⁴⁾ $p_{\rm P}$ = Operating pressure in bar

Technical data

electric								
Protection class according	to EN 60529:1991+A1:2000	IP 65 with mating connector correctly mounted and locked						
Type of signal		Analog						
Rated current per coil		30						
Resistance per coil		85						
Inductivity with 60 Hz	Connection in series	Н	1.0					
and 100% rated current Connection in parallel			0.25					
In case of actuating using non-Rexroth amplifiers, we recommend a superimposed dither signal								

Information on explosion protection

Range of application as per directive 94/9/EC		II 3 G; II 3 D
Type of protection according to EN 60079-0:2006 / EN 60079-15:2005		Ex nA II T5X
Type of protection according to EN 61241-0:2006 / EN 61241-1:2004		Ex tD A22 IP 65 TX
Maximum surface temperature	°C	100
Ambient temperature range	°C	-30 +80
Hydraulic fluid temperature range	°C	-15 +80
Max. admissible operating voltage of the servo amplifier	V	32 (DC)

External control electronics

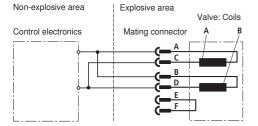
Servo amplifier	Eurocard format	analog	Type VT-SR2-1X/.60 according to data sheet 29980						
(separate order)	Modular design	analog	Type VT 11021 according to data sheet 29743						
The coils of the valve may only be connected in parallel to these amplifiers!									

MARNING – Risk of explosion

- The external servo amplifier must be operated outside the explosive area!

Mating connector

The servo valve may only be supplied through this mating connector.


Electrical connection acc. to EN 175201-804

Metal version Separate order under the material no. **R901044595**

Connection: Contact sockets with soldered joints for litz wires 0.5 ... 1.5 mm²

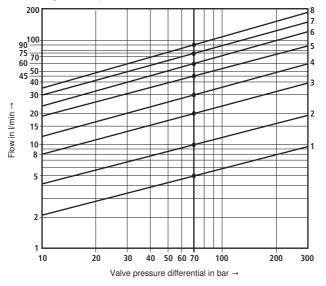
Lock screw

Electrical connection (example of parallel connection)

The coils are connected in parallel in the mating connector or at the amplifier (see figure).

In case of serial connection, contacts ${\sf B}$ and ${\sf C}$ must be connected.

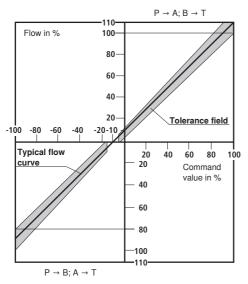
The E-F bridge can be used for the electrical determination of the correct connection of the plug-in connector and/or for the identification of cable break.


The electrical actuation from A (+) to D (–) causes flow direction from P \rightarrow A and B \rightarrow T. The reverse electrical actuation causes flow direction from P \rightarrow B and A \rightarrow T.

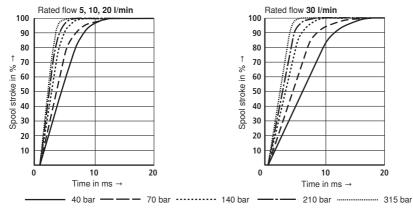
Characteristic curves (measured with HLP 32, $\vartheta_{oil} = 40^{\circ}C \pm 5^{\circ}C$)

Flow/load function (tolerance ±10 %) with 100 % command value signal

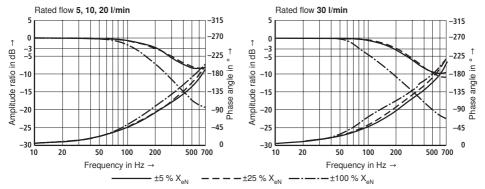
Important:


Observe flow values in the max. command value range (see tolerance field of the flow/signal function)

Ordering code	Rated flow	Curve
5	5 l/min	1
10	10 l/min	2
20	20 l/min	3
30	30 l/min	4
45	45 l/min	5
60	60 l/min	6
75	75 l/min	7
90	90 l/min	8


$$\begin{split} \Delta \rho = \text{Valve pressure differential} \\ (\text{inlet pressure } p_{\text{P}} \text{ minus} \\ \text{load pressure } p_{\text{L}} \text{ minus} \\ \text{return flow pressure } p_{\text{T}} \end{split}$$

Tolerance field of the flow/signal function at constant valve pressure differential Δp

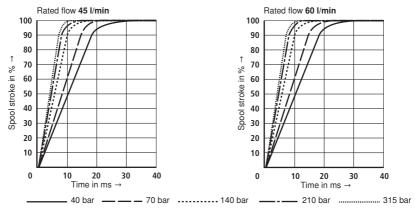

Characteristic curves (measured with HLP 32, $\vartheta_{oil} = 40^{\circ}C \pm 5^{\circ}C$)

Transition function with pressure rating 315 bar, step response without flow

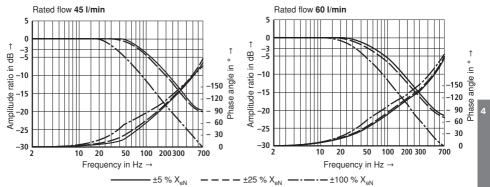


660

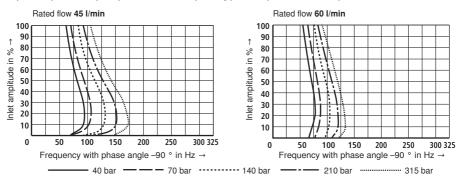
Frequency response with pressure rating 315 bar, stroke frequency without flow



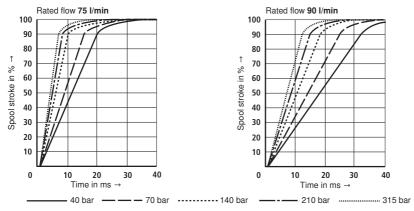
Dependency of the frequency f at -90° on the operating pressure p and the inlet amplitude



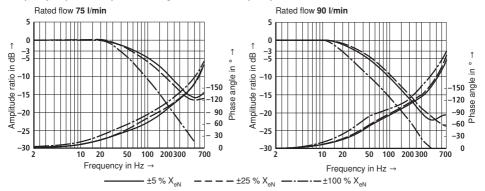
Characteristic curves (measured with HLP 32, $\vartheta_{oil} = 40 \,^\circ\text{C} \pm 5 \,^\circ\text{C}$)


Transition function with pressure rating 315 bar, step response without flow

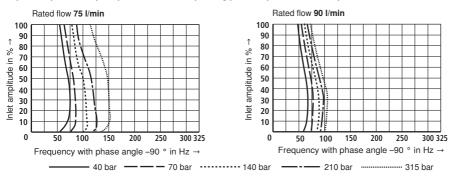
Frequency response with pressure rating 315 bar, stroke frequency without flow

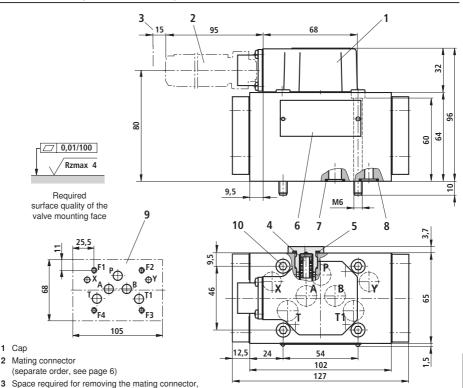


Dependency of the frequency f at -90° on the operating pressure p and the inlet amplitude



Characteristic curves (measured with HLP 32, 0_{oil} = 40 °C ±5 °C)


Transition function with pressure rating 315 bar, step response without flow


Frequency response with pressure rating 315 bar, stroke frequency without flow

Unit dimensions (dimensions in mm)

Subplates

G 66/01 FE/ZN (G3/8) G 67/01 FE/ZN (G1/2)

with ports X and Y: G 535/01 FE/ZN (G3/4) G 535/02 FE/ZN (M27 x 2) G 536/01 FE/ZN (G1) G 536/02 FE/ZN (M33 x 2)

with dimensions as in the data sheet 45054 (must be ordered separately)

Important:

Subplates are no components in the sense of directive 94/9/EC and can be used after the manufacturer of the overall system has assessed the risk of ignition.

The G...FE/ZN versions are free from aluminum and/or magnesium and galvanized.

4

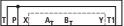
material no.: R900306843 5 Profile seal for filter screw M16 x 1.5 material no.: R900012503 (FKM seal)

of the connection line

4 Exchangeable filter element

6 Name plate

1 Cap

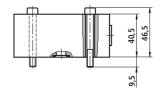

7 Identical seal rings for ports P, A, B, T and T1

additionally observe the bending radius

- 8 Identical seal rings for ports X and Y Ports X and Y are also pressurized in case of "internal" pilot oil supply and return.
- 9 Processed valve mounting face Porting pattern according to ISO 4401-05-05-0-05 Port T1 is optional and is recommended for reducing the pressure drop from $B \rightarrow T$ with rated flows > 45 l/min.
- 10 Valve mounting screws For reasons of stability, exclusively the following valve mounting screws may be used: 4 hexagon socket head cap screws ISO 4762-M6x70-10.9-flZn-240h-L (Friction coefficient 0.09 - 0.14 according to VDA 235-101) (included in the delivery)

Flushing plate with porting pattern according to ISO 4401-05-05-0-05 (dimensions in mm)

```
Symbol
```



Ordering code and more information

- Material number: R900912450
- Weight: 2 kg
- Identical seal rings for ports P, A, B, T and T1
- Identical seal rings for ports X and Y
- Mounting screws
 For reasons of stability, exclusively the following mounting screws may be used:
 4 hexagon socket head cap screws
 ISO 4762-M6x50-10.9-fIZn-240h-L (friction coefficient 0.09 - 0.14 according to VDA 235-101) (included in the delivery)

Important

Before the assembly, observe the information in the Productspecific instructions 29583-XN-102-B3, section 3.2.

Bosch Rexroth AG Hydraulics Zum Eisengießer 1 97816 Lohr am Main, Germany Phone +49 (0) 93 52 / 18-0 Fax +49 (0) 93 52 / 18-23 58 documentation@boschrexroh.de © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Electric Drives and Controls

Hydraulics

Pneumatics

Service

Rexroth Bosch Group

1/12

4/3 directional servo-valve with mechanical position feedback

Type 4WS2EM 10...XN...-114

Size 10 Component series 5X Maximum operating pressure 315 bar Maximum flow 180 l/min

ATEX units For explosive areas

Part II Data sheet

Information on explosion protection:

Range of application in accordance with the Explosion Protection Directive 94/9/EC

- **II3G:** Type of protection Ex nA II T5X according to EN 60079-0:2006 / EN 60079-15:2005
- II3D: Type of protection Ex tD A22 IP 65 TX according to EN 61241-0:2006 / EN 61241-1:2004

What you need to know about these operating instructions

These operating instructions apply to the explosion-proof version of Rexroth valves and consist of the following three parts:

Part I General information 07010-X-B1

Part II Data sheet 29583-XN-114-B2

Part III Product-specific instructions 29583-XN-114-B3

Operating instructions 29583-XN-114-B0

You can find further information on the correct handling of Rexroth hydraulic products in our publication "General product information on hydraulic products" 07008.

665

RE 29583-XN-114-B2/10.10

Replaces: 04.07

Table of contents

Content	Page
Content	Faye
Features	2
Ordering code and scope of delivery	3
Symbol	3
Function, section	4
Technical data	5 and 6
Information on explosion protection	6
External control electronics	6
Mating connector	6
Electrical connection	6
Characteristic curves	7 to 10
Unit dimensions	11
Flushing plate	12

Features

- Directional servo-valve for proper use in explosive areas of zone 2 and 22
- Valve to control position, force, pressure or velocity
- 2-stage servo valve with mechanical feedback
- 1st stage as nozzle flapper plate amplifier
- For subplate mounting, porting pattern according to ISO 4401-05-05-0-05 with ports X and Y suplates available in FE/ZN version (see page 11)
- Dry control motor, no contamination of the solenoid gap by the hydraulic fluid
- Can also be used as 3-way version
- Wear-free spool feedback element
- Control: External control electronics in Eurocard format or in modular design (separate order), see page 6
- Valve is adjusted and tested
- Internal/external pilot oil supply and return can be ordered individually
- Spool with flow force compensation
- Control sleeve centrically fixed; thus low susceptibility to temperature and pressure
- Pressure chambers at the control sleeve with gap seals, therefore no wear of the seal ring
- Filter for 1st stage freely accessible from the outside

Hydraulics | Bosch Rexroth AG 3/12

Ordering code and scope of delivery

	4WS2E	E I	М	10	<mark>-</mark> 52	κ /		В	11	X	N		κ	31		v + 1	14			
Electrically actua 2-stage servo va 4/3 directional de	lve in																114		num	becial
external control																v =		:	Seal ma FKM	
Mechanical feed	back	_ M															suit	able	for mine	ral oil
Size			= 1(2													(HL,	HLP) accordi DIN 5	
Component serie (50 to 59: unchar connection dimen	nged installa	ition a	Ind	= 5	5X										E = D =			0	ool over .5 % neg 0.5 % po	gative
Rated flow 1)						_									C =				. 5 % po	
5 l/min 10 l/min 20 l/min 30 l/min 45 l/min					=	= 5 10 20 30 45								К31		g coni		v	il conne with conne eparate c see pa	ector order,
60 l/min					-	60								Inlet	press	sure r	ange	to th	ne 1 st sta	age 4)
75 l/min 90 l/min						75 90							210 315						10 to 21 10 to 31	
Valve for externa							-	= 1'											and ret	
coil no. 11 (30 m	A/65 22 per (50II) ²	r					= 1				- = E =							eturn ext eturn ext	
Included in the	deliverv:											T = ET =			S	upply	exter	nal, i	return int return int	ternal

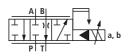
Included in the delivery:

- Valve mounting screws
- Valve operating instructions with declaration of conformity in part III

1) Rated flow

The rated flow refers to a 100% command value signal at 70 bar valve pressure differential (35 bar per control edge). The valve pressure differential must be regarded as reference. Other values result in the flow being changed. A possible rated flow tolerance of $\pm 10\%$ must be taken into account (see flow signal function page 7).

2) External control electronics


The actuating signal must be created from a flow-controlled output stage with a superimposed dither signal. Control electronics (servo amplifier) see page 6.

3) Pilot oil

Care should be taken that the pilot pressure is as constant as possible. An external pilot control via port X is thus often advantageous.

The valve can be operated with a higher pressure at X than at P in order to influence the dynamics in a positive form.

Symbol

Important:

XN =

The ports X and Y are also pressurized in case of "internal" pilot oil supply and return.

For details see information on the explosion protection,

⁴⁾ Inlet pressure range

Care should be taken that the system pressure is as constant as possible. Pilot pressure range: 10 \dots 210 bar or 10 \dots 315 bar

With regard to the dynamics, the frequency response dependency must be observed within the admissible pressure range.

5) Spool overlap

The spool overlap is specified in % of the control spool stroke.

6) Special number "114"

Without actuation (de-energized condition), channel $B \rightarrow T$ is open for 10 % of the nominal quantity. In the control area, port A is always blocked.

page 6

(ET = Standard version)

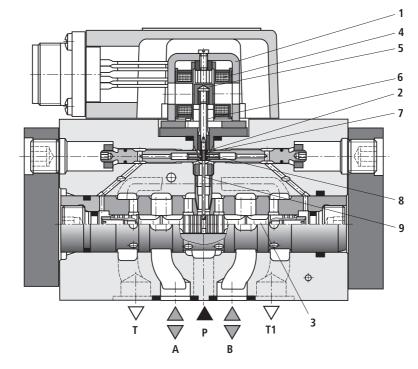
Explosion protection "type nA"

Function, section

4WS2EM 10-5X/...XN...-114

Valves of this type are electrically operated, 2-stage directional servo-valves with porting pattern according to ISO 4401-05-05-0-05. They are mainly used to control position, force, pressure or velocity.

These valves are made of an electro-mechanical converter (torque motor) (1), a hydraulic amplifier (principle: nozzle flapper plate) (2) and a control spool (3) in a sleeve (2nd stage) which is connected with the torque motor via a mechanical feedback.


An electrical input signal at the coils (4) of the torque motor generates a force by means of a permanent magnet which acts on the armature (5), and in connection with a torque tube (6) results in a torque. This causes the flapper plate (7) which is connected to the torque tube (6) via a pin to move from the central position between the two control nozzles (8), and a pressure differential is created across the front faces of the control spool (3). The pressure differential results in the spool changing its position, which results in the pressure port being connected to one actuator port and, at the same time, the other actuator port being connected to the return flow port.

The control spool is connected to the flapper plate or the torque motor by means of a bending spring (mechanical feedback) (9). The position of the spool is changed until the feedback torque across the bending spring and the electro-magnetic torque of the torque motor are balanced and the pressure differential at the nozzle flapper plate system becomes zero.

The stroke of the control spool and consequently the flow of the servo valve are controlled in proportion to the electrical input signal. It must be noted that the flow depends on the valve pressure drop.

External control electronics (separate order)

External control electronics (servo amplifier) serve the actution of the valve, amplifying an analog input signal (command value) so that with the output signal, the servo valve is actuated in a flow-controlled form.

Type 4WS2EM 10...XN...-114

4

Technical data

general								
Porting pattern		ISO 4401-05-05-0-05						
Installation position	position Any (Ensure that upon system start-up, the pilo is supplied with enough pressure (≥10 bar)							
Surface protection	Valve body, cover, filter screw	Nitro-carburated						
	Сар	Anodized						
Storage temperature	range °C	-20 +80						
Ambient temperature	range °C	-30 +80						
Weight	kç	3.56						

hydraulic (measure<u>d with HLP 32</u>, $\vartheta_{oil} = 40 \degree C \pm 5 \degree C$)

Operating	Pilot control stage, pilot oil	supply bar	10 210	or 10 31	5					
pressure	Main valve, ports P, A, B	bar	to 315							
Return flow	Port T									
pressure	Pilot oil return internal	bar	Pressure peaks <100 permitted							
	Pilot oil return external	bar	to 315							
	Port Y	bar	Pressure p	oeaks <100	perm	itted, s	static .	< 10		
Hydraulic fluid				I (HL, HLP) mperature			DIN	51524		
Hydraulic fluid te	mperature range	°C	-15 +80	; preferably	/ +40 .	+50				
Viscosity range		mm²/s	15 380;	preferably	30	45				
	sible degree of contamination eanliness class according to I		Class 18/1	16/13 ¹⁾						
Zero flow $q_{\rm V,L}^{(2)}$ with spool overlam easured without		l/min	$\frac{p_{\rm p}^{4)}}{70 \rm bar} \cdot 0.7 \frac{1}{\rm min.}$	70 bar ⁴⁾ 10,9 <u>1</u>	р _Р 70	4) •1,2- •bar m	l in.	$\frac{p_{\rm P}^{4)}}{70 \rm bar}$	 1.5 <u>—</u> min.	$\frac{p_{\rm P}^{4)}}{70 \rm bar}$ •1.7 $\frac{1}{\rm min}$
Rated flows $q_{v rat}$ with valve pressu (35 bar/edge)	$_{\rm ed}^{3)}$, tolerance ±10 % ure differential Δp = 70 bar	l/min	5	10	20	30	45	60	75	90
	ol stroke possible with mechar case of error) related to nomina		120 170 120 150							
Feedback system	n		Mechanical							
Hysteresis (dithe			Meenaniea		% ≤ 1.5					
	r-optimized)	%								
Range of inversion	r-optimized) on (dither-optimized)	%								
	, ,		≤ 1,5							
Response sensiti	ivity (dither-optimized) th 1 % spool stroke change	%	≤ 1,5 ≤ 0.3	≥ 30)			≥	60	≥ 80
Response sensiti Pressure gain wir (from the hydraul	on (dither-optimized) ivity (dither-optimized) th 1 % spool stroke change lic zero point) flow over the entire	%	≤ 1,5 ≤ 0.3	≥ 30)			2	60	≥ 80
Response sensiti Pressure gain wir (from the hydraul Zero adjustment	on (dither-optimized) ivity (dither-optimized) th 1 % spool stroke change lic zero point) flow over the entire re range	% % % of p _P ⁴⁾	≤ 1,5 ≤ 0.3 ≤ 0.2	≥ 30)			2	60	≥ 80
Response sensiti Pressure gain wi (from the hydraul Zero adjustment operating pressu	on (dither-optimized) ivity (dither-optimized) th 1 % spool stroke change lic zero point) flow over the entire re range hange of:	% % % of p _P ⁴⁾	≤ 1,5 ≤ 0.3 ≤ 0.2	≥ 30)			2	60	≥ 80
Response sensiti Pressure gain wi (from the hydraul Zero adjustment operating pressu Zero shift upon c	on (dither-optimized) ivity (dither-optimized) th 1 % spool stroke change lic zero point) flow over the entire re range hange of: temperature	% % % of p _p ⁴⁾ %	≤ 1,5 ≤ 0.3 ≤ 0.2 ≤ 3, long-t	≥ 30				2	60	≥ 80
Response sensiti Pressure gain wi (from the hydraul Zero adjustment operating pressu Zero shift upon c Hydraulic fluid Ambient tempe	on (dither-optimized) ivity (dither-optimized) th 1 % spool stroke change lic zero point) flow over the entire re range hange of: temperature	% % of pp ⁴⁾ %	≤ 1,5 ≤ 0.3 ≤ 0.2 ≤ 3, long-t ≤ 1	≥ 30)			2	60	≥ 80

¹⁾ The cleanliness classes specified for the components must be adhered to in hydraulic systems. Effective filtration prevents faults and at the same time increases the service life of the components. For the selection of filters, see www. boschrexroth.com/filter

- ²⁾ $q_{V,L}$ = Zero flow in l/min
- ³⁾ $q_{\rm v rated}$ = Rated flow in l/min
- ⁴⁾ $p_{\rm P}$ = Operating pressure in bar

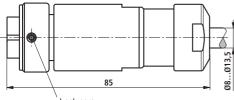
Technical data

electric		
Protection class according	to EN 60529:1991+A1:2000	IP 65 with mating connector correctly mounted and locked
Type of signal		Analog
Rated current per coil	mA	30
Resistance per coil	Ω	85
Inductivity with 60 Hz	Connection in series H	1.0
and 100% rated current	Connection in parallel H	0.25
In case of actuating using r	non-Rexroth amplifiers, we recomm	end a superimposed dither signal

Information on explosion protection

<u> </u>		
Range of application as per directive 94/9/EC		II 3 G; II 3 D
Type of protection according to EN 60079-0:2006 / EN 60079-15:2005		Ex nA II T5X
Type of protection according to EN 61241-0:2006 / EN 61241-1:2004		Ex tD A22 IP 65 TX
Maximum surface temperature	°C	100
Ambient temperature range	°C	-30 +80
Hydraulic fluid temperature range	°C	-15 +80
Max. admissible operating voltage of the servo amplifier	V	32 (DC)

External control electronics

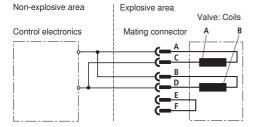

Servo amplifier	Eurocard format	analog	Type VT-SR2-1X/.60 according to data sheet 29980					
(separate order)	Modular design	analog	Type VT 11021 according to data sheet 29743					
The coils of the valve may only be connected in parallel to these amplifiers!								

MARNING – Risk of explosion

- The external servo amplifier must be operated outside the explosive area!

Mating connector

The servo valve may only be supplied through this mating connector.


Electrical connection acc. to EN 175201-804

Metal version Separate order under the material no. **R901044595**

Connection: Contact sockets with soldered joints for litz wires 0.5 ... 1.5 mm²

Lock screw

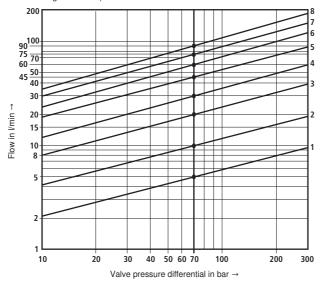
Electrical connection (example of parallel connection)

The coils are connected in parallel in the mating connector or at the amplifier (see figure).

In case of serial connection, contacts ${\sf B}$ and ${\sf C}$ must be connected.

The E-F bridge can be used for the electrical determination of the correct connection of the plug-in connector and/or for the identification of cable break.

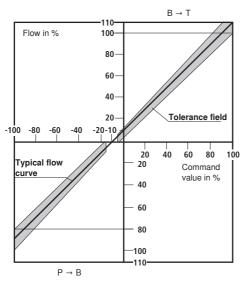
The electrical actuation from A (+) to D (-) causes flow direction from B \rightarrow T. The reverse electrical actuation causes a flow direction of P \rightarrow B.


Characteristic curves (measured with HLP 32, $\vartheta_{oil} = 40^{\circ}C \pm 5^{\circ}C$)

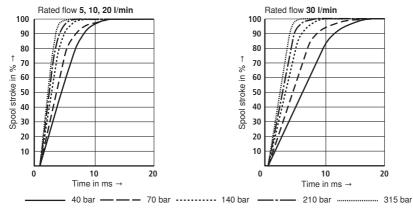
671

Flow/load function (tolerance ±10 %) with 100 % command value signal

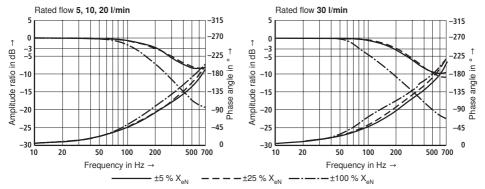
Important:


Observe flow values in the max. command value range (see tolerance field of the flow/signal function)

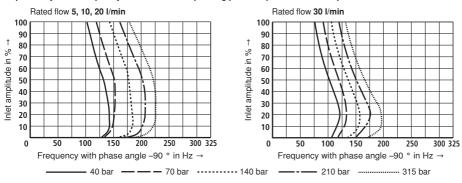
Ordering code	Rated flow	Curve					
5	5 l/min	1					
10	10 l/min	2					
20	20 l/min	3					
30	30 l/min	4					
45	45 l/min	5					
60	60 l/min	6					
75	75 l/min	7					
90	90 l/min	8					


$$\begin{split} \Delta \rho = \text{Valve pressure differential} \\ (\text{inlet pressure } p_{\text{P}} \text{ minus} \\ \text{load pressure } p_{\text{L}} \text{ minus} \\ \text{return flow pressure } p_{\text{T}} \end{split}$$

Tolerance field of the flow/signal function at constant valve pressure differential Δp

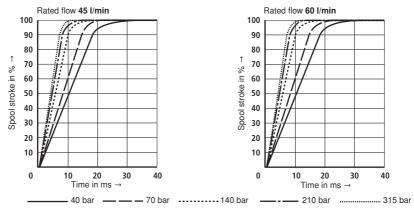

Characteristic curves (measured with HLP 32, $\vartheta_{oil} = 40^{\circ}C \pm 5^{\circ}C$)

Transition function with pressure rating 315 bar, step response without flow

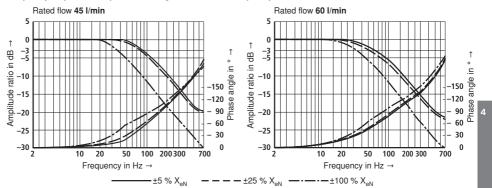


672

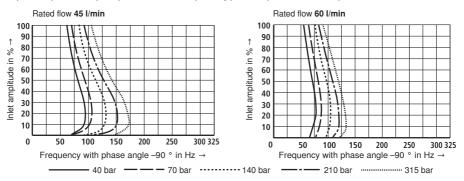
Frequency response with pressure rating 315 bar, stroke frequency without flow



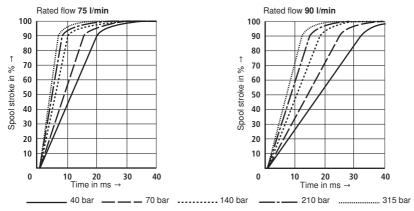
Dependency of the frequency f at -90° on the operating pressure p and the inlet amplitude

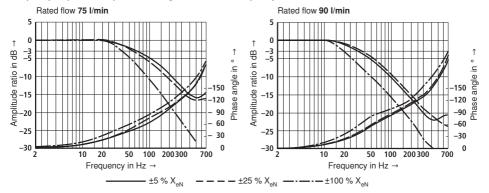


Characteristic curves (measured with HLP 32, $\vartheta_{oil} = 40 \,^\circ\text{C} \pm 5 \,^\circ\text{C}$)

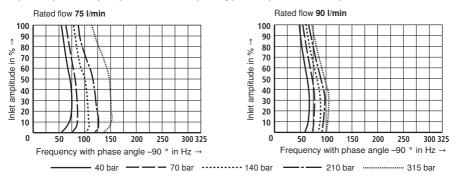

Transition function with pressure rating 315 bar, step response without flow

Frequency response with pressure rating 315 bar, stroke frequency without flow


Dependency of the frequency f at -90° on the operating pressure p and the inlet amplitude


673

Characteristic curves (measured with HLP 32, 0_{oil} = 40 °C ±5 °C)


Transition function with pressure rating 315 bar, step response without flow

Frequency response with pressure rating 315 bar, stroke frequency without flow

Dependency of the frequency f at -90° on the operating pressure p and the inlet amplitude

Unit dimensions (dimensions in mm)

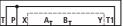
Subplates

G 66/01 FE/ZN (G3/8) G 67/01 FE/ZN (G1/2)

with ports X and Y: G 535/01 FE/ZN (G3/4) G 535/02 FE/ZN (M27 x 2) G 536/01 FE/ZN (G1) G 536/02 FE/ZN (M33 x 2)

with dimensions as in the data sheet 45054 (must be ordered separately)

Important:

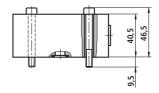

Subplates are no components in the sense of directive 94/9/EC and can be used after the manufacturer of the overall system has assessed the risk of ignition.

The G...FE/ZN versions are free from aluminum and/or magnesium and galvanized.

- 1 Cap
- 2 Mating connector
- 3 Space required for removing the mating connector, additionally observe the bending radius of the connection line
- 4 Exchangeable filter element material no.: R900306843
- 5 Profile seal for filter screw M16 x 1.5 material no.: R900012503 (FKM seal)
- 6 Name plate
- 7 Identical seal rings for ports P, A, B, T and T1
- 8 Identical seal rings for ports X and Y Ports X and Y are also pressurized in case of "internal" pilot oil supply and return.
- 9 Processed valve mounting face Porting pattern according to ISO 4401-05-05-0-05 Port T1 is optional and is recommended for reducing the pressure drop from $B \rightarrow T$ with rated flows > 45 l/min.
- 10 Valve mounting screws For reasons of stability, exclusively the following valve mounting screws may be used: 4 hexagon socket head cap screws ISO 4762-M6x70-10.9-flZn-240h-L (Friction coefficient 0.09 - 0.14 according to VDA 235-101) (included in the delivery)

Flushing plate with porting pattern according to ISO 4401-05-05-0-05 (dimensions in mm)

```
Symbol
```



Ordering code and more information

- Material number: R900912450
- Weight: 2 kg
- Identical seal rings for ports P, A, B, T and T1
- Identical seal rings for ports X and Y
- Mounting screws
 For reasons of stability, exclusively the following mounting screws may be used:
 4 hexagon socket head cap screws
 ISO 4762-M6x50-10.9-fIZn-240h-L (friction coefficient 0.09 - 0.14 according to VDA 235-101) (included in the delivery)

Important

Before the assembly, observe the information in the Productspecific instructions 29583-XN-114-B3, section 3.2.

Bosch Rexroth AG Hydraulics Zum Eisengießer 1 97816 Lohr am Main, Germany Phone +49 (0) 93 52 / 18-0 Fax +49 (0) 93 52 / 18-23 58 documentation@boschrexroth.de © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Electric Drives and Controls

Hydraulics

Pneumatics

Rexroth

Service

Bosch Group

1/14

4/3 directional servo valve with mechanical position feedback

Type 4WS2EM 10...XD...

Size 10 Component series 5X Maximum operating pressure 315 bar Maximum flow 180 l/min

ATEX units For explosive areas

Part II Data sheet

Information on the explosion protection:

- Area of application in accordance with the Explosion Protection Directive 94/9/EC: II 2G
- Type of protection: Ex d IIB T4 Gb according to EN 60079-0:2009 / EN 60079-1:2007
- Ambient temperature range –30 °C ≤ T_a ≤ +80 °C

What you need to know about these operating instructions

These operating instructions apply to the explosion-proof version of Rexroth valves and consist of the following three parts:

- General information 07010-X-B1 Part I
- Part II Data sheet 29583-XD-B2
- Part III Product-specific instructions 29583-XD-B3

Operating instructions 29583-XD-B0

You can find further information on the correct handling of Rexroth hydraulic products in our publication "General product information on hydraulic products" 07008.

RE 29583-XD-B2/04.12 Replaces: 03.10

Table of contents

Contents	Page
Features	2
Ordering code and scope of delivery	3
Symbol	3
Function, section	4
Technical data	5
External control electronics	6
Electrical connection	7
Characteristic curves	8
Unit dimensions	12
Flushing plate	13

Features

- Directional servo valve for proper use in explosive areas of zone 1
- Valve to control position, force, pressure or velocity
- 2-stage servo valve in 4-way version with mechanical feedback
- 1st stage as nozzle flapper plate amplifier
- For subplate mounting, porting pattern according to ISO 4401-05-05-0-05 with ports X and Y Subplates available in FE/ZN version (see page 12)
- Dry control motor, no contamination of the solenoid gaps by the hydraulic fluid
- Wear-free control spool return element
- Control: External control electronics in Euro-card format or in modular design (separate order, see page 6)
- Valve is adjusted and tested
- Internal/external pilot oil supply and return can be ordered individually
- Control spool with flow force compensation
- Control sleeve centrically fixed, thus low susceptibility to temperature and pressure
- Pressure chambers at the control sleeve with gap seal, therefore no wear of the seal ring
- Filter for 1st stage freely accessible from the outside

Explosion protection

page 6

"pressure-resistant encapsulation"

Ordering code and scope of delivery

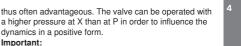
[4WS2E	. 1	м	10	<u>+</u> 5)	(/	В	1	11	XD	Τ	(0		۷	
Electrically opera 2-stage servo val 4/3 directional de external control	lve in sign for															Seal material V = FKM seals Suitable for
Mechanical feed	back	= M														mineral oil (HL, HLP)
Size 10			= 10												L	according to DIN 51524
Component serie	s 50 to 59			= {	5X											Control spool overlap 5)
(50 to 59: Unchar connection dimer		ation	and											E = D =		0 0.5 % negative 0 0.5 % positive
Rated flow 1)	/															Electrical connection
5 l/min						= 5							C =			Cable connection,
10 l/min						10										see page 7
20 l/min					=	20							Inlet	pres	sui	re range to the 1st stage 4)
30 l/min					=	30						210	=			10 210 bar
45 l/min					=	45						315	=			10 315 bar
60 l/min						60									Pi	lot oil supply and return 3)
75 l/min						75					- =			ę		oply external, return external
90 l/min					=	90					E =					pply internal, return external
Valve for externa	al control ele	ectror	nics								T =					pply external, return internal
Coil no. 11 (30 m	A/85 Ω per	coil) ²	2)				=	11			ET =				Sı	ipply internal, return internal
																(ET = standard version)

Included in the scope of delivery:

- Valve mounting screws
- Valve operating instructions with declaration of conformity in part III

1) Rated flow

The rated flow refers to a 100 % command value signal at 70 bar valve pressure differential (35 bar per control edge). The valve pressure differential must be regarded as reference. Other values result in the flow being changed. A possible rated flow tolerance of ±10 % must be taken into account (see flow signal function page 8).


2) External control electronics

The actuating signal must be created from a flow-controlled output stage with a superimposed dither signal. Control electronics (servo amplifier) see page 6.

3) Pilot oil

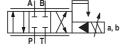
Care should be taken that the pilot pressure is as constant as possible. An external pilot control via port X is

Symbol

For details see information on the explosion protection,

XD =

The ports X and Y are also pressurized in case of "internal" pilot oil supply and return.


4) Inlet pressure range

Care should be taken that the system pressure is as constant as possible. Pilot pressure range: 10 ... 210 bar or 10 ... 315 bar

With regard to the dynamics, the frequency response dependency must be observed within the admissible pressure range.

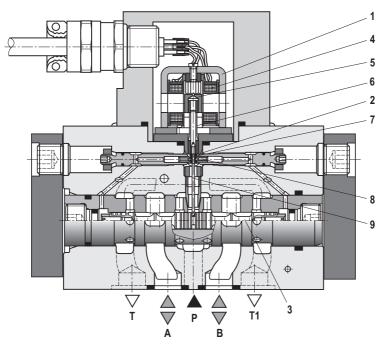
5) Control spool overlap

The control spool overlap is specified in % of the control spool stroke. Others upon request

Function, section

4WS2EM 10...XD

Valves of this type are electrically operated, 2-stage directional servo valves with porting pattern according to ISO 4401-05-05-0-05. They are mainly used to control position, force, pressure or velocity.


These valves are made of an electro-mechanical converter (torque motor) (1), a hydraulic amplifier (principle: nozzle flapper plate) (2) and a control spool (3) in a sleeve (2nd stage) which is connected with the torque motor via a mechanical feedback.

An electrical input signal at the coils (4) of the torque motor generates a force by means of a permanent magnet which acts on the armature (5), and in connection with a torque tube (6) results in a torque. This causes the flapper plate (7) which is connected to the torque tube (6) via a pin to move from the central position between the two control nozzles (8), and a pressure differential is created across the front faces of the control spool (3). The pressure differential results in the control spool changing its position, which results in the pressure port being connected to one actuator port and, at the same time, the other actuator port being connected to the return flow port. The control spool is connected to the flapper plate or the torque motor by means of a bending spring (mechanical feedback) (9). The position of the control spool is changed until the feedback torque across the bending spring and the electro-magnetic torque of the torque motor are balanced and the pressure differential at the nozzle flapper plate system becomes zero.

The stroke of the control spool and consequently the flow of the servo valve are controlled in proportion to the electrical input signal. It must be noted that the flow depends on the valve pressure drop.

External control electronics (separate order)

External control electronics (servo amplifier) serve the actuation of the valve, amplifying an analog input signal (command value) so that with the output signal, the servo valve is actuated in a flow-controlled form.

Type 4WS2EM 10...XD

4

Technical data

general	
Porting pattern	ISO 4401-05-05-0-05
Installation position	Any (ensure that during start-up of the system, the pilot con- trol is supplied with sufficient pressure (≥ 10 bar)!)
Surface protection	Nitro-carburated
Storage temperature range °C	-20 +80
Ambient temperature range °C	-30 +80
Weight kg	3.97

hydraulic (measured with HLP 32, t_{oil} = 40 °C ± 5 °C) Pilot control stage, pilot oil supply 10 ... 210 or 10 ... 315 Operating bar pressure up to 315 Main valve, ports P, A, B bar Return flow Port T pressure Pilot oil return internal bar Pressure peaks < 100 permitted, static < 10 Pilot oil return external bar Up to 315 Port Y Pressure peaks < 100 permitted, static < 10 bar Mineral oil (HL, HLP) according to DIN 51524 Hydraulic fluid Ignition temperature > 150 °C °C -20 ... +80; preferably +40 ... +50 Hydraulic fluid temperature range Viscosity range mm²/s 15 ... 380; preferably 30 ... 45 Maximum admissible degree of contamination of the hydrau-Class 18/16/13 1) lic fluid, cleanliness class according to ISO 4406 (c) Zero flow q_{V, L}²⁾ | [[P_P ⁴] $p_{\rm P}^{4)}$ p_ 4) p_ 4) p_P⁴⁾ L with control spool overlap E 70 bar 1.2 min 70 bar min 70 bar 1.7 min l/min 70 bar mir measured without dither signal Rated flows $q_{\rm v \ rated}$ ³⁾, tolerance ±10 % with valve pressure differential Δp = 70 bar I/min 5 10 20 30 45 60 75 90 (35 bar/edge) Max. control spool stroke possible with mechanical end % 120 ... 170 120 ... 150 position (in case of error) related to nominal stroke Feedback system Mechanical Hysteresis (dither-optimized) % ≤ 1.5 Range of inversion (dither-optimized) % ≤ 0.3 Response sensitivity (dither-optimized) % ≤ 0.2 Pressure gain with % of $p_{\rm P}^{4)}$ 1 % control spool stroke change > 30 > 60 > 80 (from the hydraulic zero point) Zero adjustment flow over the entire operating % \leq 3, long-term \leq 5 pressure range Zero shift upon change of: Hydraulic fluid temperature % / 20 K ≤ 1 Ambient temperature % / 20 K ≤ 1 Operating pressure 80 ... 120 % of pp 4) % / 100 bar ≤ 2 Return flow pressure 0 ... 10 % of $p_{\rm p}^{4)}$ % / bar ≤ 1

¹⁾ The cleanliness classes specified for the components must be adhered to in hydraulic systems. Effective filtration prevents faults and at the same time increases the service life of the components. ²⁾ q_{VI} = zero flow in l/min

³⁾ $q_{v rated}$ = rated flow in l/min

⁴⁾ $p_{\rm p}$ = operating pressure in bar

For the selection of the filters see www.boschrexroth.com/filter.

681

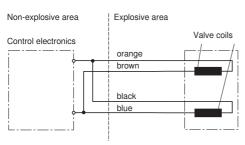
Technical data

electric			
Protection class according	to EN 60529		IP 65
Type of signal			Analog
Rated current per coil		mA	30
Resistance per coil		Ω	85
Inductivity with 60 Hz	Serial connection	Н	1.0
and 100 % rated current	Parallel connection	Н	0.25
In case of actuation using r	non-Rexroth amplifiers, w	e recomme	end a superimposed dither signal.

Information on the explosion protection

Type examination certificate		BVS 09 ATEX E 116 X
Area of application as per directive 94/9/EC		II 2G
Type of protection according to EN 60079-0:2009 / EN 60079-1:2007		Ex d IIB T4 Gb
Ambient temperature range	°C	-30 +80
Hydraulic fluid temperature range	°C	-20 +80
Maximum current per coil	I _{max} mA	100
Conditions for use in zone 1		▲ DANGER – Risk of explosion For ensuring the type of protection "pressure-resistant encapsulation" the occurrence of explosive atmospheres in the hydraulic area of the valve must be securely avoided. This may be ensured by applying a sufficiently high control pressure (≥ 10 bar in channel P and/or X) before applying an electrical signal at the coils or the electronics.

External control electronics


Servo amplifier	Euro-card format 1)	nalog Type VT-SR2-1X/.60	according to data sheet 29980
(separate order)	Modular design 1)	nalog Type VT 11021 accor	rding to data sheet 29743

▲ DANGER – Risk of explosion - The external servo amplifier must be operated outside the explosive area!

1) Order separately

Electrical connection

Example: Parallel connection

A DANGER – Risk of explosion

The free end of the connection cable must be connected as follows according to the construction provisions:

- Outside the explosive area

or

 Within the explosive area in terminal boxes of an acknowledged protection type The connection cable is 3 m long and fixedly attached to the valve.

It may be shortened.

It must not be exchanged.

The electrical connection can be designed as parallel or serial connection. For reasons of operational safety and the resulting lower coil inductivity, we recommend the parallel connection.

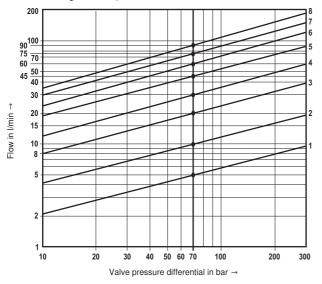
Parallel connection:

Connect the "orange" cable litz with "black" and

"brown" with "blue".

Serial connection:

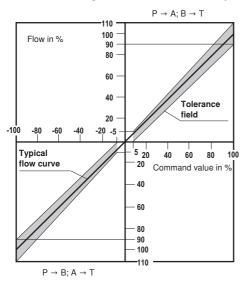
Connect the "brown" cable litz with "black".


The electrical control to "orange" (+) and "blue" (–) provides for the flow direction P \rightarrow A and B \rightarrow T. Inverted electrical control provides for the flow direction P \rightarrow B and A \rightarrow T.

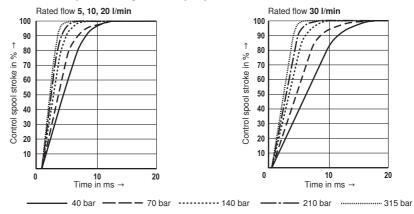
Characteristic curves (measured with HLP32, $\vartheta_{oil} = 40 \text{ °C} \pm 5 \text{ °C}$)

Flow/load function (tolerance ± 10 %) with 100 % command value signal

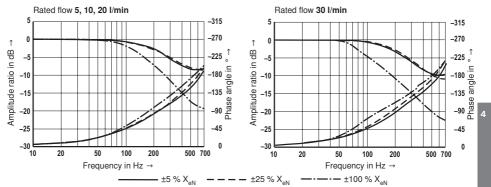
Important:


Observe the flow values in the max. command value range (see tolerance field of the flow/signal function)

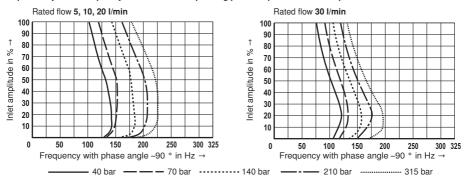
Ordering code	Rated flow	Curve
	5 1/1-	
5	5 l/min	1
10	10 l/min	2
20	20 l/min	3
30	30 l/min	4
45	45 l/min	5
60	60 l/min	6
75	75 l/min	7
90	90 l/min	8


$$\begin{split} \Delta p = \text{Valve pressure differential} \\ (\text{inlet pressure } p_{\text{p}} \\ \text{minus load pressure } p_{\text{L}} \\ \text{mis return flow pressure } p_{\text{T}} \end{split}$$

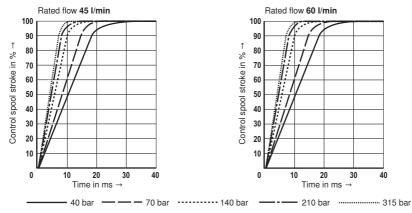
Tolerance field of the flow/signal function with constant valve pressure differential Δp



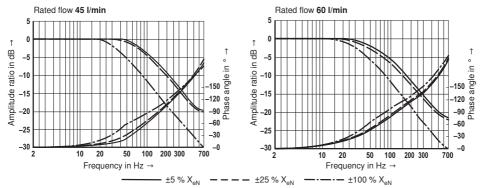
Characteristic curves (measured with HLP 32, $\vartheta_{oil} = 40 \ ^\circ C \pm 5 \ ^\circ C$)


Transition function with pressure rating 315 bar, step response without flow

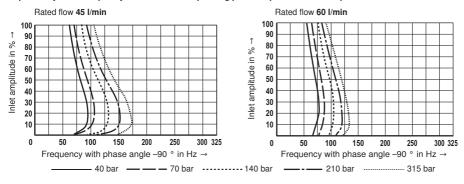
Frequency response with pressure rating 315 bar, stroke frequency without flow



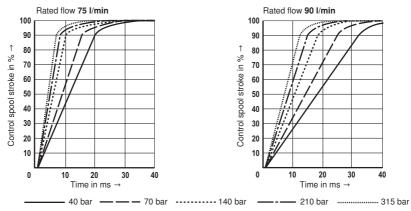
Dependency of the frequency f at -90° on the operating pressure p and the inlet amplitude



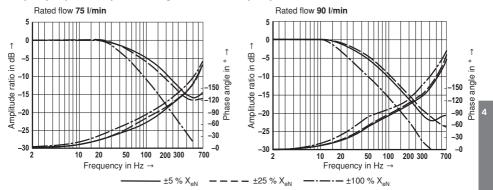
Characteristic curves (measured with HLP 32, their = 40 °C ± 5 °C)


Transition function with pressure rating 315 bar, step response without flow

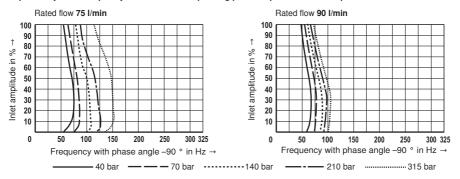
Frequency response with pressure rating 315 bar, stroke frequency without flow

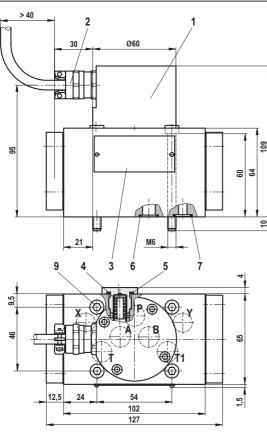


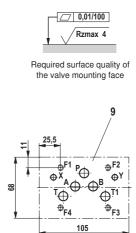
Dependency of the frequency f at -90 ° on the operating pressure p and the inlet amplitude



Characteristic curves (measured with HLP 32, $\vartheta_{oil} = 40 \ ^\circ C \pm 5 \ ^\circ C$)


Transition function with pressure rating 315 bar, step response without flow


Frequency response with pressure rating 315 bar, stroke frequency without flow


Dependency of the frequency f at -90 ° on the operating pressure p and the inlet amplitude

Unit dimensions (dimensions in mm)

- 1 Cap
- 2 Cable gland with cable 3 m long
- 3 Name plate
- 4 Exchangeable filter element Material no.: **R961001950**
- 5 Profile seal for filter screw 16 x 1.5, part of item 4
- 6 Identical seal rings for ports P, A, B, T and T1
- 7 Ports X and Y are also pressurized in case of "internal" pilot oil supply and return.
- 8 Machined valve mounting face Porting pattern according to ISO 4401-05-05-0-05 Port T1 is optional and is recommended for reducing the pressure drop from B → T with rated flows > 45 l/min.

- 9 Valve mounting screws For reasons of stability, exclusively use the following valve mounting screws: 4 hexagon socket head cap screws ISO 4762-M6x70-10.9-fIZn-240h-L
 - (friction coefficient 0.09 0.14 according to VDA 235-101) (included in the scope of delivery)

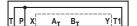
Subplates

G 66/01 FE/ZN (G3/8) G 67/01 FE/ZN (G1/2)

with ports X and Y: G 535/01 FE/ZN (G3/4) G 535/02 FE/ZN (M27 x 2) G 536/01 FE/ZN (G1) G 536/02 FE/ZN (M33 x 2) with dimensions like in data sheet 45054 (must be ordered separately)

Important:

Subplates are no components in the sense of directive 94/9/EC and can be used after the manufacturer of the overall system has assessed the risk of ignition.

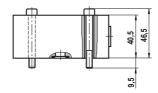

The G...FE/ZN versions are free from aluminum and/or magnesium and galvanized.

688

Flushing plate with porting pattern according to ISO 4401-05-05-0-05 (dimensions in mm)

689

```
Symbol
```



Ordering code and more information

- Material number: R900912450
- Weight: 2 kg
- Identical seal rings for ports P, A, B, T and T1
- Identical seal rings for ports X and Y
- Mounting screws
 For reasons of stability, exclusively use the following mounting screws:
 4 hexagon socket head cap screws
 ISO 4762-M6x50-10.9-flZn-240h-L (friction coefficient 0.09 - 0.14 according to VDA 235-101)
 - (included in the scope of delivery)

Important

Before the assembly, observe the information in the Productspecific instructions 29583-XD-B3, section 3.2.

Notes

Bosch Rexroth AG Hydraulics Zum Eisengießer 1 97816 Lohr am Main, Germa

Zum Eisengießer 1 97816 Lohr am Main, Germany Phone +49 (0) 93 52 / 18-0 documentation@boschrexroth.de www.boschrexroth.de © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Electric Drives and Controls

Hydraulics

Pneumatics

Rexroth Bosch Group

Service

1/14

4/3 directional servo valve with mechanical position feedback

Type 4WS2EM 10...XD...-100

Size 10 Component series 5X Maximum operating pressure 315 bar Maximum flow 180 l/min

ATEX units For explosive areas

Part II Data sheet

Information on the explosion protection:

- Area of application in accordance with the Explosion Protection Directive 94/9/EC: II 2G
- Type of protection: Ex d IIB T4 Gb according to EN 60079-0:2009 / EN 60079-1:2007
- Ambient temperature range –30 °C ≤ T_a ≤ +80 °C

What you need to know about these operating instructions

These operating instructions apply to the explosion-proof version of Rexroth valves and consist of the following three parts:

- Part I General information 07010-X-B1
- Part II Data sheet 29583-XD-100-B2
- Part III Product-specific instructions 29583-XD-100-B3

Operating instructions 29583-XD-100-B0

You can find further information on the correct handling of Rexroth hydraulic products in our publication "General product information on hydraulic products" 07008.

RE 29583-XD-100-B2/04.12 Replaces: 03.10

Table of contents

Contents	Page
Features	2
Ordering code and scope of delivery	3
Symbol	3
Function, section	4
Technical data	5
External control electronics	6
Electrical connection	7
Characteristic curves	8
Unit dimensions	12
Flushing plate	13

Features

- Directional servo valve for proper use in explosive areas of zone 1
- Valve to control position, force, pressure or velocity
- 2-stage servo valve in 4-way version with mechanical feedback
- 1st stage as nozzle flapper plate amplifier
- For subplate mounting, porting pattern according to ISO 4401-05-05-0-05 with ports X and Y Subplates available in FE/ZN version (see page 12)
- Dry control motor, no contamination of the solenoid gaps by the hydraulic fluid
- Wear-free control spool return element
- Control: External control electronics in Euro-card format or in modular design (separate order, see page 6)
- Valve is adjusted and tested
- Internal/external pilot oil supply and return can be ordered individually
- Control spool with flow force compensation
- Control sleeve centrically fixed, thus low susceptibility to temperature and pressure
- Pressure chambers at the control sleeve with gap seal, therefore no wear of the seal ring
- Filter for 1st stage freely accessible from the outside

Ordering code and scope of delivery

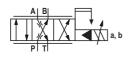
4WS2E	M	10	5	x /	В	1	1	XD			c	'	V-100
Electrically operated 2-stage servo valve in 4/3 directional design for external control electronics													10 V =
Mechanical feedback =	м												
Size 10	= 10)											
(50 to 59: Unchanged installati connection dimensions) Rated flow ¹⁾ 5 l/min		u		= 5							C :	E = D =	
10 l/min 20 l/min 30 l/min 45 l/min			= = =	10 20 30 45						210 315	-	Inle	et pressu
60 l/min 75 l/min 90 l/min			=	60 75 90					-=				Pi Sup
Valve for external control elect Coil no. 11 (30 mA/85 Ω per co		S			. =	11			E = T = ET				Su Su Su

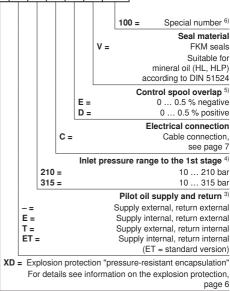
Included in the scope of delivery:

- Valve mounting screws
- Valve operating instructions with declaration of conformity in part III

1) Rated flow

The rated flow refers to a 100 % command value signal at 70 bar valve pressure differential (35 bar per control edge). The valve pressure differential must be regarded as reference. Other values result in the flow being changed. A possible rated flow tolerance of ± 10 % must be taken into account (see flow signal function page 8).


2) External control electronics


The actuating signal must be created from a flow-controlled output stage with a superimposed dither signal. Control electronics (servo amplifier) see page 6.

3) Pilot oil

Care should be taken that the pilot pressure is as constant as possible. An external pilot control via port X is thus often advantageous. The valve can be operated with a higher pressure at X than at P in order to influence the dynamics in a positive form.

Symbol

Important:

The ports X and Y are also pressurized in case of "internal" pilot oil supply and return.

4) Inlet pressure range

Care should be taken that the system pressure is as constant as possible. Pilot pressure range: 10 \dots 210 bar or 10 \dots 315 bar

With regard to the dynamics, the frequency response dependency must be observed within the admissible pressure range.

5) Control spool overlap

The control spool overlap is specified in % of the control spool stroke. Others upon request

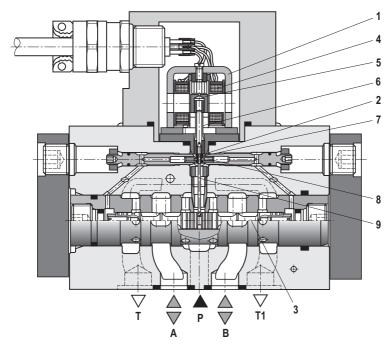
6) Special number "100"

Without actuation (de-energized condition), channels $P \rightarrow B$ and $A \rightarrow T$ are open for 10 % of the nominal quantity.

Function, section

4WS2EM 10...XD...-100

Valves of this type are electrically operated, 2-stage directional servo valves with porting pattern according to ISO 4401-05-05-05. They are mainly used to control position, force, pressure or velocity.


These valves are made of an electro-mechanical converter (torque motor) (1), a hydraulic amplifier (principle: nozzle flapper plate) (2) and a control spool (3) in a sleeve (2nd stage) which is connected with the torque motor via a mechanical feedback.

An electrical input signal at the coils (4) of the torque motor generates a force by means of a permanent magnet which acts on the armature (5), and in connection with a torque tube (6) results in a torque. This causes the flapper plate (7) which is connected to the torque tube (6) via a pin to move from the central position between the two control nozzles (8), and a pressure differential is created across the front faces of the control spool (3). The pressure differential results in the control spool changing its position, which results in the pressure port being connected to one actuator port and, at the same time, the other actuator port being connected to the return flow port. The control spool is connected to the flapper plate or the torque motor by means of a bending spring (mechanical feedback) (9). The position of the control spool is changed until the feedback torque across the bending spring and the electro-magnetic torque of the torque motor are balanced and the pressure differential at the nozzle flapper plate system becomes zero.

The stroke of the control spool and consequently the flow of the servo valve are controlled in proportion to the electrical input signal. It must be noted that the flow depends on the valve pressure drop.

External control electronics (separate order)

External control electronics (servo amplifier) serve the actuation of the valve, amplifying an analog input signal (command value) so that with the output signal, the servo valve is actuated in a flow-controlled form.

Type 4WS2EM 10...XD...-100

Technical data

general	
Porting pattern	ISO 4401-05-05-0-05
Installation position	Any (ensure that during start-up of the system, the pilot con- trol is supplied with sufficient pressure (≥ 10 bar)!)
Surface protection	Nitro-carburated
Storage temperature range °C	-20 +80
Ambient temperature range °C	-30 +80
Weight kg	3.97

Operating	Pilot control stage, pilot oil su	pply bar	10 210	or 10 3 [.]	15					
pressure	Main valve, ports P, A, B	bar	up to 315							
Return flow	Port T									
pressure	Pilot oil return internal	bar	Pressure	peaks < 10	0 nern	nitted	static	- 10		
	Pilot oil return external	bar	Up to 315		<u>o pom</u>	intro a,	otatio			
	Port Y	bar		peaks < 10	0 pern	nitted.	static	< 10		
Hydraulic fluid				I (HL, HLP)	<u> </u>					
,			Ignition te	mperature	> 150	°Č				
Hydraulic fluid t	emperature range	°C	-20 +80	0; preferabl	y +40	+50)			
Viscosity range		mm²/s	15 380	; preferably	30	45				
	ssible degree of contamination of ness class according to ISO 4406		Class 18/	16/13 ¹⁾						
Zero flow $q_{V, L}^2$ with control spo measured with	ol overlap E	l/min	1 70 bar •0.7 lini	$\sqrt{\frac{p_{\rm p}^{4)}}{70 \rm bar}} \cdot 0.9 \frac{\rm l}{\rm min}$	70	4) bar n	l 1in	$\frac{p_{\rm P}^{4)}}{70 \rm bar}$	1.5 <mark>—</mark> min	$\sqrt{\frac{p_{\rm P}^{4)}}{70{\rm bar}}} \cdot 1.7 \frac{1}{{\rm min}}$
Rated flows q _{v r} with valve press (35 bar/edge)	$^{3)}$, tolerance ±10 % sure differential Δp = 70 bar	l/min	5	10	20	30	45	60	75	90
	ool stroke possible with mechanic e of error) related to nominal strok		120 170 120 150					50		
Feedback syste	em		Mechanic	al						
Hysteresis (dith	er-optimized)	%	≤ 1.5							
Range of invers	sion (dither-optimized)	%	≤ 0.3							
Response sens	itivity (dither-optimized)	%	≤ 0.2							
Pressure gain v 1 % control spo (from the hydra	ol stroke change	% of $p_{\rm P}^{~4)}$		≥ 30)			≥	60	≥ 80
Zero adjustmen pressure range	t flow over the entire operating	%	≤ 3, long-	term ≤ 5						
Zero shift upon	change of:									
Hydraulic	fluid temperature	% / 20 K	≤ 1							
-	emperature	% / 20 K	≤ 1							
	pressure 80 \dots 120 % of $p_{\rm P}{}^{4)}$	% / 100 bar	≤ 2							
Return flow	w pressure 0 10 % of $p_{\rm P}^{\rm 4)}$	% / bar	≤ 1							

¹⁾ The cleanliness classes specified for the components must be adhered to in hydraulic systems. Effective filtration prevents faults and at the same time increases the service life of the components. ²⁾ $q_{V,L}$ = zero flow in l/min

³⁾ $q_{v rated}$ = rated flow in l/min

⁴⁾ $p_{\rm P}$ = operating pressure in bar

For the selection of the filters see www.boschrexroth.com/filter.

695

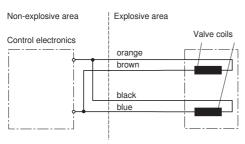
Technical data

electric					
Protection class according to EN 60529			IP 65		
Type of signal			Analog		
Rated current per coil mA			30		
Resistance per coil Ω		85			
Inductivity with 60 Hz	Serial connection	Н	1.0		
and 100 % rated current Parallel connection H			0.25		
In case of actuation using non-Rexroth amplifiers, we recommend a superimposed dither signal.					

Information on the explosion protection

Type examination certificate		BVS 09 ATEX E 116 X
Area of application as per directive 94/9/EC		II 2G
Type of protection according to EN 60079-0:2009 / EN 60079-1:2007		Ex d IIB T4 Gb
Ambient temperature range	°C	-30 +80
Hydraulic fluid temperature range	°C	-20 +80
Maximum current per coil	I _{max} mA	100
Conditions for use in zone 1		▲ DANGER – Risk of explosion For ensuring the type of protection "pressure-resistant encapsulation" the occurrence of explosive atmospheres in the hydraulic area of the valve must be securely avoided. This may be ensured by applying a sufficiently high control pressure (≥ 10 bar in channel P and/or X) before applying an electrical signal at the coils or the electronics.

External control electronics


Servo amplifier	Euro-card format 1)	Analog Type VT-SR2-1X/.60 according to data sheet 29980	
(separate order)	Modular design 1)	Analog Type VT 11021 according to data sheet 29743	

▲ DANGER – Risk of explosion - The external servo amplifier must be operated outside the explosive area!

1) Order separately

Electrical connection

Example: Parallel connection

A DANGER – Risk of explosion

The free end of the connection cable must be connected as follows according to the construction provisions:

- Outside the explosive area

or

 Within the explosive area in terminal boxes of an acknowledged protection type The connection cable is 3 m long and fixedly attached to the valve.

It may be shortened.

It must not be exchanged.

The electrical connection can be designed as parallel or serial connection. For reasons of operational safety and the resulting lower coil inductivity, we recommend the parallel connection.

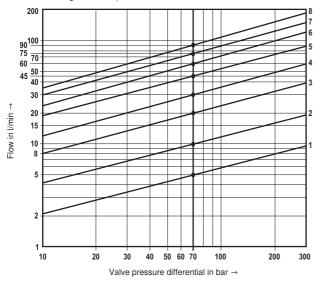
Parallel connection:

Connect the "orange" cable litz with "black" and

"brown" with "blue".

Serial connection:

Connect the "brown" cable litz with "black".


The electrical control to "orange" (+) and "blue" (–) provides for the flow direction $P \rightarrow A$ and $B \rightarrow T$. Inverted electrical control provides for the flow direction $P \rightarrow B$ and $A \rightarrow T$.

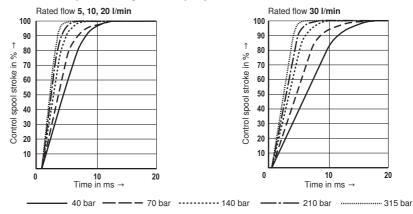
Characteristic curves (measured with HLP32, $\vartheta_{oil} = 40 \text{ °C} \pm 5 \text{ °C}$)

Flow/load function (tolerance ± 10 %) with 100 % command value signal

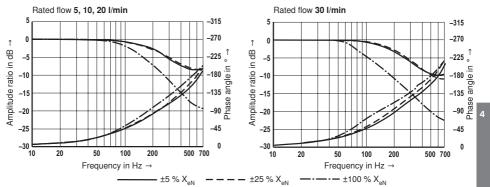
Important:

Observe the flow values in the max. command value range (see tolerance field of the flow/signal function)

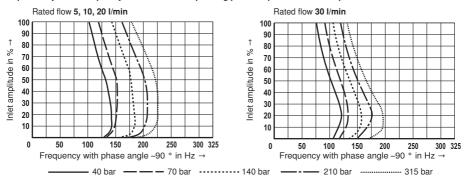
Ordering code	Rated flow	Curve
5	5 l/min	1
10	10 l/min	2
20	20 l/min	3
30	30 l/min	4
45	45 l/min	5
60	60 l/min	6
75	75 l/min	7
90	90 l/min	8


$$\begin{split} \Delta \rho = \text{Valve pressure differential} \\ (\text{inlet pressure } \rho_{\text{p}} \\ \text{minus load pressure } \rho_{\text{L}} \text{ minus return flow pressure } \rho_{\text{T}}) \end{split}$$

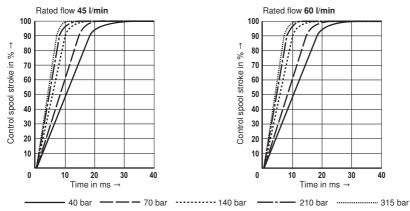
Tolerance field of the flow/signal function with constant valve pressure differential Δp



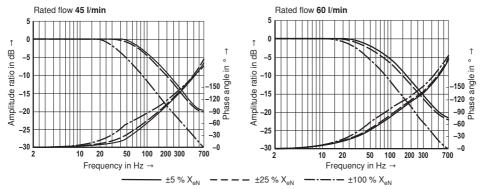
Characteristic curves (measured with HLP 32, $\vartheta_{oil} = 40 \ ^\circ C \pm 5 \ ^\circ C$)


Transition function with pressure rating 315 bar, step response without flow

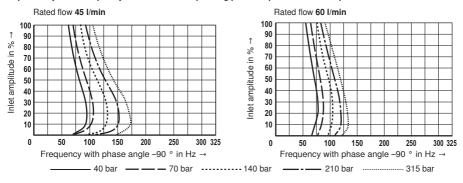
Frequency response with pressure rating 315 bar, stroke frequency without flow



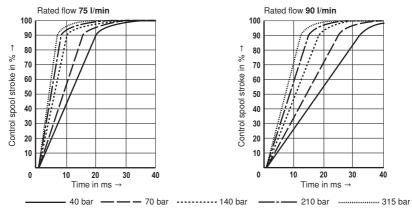
Dependency of the frequency f at -90° on the operating pressure p and the inlet amplitude



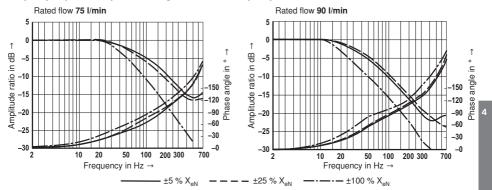
Characteristic curves (measured with HLP 32, their = 40 °C ± 5 °C)

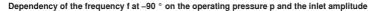

Transition function with pressure rating 315 bar, step response without flow

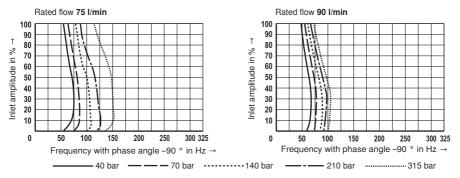
Frequency response with pressure rating 315 bar, stroke frequency without flow

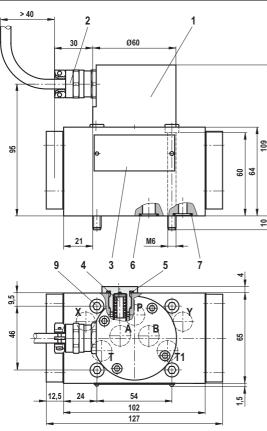


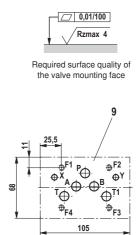
Dependency of the frequency f at -90 ° on the operating pressure p and the inlet amplitude




Characteristic curves (measured with HLP 32, $\vartheta_{oil} = 40 \ ^\circ C \pm 5 \ ^\circ C$)


Transition function with pressure rating 315 bar, step response without flow


Frequency response with pressure rating 315 bar, stroke frequency without flow



Unit dimensions (dimensions in mm)

- 1 Cap
- 2 Cable gland with cable 3 m long
- 3 Name plate
- 4 Exchangeable filter element Material no.: **R961001950**
- 5 Profile seal for filter screw 16 x 1.5, part of item 4
- 6 Identical seal rings for ports P, A, B, T and T1
- 7 Ports X and Y are also pressurized in case of "internal" pilot oil supply and return.
- 8 Machined valve mounting face Porting pattern according to ISO 4401-05-05-0-05 Port T1 is optional and is recommended for reducing the pressure drop from B → T with rated flows > 45 l/min.

- 9 Valve mounting screws For reasons of stability, exclusively use the following valve mounting screws: 4 hexagon socket head cap screws ISO 4762-M6x70-10.9-flZn-240h-L
 - (friction coefficient 0.09 0.14 according to VDA 235-101) (included in the scope of delivery)

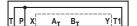
Subplates

G 66/01 FE/ZN (G3/8) G 67/01 FE/ZN (G1/2)

with ports X and Y: G 535/01 FE/ZN (G3/4) G 535/02 FE/ZN (M27 x 2) G 536/01 FE/ZN (G1) G 536/02 FE/ZN (M33 x 2) with dimensions like in data sheet 45054 (must be ordered separately)

Important:

Subplates are no components in the sense of directive 94/9/EC and can be used after the manufacturer of the overall system has assessed the risk of ignition.

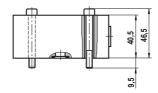

The G...FE/ZN versions are free from aluminum and/or magnesium and galvanized.

702

Flushing plate with porting pattern according to ISO 4401-05-05-0-05 (dimensions in mm)

703

```
Symbol
```



Ordering code and more information

- Material number: R900912450
- Weight: 2 kg
- Identical seal rings for ports P, A, B, T and T1
- Identical seal rings for ports X and Y
- Mounting screws
 For reasons of stability, exclusively use the following mounting screws:
 4 hexagon socket head cap screws
 ISO 4762-M6x50-10.9-flZn-240h-L (friction coefficient 0.09 - 0.14 according to VDA 235-101)
 - (included in the scope of delivery)

Important

Before the assembly, observe the information in the Productspecific instructions 29583-XD-100-B3, section 3.2.

Bosch Rexroth AG Hydraulics Zum Eisengießer 1 97816 Lohr am Main, Germany Phone +49 (0) 93 52 / 18-0 documentation@boschrexroth.de www.boschrexroth.de © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Electronics

		Component		
Designation	Туре	series	Data sheet	Page
Valve amplifiers				
Amplifier module for controlling the explosion-proof proportional pressure valve, DBET-6XXE	VT-MSPA1-200	1X	30223-200	707
Amplifier module for controlling the explosion-proof proportional directional valves 4WRAXE, 3DREP 6XE and 4WRZXE	VT-MSPA2-200	1X	30228-200	713
Monitoring module				
Module for monitoring and limiting the solenoid currents in proportional valves	VT-MUXA2-2	1X	30290	721

707

Service

Amplifier module for controlling the explosion-proof proportional pressure valve DBET-6X...XE¹⁾

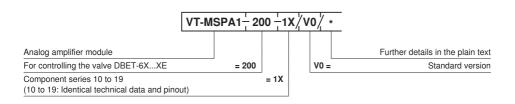
RE 30223-200/03.11 1/6 Replaces: 02.07

Component series 1X

Type VT-MSPA1-200

Table of contents

Table of contents		Features
Contents Features	Page	 Amplifier module is not subject to the directive 94/9/EC (ATEX directive)
Ordering code Functional description	rdering code 2 unctional description 2	 In connection with the Rexroth monitoring module ¹⁾ VT-MUXA2-2 suitable for controlling the proportional pressure valve of type DBET-6XXE
Block diagram Technical data Output characteristic curve Terminal assignment	3 4 4 5	 Inverse-polarity protection of the operating voltage Differential input for command value voltage +10 V Ramp generator up and down can be set separately Zero point potentiometer
Device view/unit dimensions Important notes	5	 1 command value attenuator Characteristic curve generator Synchronized power output stage Output short-circuit-proof LED display: • Ready for operation (green)
		EED display. Ready for operation (green)


- Measuring sockets for: • Pressure command value

· Actual current value

- Dither generator with command value- and operating voltagedependent frequency

¹⁾ For the operation of the valve in the explosive area, additional safety measures are required. Here, we recommend using the Rexroth monitoring module VT-MUXA2-2. In this connection, observe data sheet 30290.

Ordering code

Functional description

Analog amplifier for controlling pressure valves without electric return. The modular design allows for simple top hat rail assembly as is usual in control cabinets.

() = Assignment to the block diagram on page 3

Command value input (4)

The module amplifier is controlled by means of a standard command value signal 0 to +10 V. By means of the zero point trimmer (Zw) (6), a zero point offset can be corrected.

Ramp generator (5)

In the ramp generator (5), the actuating variable rise is limited. Using the trimmer "t <" (7), the time for the increasing command value signal is set and using trimmer "t >" (8), the time for the decreasing command value voltage is set. The adjustable time is in each case 30 ms to > 5 s.

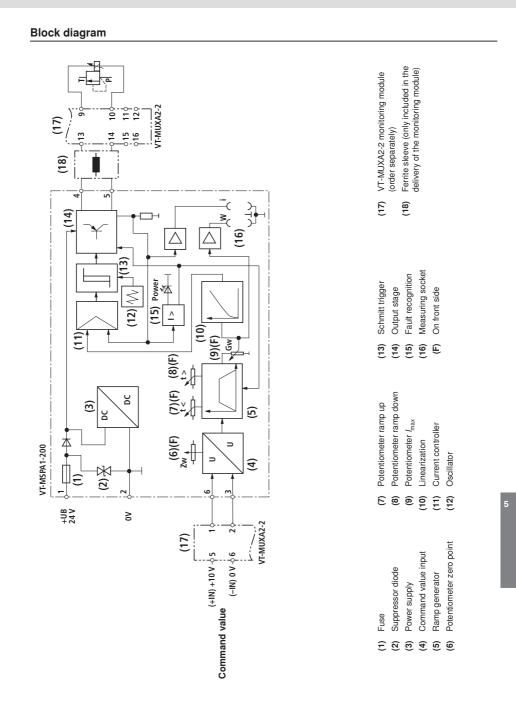
Characteristic curve generator (10)

Using the trimmer "Gw" (9), the rated current of 1.0 A for the solenoid is set. In the characteristic curve generator (10), the command value signal is changed so that a linear command value/pressure characteristic curve results.

Clock generator (12)

In the clock generator (12), a frequency for the output stage adjusted to the command value is generated.

Power output stage (11) to (14)


Using the actuating variable coming from the characteristic curve generator (10) and the clock frequency, the power output stage generates a PWM signal that is fed into the solenoid. The solenoid current is recorded and in the current controller (11) compared with the actuating variable and the difference is compensated.

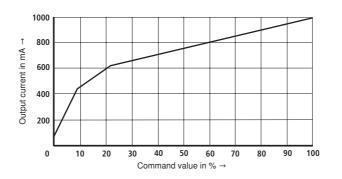
Fault detection (15)

Monitors the solenoid lines with regard to cable break and short circuit as well as overcurrent of the output stage. If there is an error, the green Ready for operation display goes out.

Monitoring and limitation of the solenoid current (17)

The VT MUXA2-2 module provides for the monitoring and limitation of the solenoid current. The functioning is described in data sheet 30290.

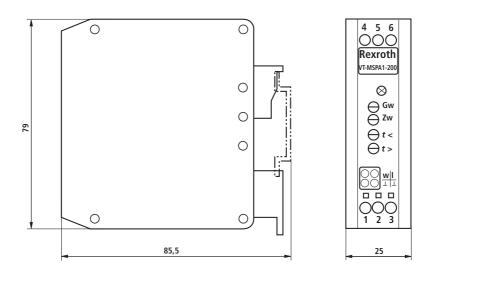
Operating voltage 24 VDC +40 % -10 % $U_{\rm B}$ Operating range: $u_{\rm B}(t)_{\rm max}$ 35 V - Upper limit value $u_{\rm B}(t)_{\rm min}$ 21 V - Lower limit value Power consumption $P_{\rm max}$ < 50 VA Current consumption I_{max} < 1.3 A Fuse Electronic overload protection and SMD fuse (soldered in) ľ Inputs: $U_{\rm command}$ 0 to +10 V; $R_{\rm e} = 100 \text{ k}\Omega$ - Command value (differential input) Outputs: I_{max} 1.0 A; R₂₀ = 8.3 Ω - Solenoid current / resistance 180 to 450 Hz f - Frequency Setting ranges: / 60 mA...1000 mA - GW: Solenoid current ±25 % - ZW: Zero point - t>:" Ramp t 60 ms...5 sec - t <: Measuring sockets: U 0 to 10 V - Command value "w" U 1 mV ≜ 1 mA solenoid current - Actual current value "I" Type of connection 6 screw terminals Mounting type Top hat rail TH 3-7.5 according to EN 60715 Protection class IP 20 according to EN 60529 Dimensions (W x H x D) 25 x 79 x 85.5 mm Admissible operating temperature range v 0 to +50 °C ϑ –25 to +85 °C Storage temperature range


Technical Data (For applications outside these parameters, please consult us!)

Weight Note!

For information on the environment simulation testing for the areas EMC (electromagnetic compatibility), climate and mechanical load, see data sheet 30223-U.

m 0.15 kg


Output characteristic curve

Terminal assignment

Terminal	
1	+U _B
2	Ground
3	-U _{command}
4	Solenoid +
5	Solenoid –
6	+U _{command}

Device view/unit dimensions (dimensions in mm)

Potentiometer:	"Gw"	Pressure command value
----------------	------	------------------------

- "Zw" Zero point
- "t <" Ramp time up
- "t >" Ramp time down

Sockets:

- "w" Pressure command value
- "I" Actual current value
- "⊥" Measurement null

Important notes

Explosion hazard caused by incorrect assembly!

For achieving the prescribed safety when operating the valve in the explosive area, it has to be ensure that the solenoid current does not exceed 1 A. For monitoring and limiting the valve current, we recommend using the Rexroth monitoring module VT-MUXA2-2. In this connection, observe data sheet 30290.

The VT-MSPA1-200 amplifier module and the VT-MUXA2-2 monitoring module may only be installed outside the explosive area!

The VT-MSPA1-200 amplifier module and the VT-MUXA2-2 monitoring module are not subject to the directive 94/9/EC (ATEX directive)!

More information:

- The amplifier module may only be wired when de-energized!
- Do not lay signal lines close to power cables and lines!
- Do not use free-wheeling diodes in the solenoid lines!
- The distance to aerial lines, radios, and radar systems has to be 1 m at least!
- Always shield command value lines, connect shielding to protective earthing (PE) on the module side!
- · Also shield the solenoid lines!
- For solenoid lines up to 50 m in length, use the line type LiYCY 1.5 mm²!
- With greater lengths please consult us!
- In applications in connection with the VT-MUXA2-2 monitoring module, please observe the wiring specified in the block diagram of data sheet 30290.
- For switching command values, relays with gold-plated contacts have to be used (small voltages, low currents)!
- Only carry out measurements at the module using instruments with Ri > 100 kΩ.
- For setting the potentiometers, use a screwdriver with a blade width of 4 mm!
- With a strongly fluctuating operating voltage, it may in the individual case be necessary to use an external smoothing capacitor with a capacity of at least 2200 μ F.

Recommendation: Capacitor module VT 11110 (see data sheet 30750), sufficient for up to 3 amplifier modules

Bosch Rexroth AG Hydraulics Zum Eisengießer 1 97816 Lohr am Main, Germany Phone +49 (0) 93 52 / 18-0 Fax +49 (0) 93 52 / 18-23 58 documentation@boschrexroth.de www.boschrexroth.de © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Service

Amplifier module for controlling ¹⁾ the explosion-proof proportional directional valves 4WRA...XE, 3DREP 6...XE and 4WRZ...XE

RE 30228-200/03.11 1/8 Replaces: 07.05

Type VT-MSPA2-200

Component series 1X

Table of contents

Content
Features
Ordering code
Functional description
Block diagram
Technical Data
Characteristic curves
Terminal assignment
Device view / unit dimensions
Important notes / setting information

Features

4

5

6

7

- Page - Amplifier module is not subject to the directive 94/9/EC (ATEX directive) 1
 - In connection with the Rexroth monitoring module 1) 2 VT-MUXA2-2 suitable for controlling proportional directional 2 valves without electric position feedback, types 4WRA...XE, 3 3DREP 6...XE and 4WRZ...XE
 - Command value input ±10 V (differential input)
 - Ramp generation with separately adjustable ramp time "up/down"
 - 6 - Characteristic curve correction by means of separately adjustable step heights
 - Release input
 - Reverse polarity protection for the voltage supply
 - Power supply with DC/DC converter without raised zero point for the internal supply
 - LED displays: Ready for operation (green) Release (yellow)

1) For the operation of the valve in the explosive area, additional safety measures are required. Here, we recommend using the Rexroth monitoring module VT-MUXA2-2. In this connection, observe data sheet 30290.

713

Ordering code

714

Functional description

General

The amplifier modules are snapped onto top hat rails according to EN 60715. The electrical connection is established via screw terminals. The modules are operated with 24 V direct voltage.

() = Assignment to the block diagram on page 3

Power supply unit (1)

The amplifier modules have a power supply unit with switchon current limitation. This unit supplies all internally required positive and negative supply voltages. The switch-on current limitation prevents high switch-on current peaks.

Command value provision

The internal command value signal is generated from the external command value signal available at the differential input (2).

A positive command value results in a current increase in the "b" solenoid and thus a flow in the valve from P \rightarrow A and from B \rightarrow T.

A negative command value results in a current increase in the "a" solenoid and thus a flow in the valve from P \rightarrow B and from A \rightarrow T.

Release function (10)

The release function enables the power output stage and forwards the internal command value signal to the ramp generator. The release signal is displayed by an LED on the front plate. If the release is connected, the internal command value is changed (with any kind of command value specification) by the set ramp time. Thus, a controlled valve does not open abruptly.

Ramp generator (3)

The ramp generator limits the rise of the actuating variable. The downstream step functions do not extend or shorten the ramp time.

Notes for setting and measuring the ramp time:

Value at measuring socket "t <" or "t >"					"t >"	U _t in V	5	3	2	
current ramp time (±20 %)						t in ms	20	33	50	
						0.05				
U_{t} in V	1	0.5	0.3	0.2 0.1		0.05	0.03	3 0	0.02	
t in ms	100	200	333	500	1000	2000	333	3 5	5000	

The followi	ng applies:	$t = \frac{100 \text{ Vms}}{U_{\text{t}}}$	
Example:	Measured	$U_{\rm t} = 5 \rm V$	
	Results in	$t = \frac{100 \text{ Vms}}{5 \text{ V}}$	= 20 ms

Characteristic curve generator (4)

Using the adjustable characteristic curve generator, the step height for positive and negative signals can be set separately, adjusted to the hydraulic requirements. The actual development of the characteristic curve through the zero point is not stepped but linear. (Characteristic curve see page 5)

Amplitude limiter (5)

The command value is limited to ca. ±110 % of the nominal range.

Current controller (6)

The current is controlled according to the command value.

Power output stage (7)

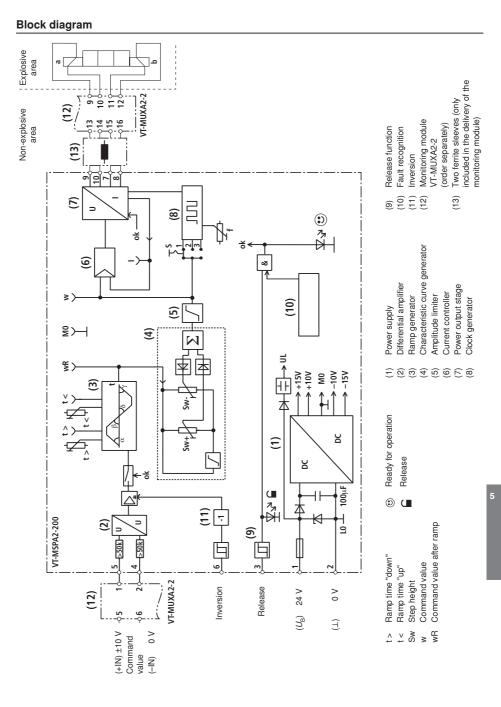
The power output stage creates the clocked solenoid current for the proportional valve. The rated solenoid current is 1000 mA per output. the output stage outputs are short-circuit-proof. The output stages are de-energized in case of an internal fault signal or if the release is missing.

Clock generator (8)

The clock generator creates the clock frequency *f* of the output stages.

f = 150 Hz ... 400 Hz, adjustable by means of the potentiometer "f" (preset to 240 Hz)

Fault detection (10)

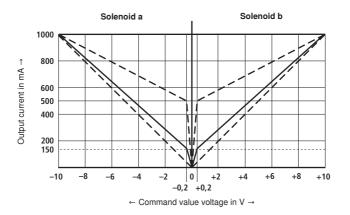

The solenoid line is monitored for cable break as well as overcurrent of the output stage.

Command value inversion (11)

The command value created internally from the input signal and the zero point offset signal can be inverted by an external signal.

Monitoring and limitation of the solenoid current (12)

The VT MUXA2-2 module provides for the monitoring and limitation of the solenoid current. The functioning is described in data sheet 30290.

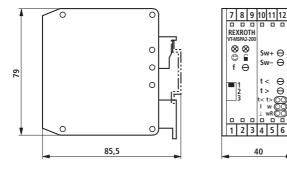

Operating voltage	Nominal value		UB	24 VDC		
	Maximum value $u_{\rm B}(t)_{\rm max}$		max	35 V		
Minimum value $u_{\rm B}({\rm t})_{\rm min}$						
			Ρ	< 24 VA		
Current consumption	on		1	< 1 A		
Fuse			Thermal overload protection (with restart if the value falls below the temperature threshold)			
Inputs						
Analog	Command va	ue (differential input)	U _e	0 ±10 V; R _e > 50 kΩ		
Digital	Release	ON	U	8.5 V U _B ; R _e > 100 kΩ		
		OFF	U	0 6.5 V; R _e > 100 kΩ		
	Inversion	ON	U	8.5 V U _B ; R _e > 100 kΩ		
		OFF	U	0 6.5 V; R _e > 100 kΩ		
Setting ranges						
Clock frequency f			150 Hz 400 Hz, adjustable, preset to 240 Hz			
Ramp times (potentiometer "t	<" and "t >") t <,	t >	20 ms5 s		
Step heights (potentiometer "Sw+" and "Sw-")			0 % 50 %			
Outputs						
Power output stages /			0 1000 mA, short-circuit-proof; clocked			
Measuring	Ramp time "t	<"	U	20 mV5 V		
sockets	Ramp time "t >" U		U	20 mV5 V		
	Actual value "I" U		U	$0 \dots \pm 1000 \text{ mV}$ (measured value in mV \triangleq solenoid current in m.		
	Command value "w" U		U	0 ±10 V		
Command value after ramp "wR" U		U	/ 0 ±10 V			
Type of connection				Screw terminals		
Connection cross-section A			0.5 2.5 mm ²			
Mounting type			Top hat rail TH 35-7.5 according to EN 60715			
Protection class			IP 20 according to EN 60529			
Dimensions (W x H x D)			See unit dimensions			
Admissible operating temperature range 🛛 🖞			0 +50 °C			
Storage temperature range ů			-25 °C +70 °C			
Weight m			0.14 kg			

Technical Data (for applications outside these parameters, please consult us!)

Note!

For information on the environment simulation testing for the areas EMC (electromagnetic compatibility), climate and mechanical load, see data sheet 30228-U.

Characteristic curves


Dependency of the output current from the command value voltage

Setting range of the step height of the output current: 0 ... 500 mA Pre-setting ex works: 150 mA

Terminal assignment

Operating	+ <i>U</i> _B	1	7	Solenoid "b"
	0 V	2	8	Solehold b
Release	U _F	3	9	Solenoid "a"
Command	0 V (–IN)	4	10	Solehold a
	±10 V (+IN)	5	11	n.c.
	Inversion	6	12	n.c.

Device view / unit dimensions (dimensions in mm)

LED displays:

- (\mathbf{e}) Ready for operation (green)
- Release (yellow) ſ

Potentiometer:

Sw+ Step height for positive direction

- Sw- Step height for negative direction
- t < Ramp time for increasing command values
- t > Ramp time for decreasing command values
- Frequency setting, 240 Hz pre-set, f 150 Hz ...400 Hz adjustable

Mode selector switch: without function Measuring sockets:

- t < Ramp time "up"
- t > Ramp time "down"
- Actual current value L
- Command value w
- wR Command value after ramp

θ

θ

00

6

Τ Measurement null

Important notes / setting information

Explosion hazard caused by incorrect assembly!

For achieving the prescribed safety when operating the one of the specified valves in the explosive area, it has to be ensure that the solenoid current does not exceed 1 A. For monitoring and limiting the valve current, we recommend using the Rexroth monitoring module VT-MUXA2-2. In this connection, observe data sheet 30290.

The VT-MSPA2-200 amplifier module and the VT-MUXA2-2 monitoring module may only be installed outside the explosive area!

The VT-MSPA2-200 amplifier module and the VT-MUXA2-2 monitoring module are not subject to the directive 94/9/EC (ATEX directive)!

More information:

- The amplifier module may only be wired when de-energized!
- Do not lay signal lines close to power cables and lines!
- Do not use free-wheeling diodes in the solenoid lines!
- The distance to aerial lines, radios, and radar systems has to be 1 m at least!
- Always shield command value lines, connect shielding to protective earthing (PE) on the module side!
 - Also shield the solenoid lines!
 - For solenoid lines up to 50 m in length, use the line type LiYCY 1.5 mm²!
 - · With greater lengths please consult us!
 - In applications in connection with the VT-MUXA2-2 monitoring module, please observe the wiring specified in the block diagram of data sheet 30290.
- For switching command values, relays with gold-plated contacts have to be used (small voltages, low currents)!
- Only carry out measurements at the module using instruments with R_i > 100 kΩ.
- For setting the potentiometers, use a screwdriver with a blade width of 4 mm!
- With a strongly fluctuating operating voltage, it may in the individual case be necessary to use an external smoothing capacitor with a capacity of at least 2200 µF.
- Recommendation: Capacitor module VT 11110 (see data sheet 30750), sufficient for up to 3 amplifier modules
- In connection with the VT-MUXA2-2 monitoring module, the operating voltage has to be fed in via a capacitor module. The solenoid current connections to the VT-MUXA2-2 monitoring module must be led via ferrite sleeves. The ferrite sleeves are included in the scope of delivery of the VT-MUXA2-2 monitoring module.
- In the condition as supplied, the clock frequency is set to 240 Hz. Rotating the "f" potentiometer changes the valve hysteresis and may lead to disturbing noise developments.

Setting information

Prerequisite: The system-specific wiring must have been completed.

Signal	Setting
Ramp times:	– Set ramp time according to formula or table (see functional description "Ramp generator) and check it at the measuring sockets "t >" or "t <"
Step height:	- Apply the release signal
	- with an external command value provision of +0.3 V, set the measuring signal at "wR" to +0.3 V
	- using the "Sw+" potentiometer, set the necessary positive step height
	– with an external command value provision of –0,3 V, set the measuring signal at "wR" to –0,3 V
	- using the "Sw-" potentiometer, set the necessary negative step height
	Note: With an external command value provision, it must at least result in +0.3 V / –0.3 V at the "wR" measuring socket.
Clock frequency:	Condition as supplied: $f = 240 \text{ Hz}$
	Note: The new setting of the frequency can be carried out with a digital multimeter that is able to measure frequencies. Measure at connection terminals 7 or 9 against 2 (ground).

Notes

Bosch Rexroth AG Hydraulics Zum Eisengießer 1 97816 Lohr am Main, Germany Phone +49 (0) 93 52 / 18-0 Fax +49 (0) 93 52 / 18-23 58 documentation@boschrexroth.de © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Electric Drives and Controls

Hydraulics

Linear Motion and Assembly Technologies

Pneumatics

Service

1/8

Module for monitoring and limiting the solenoid currents in proportional valves

RE 30290/02.11 Replaces: 11.09

Table of contents

Type VT-VT-MUXA2-2

Component series 1X Maximum solenoid current 1.0 A

Content
Features
Use
Ordering code and scope of delivery
Function
Block diagram VT-MUXA2-2 for one solenoid
Block diagram VT-MUXA2-2 for two solenoids
Technical data
Characteristic curves
Terminal assignment
Installation conditions and unit dimensions

Features

Page

2

2

3

4

5

7

8

- Shut-off of the solenoid currents after exceedance of the	
admissible maximum current	

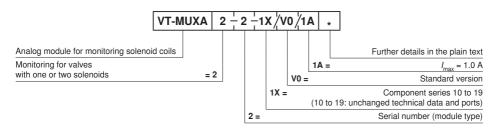
- Additional, not safety-relevant command value correction prevents early switch-off of the solenoid currents
- Additional fuse protection for the solenoid circuits by means of non-exchangeable fuses 1.25 A, fast-acting according to IEC 60127-4
- Redundant relay contacts per solenoid circuit
- 6 Redundant solenoid current measurement per solenoid circuit
 - Protection against reversed polarity of the solenoid circuits
 - Protection against reversed polarity of the operating voltage
- 8 Reset input edge-triggered
 - Differential input
 - Command value output
 - OK output
 - Top hat rail mounting
 - Plug-in terminals

Use

The VT-MUXA2-2 module is able to monitor 1 or 2 solenoid circuits. The solenoid currents are limited so that there is no overheating of the solenoids. The solenoid currents necessary for operating the valve are provided by an amplifier (order separately).

The amplifier is adjusted according to the rated current data of the solenoid (rated current = 1.03 A). With a command value provision of 10 V, it provides an output current of 1.0 A.

In case of defect or incorrect operation, the amplifier may provide a current of more than 1.0 A. The interconnected VT-MUXA2-2 monitoring module recognizes the over-current, reduces the command value or switches off the solenoid current.


The VT-MUXA2-2 monitoring module must be protected against voltage peaks from the 24 V mains. Our VT 11110 capacitor module protects from voltage peaks and smoothens the 24 V supply voltage.

Explosion hazard in case of incorrect assembly!

Please observe the following rules in any circumstance!

- 1. The Rexroth electronics mentioned in this data sheet must be installed and operated outside the explosive area.
- The VT-MUXA2-2 module must be switched between amplifier output and solenoids and between control output (command value provision by superior control) and amplifier input (see block diagram).
- 3. Only connect valve solenoids the maximum current of which complies with the monitoring current of the VT-MUXA2-2 monitoring module.

Ordering code and scope of delivery

Included in the delivery:

 One or two ferrite sleeves for lines between amplifier and monitoring module conducting solenoid current

Function

Power supply unit (1)

The internal power supply unit provides the internally required auxiliary voltages.

A green LED (power) shows that the power supply unit is working.

Power supply unit monitoring (2)

If the internal supply voltages are missing, this causes the relay switch-off via the NTF signal. Voltages without which the relays cannot be controlled are not monitored additionally.

Current measurement (3)

The solenoid currents I_A and I_B are in each case measured in the supply path and in the return path (AV, AR, BV, BR). Both measurement results are analyzed independent of each other. Against reverse polarity, protective diodes are provided. The two currents I_A and I_B are added as neither each individual solenoid current nor the total of the currents must exceed the specific limit value.

Symmetry monitoring (4)

As the supply and return currents must be identical, the total currents are identical, as well. If there are deviations, e.g. in case of earth fault or faulty current measurement, the DI error signal for the relay switch-off is generated.

Correction signal generation (5)

The correction signals serve

- a)As auxiliary signal for correcting (amount reduction) the command value forwarded to the amplifier as soon as the maximally admissible solenoid current is exceeded.
- b)As auxiliary signal for switching off the solenoid circuits if measure a) is not effective.

Command value correction (6)

As long as the solenoid current is within the nominal range, the command value for the solenoid current coming from the control is forwarded to the valve amplifier without being influenced. If the maximally admissible current is exceeded, the command value amount is within few seconds reduced with a ramp-shaped development until the current reaches the limit value. Thus, an abrupt shut-off of the current is avoided. If the corrected command value reaches a value smaller than 50 % of the nominal value and the solenoid current is not reduced, there is a switch-off by the relay contacts. The command value correction is not structured in a redundant form. A circuit failure or an incorrect command value signal always results in the switch-off by the relay contacts if the solenoid current values are inadmissible.

Relay control (7)

The relays for switching the solenoid currents on and off all have own control electronics with DI, NTF inputs and the signals of the correction signal generation (5).

Shut-off

Shut-off is initiated in case the admissible maximum current is exceeded and as soon as at least one correction signal does not result in a current reduction or one of the redundant current measurements shows differences in the measurements (symmetry monitoring). Moreover, the relays remain switched off as long as after switch-on or reset, the self-test is executed.

Switch-on

The relays are always only switched-on after passed self-test.

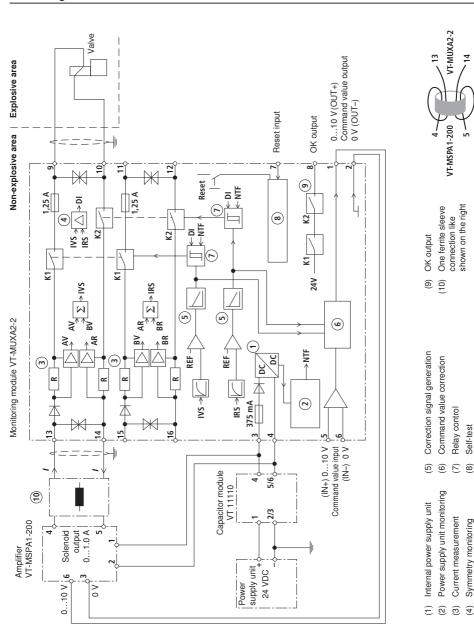
Safety measures

- Power supply unit monitoring
- Redundant current measurement
- Symmetry monitoring of the current measurement
- Redundant correction signal generation
- Redundant relay control circuits and relays
- Relay with positively driven contacts
- Self-test.

Self-test (8)

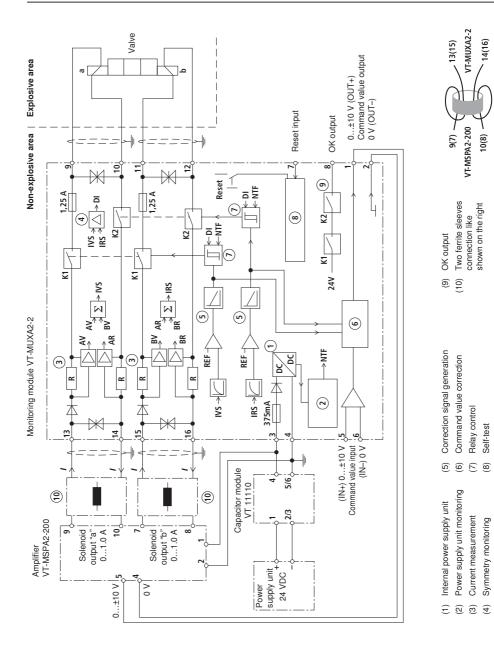
The self-test is necessary as an occurred error has to be detected in the redundant monitoring functions. The command value correction circuit (6) is not checked by means of the self-test. The self-test is carried out after each operating voltage switch-on and each manual and each electronic reset of the electronics. The manually started self-test is performed after actuating the "S1" reset pushbutton. The electronic reset is performed by a positive edge at the 24 V reset input.

Unwanted movements of the system/machine are possible!


If the self-test is activated during operation, both relays are opened. Thus, the hydraulic function is considerably disturbed.

The function of the "S1" reset pushbutton can be suppressed by a 24 V signal at the reset input in order to prevent an accidental tripping.

So that the self-test for checking the VT-MUXA2-2 monitoring module can be performed, the 24 V signal must be removed again.

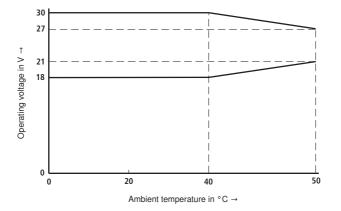

"OK" output (9)

As soon as the "Test OK" signal is set and both relays have switched, as well, this is signaled by a 24 V output signal and by the LED.

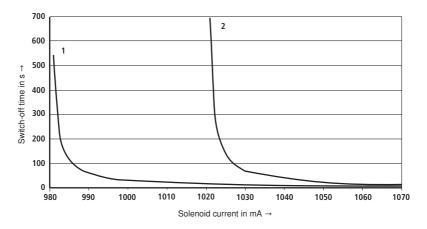
Block diagram VT-MUXA2-2 for one solenoid

724

725


Block diagram VT-MUXA2-2 for two solenoids

Technical data


Operating volta	ge Nominal value	U _B	24 V DC
	Maximum value	u(t) max	max. 30 V with 0 °C $\leq \vartheta_U \leq$ 40 °C ¹⁾
	Minimum value	u(t) _{min}	min. 18 V with 0 °C $\leq \vartheta_U \leq$ 40 °C ¹⁾
	Protection against reversed pola	arity	yes
Power consumption		Р	< 5 VA
Current consur	nption	1	< 0.2 A
Fuses/short-cir	cuit protection		
	2 fuses for the solenoid currents, not		
	hangeable	1	1.25 A fast-acting (SMD)
Display LEDs	ОК	Green	have operated and there is no error
	Power	Green	Is illuminated if the internal power supply unit works
Inputs	Command value differential input	U	0 +10 V or 0 ±10 V, R _I = 100 kΩ
	Reset input		Edge-triggered, Low \rightarrow High
	– Low – High	U _R U _R	0 6.5 V 10 V U _P
	1 or 2 monitored		
	solenoid current inputs		
	 Admissible common-mode voltage Protection against reversed polarit 		–2 V … U _B By means of diodes
	 Admissible clock frequency of the 		by mound of didded
	solenoid currents	Hz	0 500
Outputs	Command value output	U	0 +10 V or 0 ±10 V, /= 2 mA
			(command value provision to amplifier)
	2 solenoid current outputs	1	
	OK output High = OK		$U_{\rm B}$ – 3 V / 50 mA, short-circuit protected
01	Low = OK		$< 2 \text{ V}, R_{\rm i} = 10 \text{ k}\Omega$
	d creepage distances		According to EN 50178
	ree of contamination		2 according to EN 60664
Type of conne			16-pin terminal housing with removable terminals
Connection cro	oss-section	A	0.2 2.5 mm ²
Mounting type			Top hat rail TH 35-7.5 according to EN 60715
Protection class			IP 20 according to EN 60529
Dimensions (W x H x D)			See unit dimensions on page 8
Operating tem	perature range	ປໍ	0 +50 °C ¹⁾
Storage temperature range			–25 +85 °C
Weight		т	0.15 kg
Maximum admissible operating hours h			40000

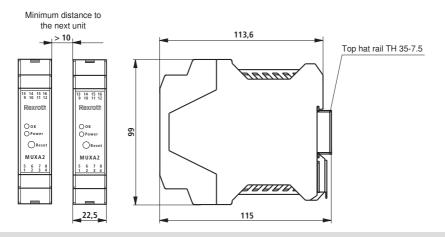
Characteristic curves

Temperature derating for the operating voltage

Switch-off behavior

1 and 2 are limit curves

Terminal assignment


VT-MUXA2-2 for one solenoid

Terminal	Function	Terminal	Function
1	Command value output 010 V (OUT+)	9	Solenoid: "+" output
2	Command value output 00 V (OUT-)	10	Solenoid: "-" output
3	+ <i>U</i> _B	11	Not connected!
4	Weight	12	Not connected!
5	Command value input 010 V (IN+)	13	Solenoid: "+" input
6	Command value input 0 V (IN-)	14	Solenoid: "-" input
7	Reset input	15	Not connected!
8	OK output	16	Not connected!

VT-MUXA2-2 for two solenoids

Terminal	Function	Terminal	Function
1	Command value output 0±10 V (OUT+)	9	Solenoid a "+" output
2	Command value output 00 V (OUT-)	10	Solenoid a "-" output
3	+ <i>U</i> _B	11	Solenoid b: "+" output
4	Weight	12	Solenoid b: "-" output
5	Command value input 0±10 V (IN+)	13	Solenoid a "+" input
6	Command value input 0 V (IN-)	14	Solenoid a "-" input
7	Reset input	15	Solenoid b: "+" input
8	OK output	16	Solenoid b: "-" input

Installation conditions and unit dimensions

Bosch Rexroth AG Hydraulics Zum Eisengießer 1 97816 Lohr am Main, Germany Phone +49 (0) 93 52 / 18-0 Fax +49 (0) 93 52 / 18-23 58 documentation@boschrexroth.de © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Mobile Hydraulics

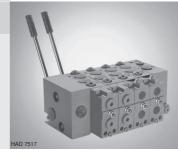
			Component	p_{\max}		
Designation	Туре	Size	series	in bar	Data sheet	Page
Control blocks						
Load-sensing control block in sandwich plate design	M4-12-XC, M4-12-XH	12	2X	350	64276-X-B2	731
Load-sensing control block in sandwich plate design	M4-15-XC, M4-15-XH	15	2X	350	64283-X-B2	759
Pumps						
Axial Piston Variable Pump A4VSO for Explosive	A4VSOA	40	Baureihe	210	92050-X-B2	791
Areas II 3G c T4		250	10, 11, 30			

Electric Drives and Controls

Hydraulics

731

Service



Load sensing control block in sandwich-plate design

RE 64276-X-B2/05.2011 1/28 Replaces: 04.2009

Model M4-12-XC and M4-12-XH

Nominal size 12 Series 2X Nominal pressure 350 bar (pump side) Nominal pressure 420 bar (consumer side) Maximum flow rate – pump side: 200 l/min with central inlet element 150 l/min with lateral inlet element - consumer side: 130 l/min with pressure compensator and load-holding function

ATEX-devices For potentially explosive atmospheres

Operating Instructions Part II Technical Datasheet

Information about explosion protection:

Area of application according to Explosion Protection Directive 94/9/EC:

- IM2: Ignition protection type Ex ia I according to EN 60079-0: 2006 and EN 60079-11: 2007
- II2G: Ignition protection type Ex ia IIB T4 according to EN 60079-0: 2006 and EN 60079-11: 2007
- II2D: Ignition protection type Ex tD A21 IP67 T110 °C according to EN 61241-0: 2006 and EN 61241-1: 2004
- Ambient temperature range $-20^{\circ}C \le T_{a} \le +80^{\circ}C$

What you need to know about these Operating Instructions

These Operating Instructions apply to Rexroth explosion-proof valves and consist of the following three parts:

- Part I General Information RE 07010-X-B1
- Part II Technical Datasheet RE 64276-X-B2
- Part III Product-specific Instructions RE 64276-X-B3

Mat.-No. R901219571

For further information on the correct use of Rexroth hydraulic products please refer to our publication entitled *General product information on hydraulic products, RE 07008.*

Content	Page		
Characteristics	3	Directional valve elements:	
Function, section	4	Pressure compensator	16
Symbol	4	LS pressure limitation	17
Technical data	5 to 7	Main spool	18
Modular construction	8, 9	Flow rate	19
Ordering details	10, 11	Actuation types, cover A	20
Ordering examples	12,13	Actuation types, cover B	21
Inlet elements:		Secondary valves	22
Closed Center (J)	14, 15	End elements	23, 24
Open Center (P)	15	Unit dimensions	25 to 27

Characteristics

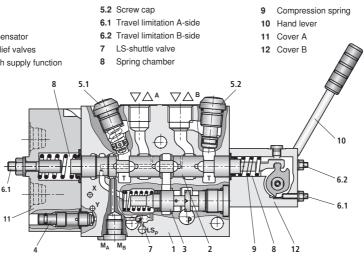
System

- Load-pressure independent flow rate control
 - · Open Center for fixed displacement pump
 - · Closed Center for variable displacement pump

Construction

- Sandwich-plate design
 - · Inlet element
 - up to 10 directional valve elements, of which max. 6 with servo control
 - up to 20 directional valve elements with central-inlet element, of which max. 6 with servo control
 - · End element
- Actuation types
 - · mechanical (hand lever)
 - hydraulic
 - servo-hydraulic

Flow rate


- load pressure compensated
- high repeating accuracy
- low hysteresis

Pressure limitation

- Inlet element
 - · pilot-operated pressure valves with large nominal width
- Directional valve element / consumer ports
 - · compact relief valve with supply function
- LS pressure limitation
 - selectable pressure setting per consumer port on request (design by technical sales)

Function, section

- 1 Housing
- 2 Main spool
- 3 Pressure compensator
- 4 LS pressure-relief valves
- 5.1 Relief valve with supply function

734

Control block M4-12

The directional control valves are proportional valves in accordance with the load-sensing principle.

Consumer activation

The flow direction and the size of the flow rate reaching the consumer ports (A or B) are determined at the main spool (2).

External pilot units control the position of the main spool (2). The extent of the control pressure in the spring chambers (8) determines the travel of the main spool ($P \rightarrow A$; $P \rightarrow B$).

The pressure difference at the main spool (2) and therefore also the flow rate to the consumer is kept constant via the pressure compensator (3).

Load pressure compensation

Pressure changes at the consumers or the pump are

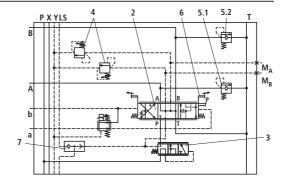
compensated respectively by the pressure compensator (3). The flow rate to the consumer remains constant even under different loads.

Flow rate limitation

The maximum flow rate can be individually limited from the works to order specifications by means of travel stops (6).

Pressure limitation

The manipulation of the LS pressure of each consumer port can take place internally via the LS pressure relief valves (4) or externally via the LS ports M_A , M_B .


Relief valves with large nominal widths with combined supply function (5) protect consumer ports A and B from pressure peaks.

The highest load pressure is signalled to the pump via the LS line and the integrated shuttle valves (7).

Symbol

Connections:

- P Pump A, B Consumer
- T Tank
- X Control oil supply
- Y Control oil drain
- LS Load sensing (LS)
- M_A, M_B external LS-ports

Technical data (please ask in case of applications outside the stated values!)

Mounting orientation					any		
Type of port					Pipe thread accordi	ng to ISO 228/1	
Mass In	nlet elem	ient	Closed Center J	kg	4,3	•	
			Open Center P	kg	6,0		
C	entral ir	ilet element (Closed Center JZ	kg	8,4		
)irectiona nechanic	al valve elem cal	ent,	kg	6.9		
)irection; ydraulic	al valve elem	ient,	kg	5,4		
A	dditiona	al weight hand	d lever	kg	1.5		
E	nd elem	ient		kg	2,6		
Surface protection	1				Paint		
Ambient temperatu	ure ranç	je	Ů	°C	-20 to +80		
mechanical							
Actuating force at	hand le	ver		N	< 20		
hydraulic					1		
Flow rate		Port P	q _{Vmax}	l/min	200 with central inle	t element	
			· · / //////	l/min	150 with lateral inlet		
		Port A, B	q _{Vmax}	l/min		ompensator and load-	holding function
Nominal pressure			p _{nom}	bar	350		
max. operating pre		Р	p	bar	350		
at port		A / B	p	bar	420		
		LS	p	bar	330		
		T	p	bar	30		
		Y	p	bar	depressurized to tar	ık	
max. control press	sure	X	p	bar	35		
at port		a, b	p	bar	35		
Control pressure ra	range	hydraulic	p	bar	8.5 to 22.5		
required regulating at control block 1)	•	Model S	p	bar	18		
Primary pressure I	limitatio	n	р	bar	max. 370 (set at the works to order specifications), min. 20 bar above the pressure cut-off value of the pump		
LS pressure limital	LS pressure limitation p		bar	50 to 330 (adjusted at the works to order specifications). The highest relief pressure for the LS pressure relief valves of the valve manifold set at the works must be at least 20 bar low than the pressure cut-off value of the pump.			
Hydraulic fluid					Mineral oil (HL, HLP) to DIN 51524, other hydraulic fluids on request, ignition temperature > 190 °C		
Temperature range	je of hyc	draulic fluid	Ů	°C	-20 to +80		
Viscosity range		hydraulic	v	mm²/s	10 to 380		
		servo-hydra	ulic v	mm²/s	16 to 200 2)		
maximum permitted contamination level of hydraulic fluid Purity class to ISO 4406 (c)				Class 20/18/15, we retention rate of β_{10}	recommend for this a ≥ 75	filter with a minimum	
Information a	about	explosion	n protection				
Protection class in	1 accord	ance with Di	rective 94/9/EC		IM2	ll2G	ll2D
max. surface temp	perature				-	T4	110 °C
Explosion protection	on type	valve	structural sa	afety XC	c (EN 13463-5)		
			fail-	safe XH	EN 60079-0,	EN 60079-0,	EN 61241-0,

If Note! The technical data has been established at a viscosity of v = 30 mm²/s (HLP46: 50 °C).

EN 60079-11

EN 60079-11

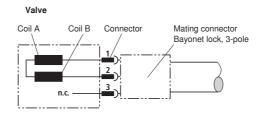
¹⁾ Observe the design information for control oil supply with servo-hydraulic operation on page 14.

²⁾ Between 200 and 380 mm²/s reduced maximum quantity.

EN 61241-1

Technical Data STDS 0014-1X

electric	
Protection class according to EN 60529:1991+A1:2000	IP 67 with mating connector correctly mounted and locked
Type of signal	Direct current analogue
Rated current mA	20
Resistance per coil (Total) Ω	135 (270)
Inductivity (Connection in series) H	1.7
Connector (Bayonet lock)	3-pole


Information on explosion protection

Type examination certificate		BVS 08 ATEX E031	
Protection class according to directive 94/9/EC			IM2
Type of protection according to EN 60079-0:2006, EN 60079-11:2007			Ex ia I
Ambient temperature range °C			$-20 \le T_a \le +100$
The electric actuation must be realized	U _{max}	V	17.5
from intrinsically safe electrical circuits	I _{max}	mA	150
with the following maximum values	P _{max}	mW	657

A WARNING – Risk of explosion

- The connection with other devices must be checked separately.
- As soon as the valve has been operated with higher electric power than the one specified above, it must no longer be used in explosive areas.

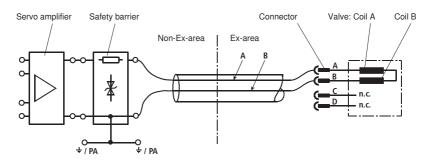
Electrical connection

Mating connector, bayonet lock, 3-pole: Type: 845-11-1325-001, company Souriau

Relating mating connector see data sheet of the company Souriau, series 845. The servo valve may only be supplied through these mating connectors.

Technical Data STDS 0015-1X

electric				
Protection class	DIN 40050-9:1993			IP 69K with mating connector correctly mounted
according to	EN 60529:1991+A1	:2000		IP 67 and locked
Type of signal				Direct current analogue
Rated current			mA	20
Resistance per coil	(Total)		Ω	135 (270)
Inductivity (Connecti	ion in series)		Н	1.7
Connector (Compati	ble with MS 3102 C1	4S-2P)		4-pole
Information on exp	losion protection			
Type examination ce	ertificate			PTB 05 ATEX 2058
Protection class acc	ording to directive 94	/9/EC		II2G, II2D
Type of protection a EN 60079-0:2006, E				Ex ia IIB T4
Type of protection ac EN 61241-0:2006 ar				Ex tD A21 IP67 T110°C
Maximum surface te	mperature ²⁾		°C	110
Ambient temperature	e range		°C	$-20 \le T_a \le +100$
Hydraulic fluid temp	erature range		°C	-20 +100
Maximum values for	supply circuits	U _{max}	V	17,5
		I _{max}	mA	150
		P _{max}	mW	657
be supplied electrica				
intrinsically safe elec Recommended safe				e.g. company Stahl, type 9001/02-133-150-101 or 9001/02-175-100-101


737

1) Only necessary with II2G, separate order

2) Surface temperature > 50 °C, provide contact protection

Electrical connection

The electrical actuation with plus (+) to A and minus (-) to B provides for pressure at port A > pressure at port B and/or flow from P to A and B to T. Pins C and D on the connector are not connected.

Important:

- In case of use in II2D, the safety barrier is not necessary.

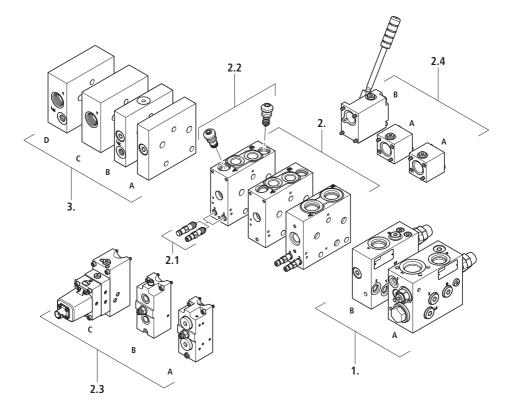
- In case of use in II2D, the mating connector must meet the requirements according to EN 61241-0:2006.

Modular structure: Control block with lateral inlet element

Control blocks from series M4-12 are of modular construction. They can be optimally assembled for the respective application.

- 1. Inlet element
 - A: Open Center "P"
 - B: Closed Center "J"

2. Directional valve elements

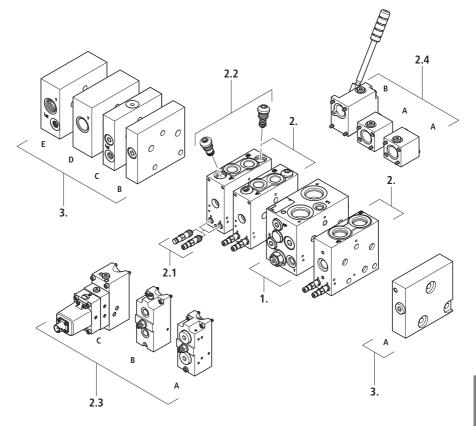

- 2.1 LS pressure limitation
- 2.2 Secondary valves
- 2.3 Actuation of cover, A-side
 - A: Mechanical actuation "M"
 - B: Hydraulic actuation "H"
 - C: Servo-hydraulic actuation "S"

2.4 Actuation of cover, B-side

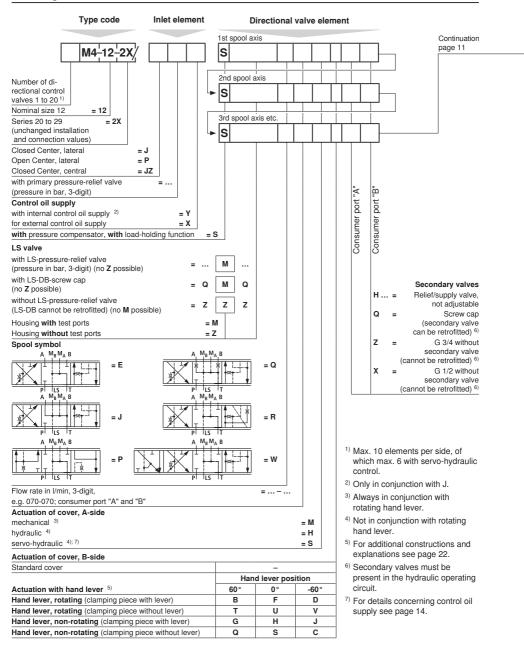
- A: Standard cover "-"
- B: Mechanical actuation "G2" with hand lever
- 3. End element

738

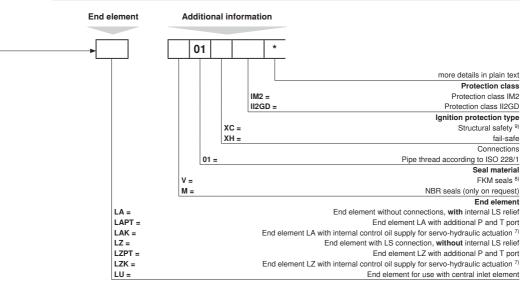
- A: With LS relief "LA", "LAK"
- B: With LS connection "LZ", "LZK"
- C: LA with additional P and T port "LAPT"
- D: LZ with additional P and T port "LZPT"



Modular structure: Control block with central inlet element

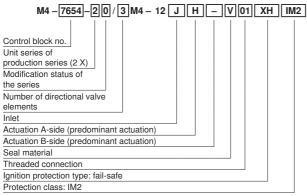

739

- 1. Central inlet element "JZ"
- 2. Directional valve elements
- 2.1 LS pressure limitation
- 2.2 Secondary valves
- 2.3 Actuation of cover, A-side
 - A: Mechanical actuation "M"
 - B: Hydraulic actuation "H"
 - C: Servo-hydraulic actuation "S"


- 2.4 Actuation of cover, B-side
 - A: Standard cover "--"
 - B: Mechanical actuation "G2" with hand lever
- 3. End element
 - A: Deflection plate "LU"
 - B: With LS relief "LA", "LAK"
 - C: With LS connection "LZ", "LZK"
 - D: LA with additional P and T port "LAPT"
 - E: LZ with additional P and T port "LZPT"

Ordering details

Ordering details

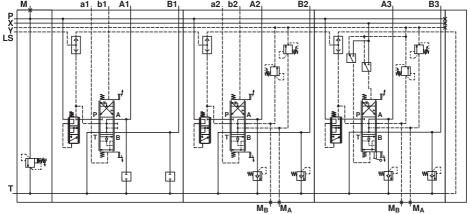


741

Type code

Entire control blocks are defined according to the type code. The order text is intended for the definition of the technical characteristics and requirements. A type code and a material number are derived from the order text by the Bosch Rexroth sales organisation.

Example of a type code of an M4-12 control block with three directional valve elements:



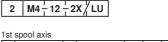
⁷⁾ For details concerning control oil supply see page 14.

- ⁸⁾ The block preferably contains FKM, but also NBR seals. Make sure that the seal is suitable for the hydraulic fluid used!
- 9) Always in conjunction with protection class IM2.

Ordering example for Closed Center with lateral inlet element

Example: Number of direc	 Triple control block Variable-displacement pump q_{vmax} = 150 l/min tional control valves, inlet element Closed Center with primary pressure-relief valve at the side, set to 250 bar, for external control oil supply 	Ordering details: 3 M4 - 12 - 2X // J250X
Directional valve elements 1st spool axis		1st spool axis S Z Z Z J 100-100 H – Q Q
2nd spool axis	 with pressure compensator, with load retaining function with LS pressure relief valve for consumer port A and B 180 bar Spool symbol J, flow rate in A and B 85 l/min Actuation: hydraulic Secondary valves: relief/supply valves, consumer port A and B 350 bar (not adjustable) 	2nd spool axis S 180M180 J 085-085 H – H350 H350
3rd spool axis	 (init adjustable) with pressure compensator, with load- holding function with LS pressure relief valve for consumer port 180 bar, consumer port B 120 bar Spool symbol J, flow rate in A and B 85 l/min Actuation: mechanical Hand lever actuation (up) Secondary valves: relief/supply valves, consumer port A and B 350 bar (not adjustable) 	3rd spool axis S 180M120 J 085-085 M B2 H350 H350
End element Additional information	 with internal LS relief FKM seals Pipe thread connections Ignition protection type: structural safety Protection class: IM2 	End element LA V 01 XC IM2

zz


Ordering example for Closed Center for central inlet with primary valve

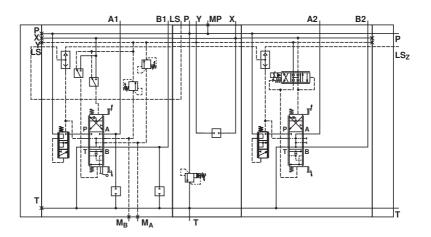
743

Example:	 Double control block 	Ordering detai
	 Variable-displacement pump q_{Vmax} = 200 l/min 	2 M4 - 12
Number of direct	ional control valves, end element	
	- Deflection plate	 1st spool axis
Directional valve element	 with pressure compensator, with load- holding function 	S 270M300
1st spool axis	 with LS pressure relief valves, consumer port A 270 bar, consumer port B 300 bar Spool symbol E, flow rate in A and B 100 l/min Actuation: mechanical Hand lever actuation (up) Secondary valve holes closed 	
Inlet element	 Primary pressure relief valve set to 	Inlet element
	350 bar – for external control oil supply	JZ 350
Directional valve element	 with pressure compensator, with load- holding function 	2nd spool axis
2nd spool axis	 without LS pressure-relief valves, cannot be retrofitted Spool symbol J, flow rate in A and B 90 l/min Actuation: servo-hydraulic without secondary valve holes 	S ZZZ
End element	 with LS connection with additional P and T port 	End element
Additional infor- mation	 FKM seals Pipe thread connections Ignition protection type: fail-safe Protection class IM2, e.g. for coal mining 	V 01 XH

		inq		

350 Х

s	270M300	Е	100-100	М	B2	Q	Q
<u> </u>	210111000	-	100 100		52	~	~


090-090

J

s

_

End element LZPT ٧ 01 XH IM2

Inlet elements Closed Center (J)

With primary pressure-relief valve, for external control oil supply Ordering details:

M4 – 12 – 2X / J)

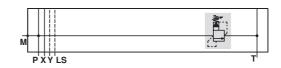
Brief description

- For variable displacement pumps up to 150 l/min
- Pressure in bar behind J... required (3-digit)

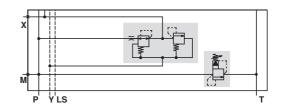
With primary pressure-relief valve, with internal control oil supply Ordering details:

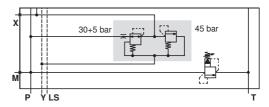
Brief description

- For variable displacement pumps up to 150 l/min
- Pressure in bar behind J... required (3-digit)


Control oil supply (Y)

- Pressure limitation 45 bar
- Control pressure max. 30 +5 bar


A Caution!


Control oil can also be supplied for other consumers via the X port. This can affect the switching times on the M4-12. Contact the technical sales department concerning the potential effects.

The "X" port is generally not closed for external control oil supply. It must be closed when not in use (e.g. during hydraulic actuation "H").

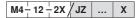
744

Design information for control oil supply with servo-hydraulic operation

If a servo-hydraulic actuation is used in the control block, please observe the following:

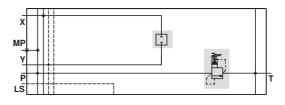
External control oil supply:

 $- p_{st} = 30 + 2 bar constant$

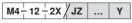

- q_{st} = 2 l/min per servo-hydraulic spool axis
- Imperative for inlet element P

Internal control oil supply:

- Maximum 6 servo-hydraulically controlled spool axes possible
- No control oil supply for external consumers
- Δp on the inlet element must be at least 35 bar
- No internal control oil supply in the inlet element


Central inlet elements Closed Center (JZ)

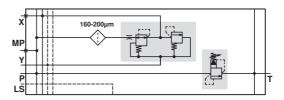
With primary pressure-relief valve, for external control oil supply Ordering details:


Brief description

- For variable displacement pumps up to 200 l/min
- Pressure in bar behind JZ... required (3-digit)

With primary pressure-relief valve, with internal control oil supply

Ordering details:



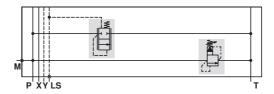
Brief description

- For variable displacement pumps up to 200 l/min
- Pressure in bar behind JZ... required (3-digit)

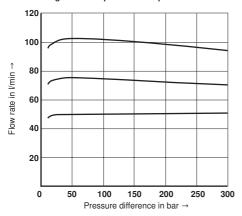
Caution!

Observe the design information for control oil supply with servo-hydraulic operation on page 14.

Inlet elements Open Center (P)


With primary pressure-relief valve, for external control oil supply

Ordering details:

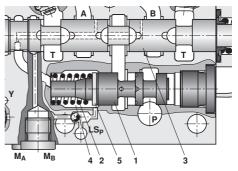

Brief description

- For fixed displacement pumps up to 150 l/min
- Pressure in bar behind P... required (3-digit)

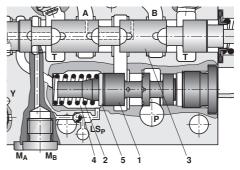
Directional valve elements: pressure compensator

Flow rate regulation via pressure compensator

When the main spool is in the center position there is no connection from P to consumer ports A and B. In this operating status, the pressure compensator spool (1) is displaced to the left against the spring (2) by means of the pump pressure.


When the main spool (3) (= orifice) is actuated, the LS pressure enters the spring chamber (4) and pushes the pressure compensator spool to the right into the adjustment position. The flow rate is kept constant even in case of parallel operation

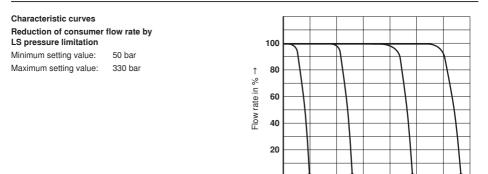
of consumers with different load pressures.


The pressure compensator "S" is equipped with a load-holding function. This operation is not leakage oil free.

It is fitted with a ring $({\bf 5})$ as standard. The number of rings inserted is dependent on the desired flow rate.

Main spool in center position

Main spool actuated



Pressure compensator spool variants

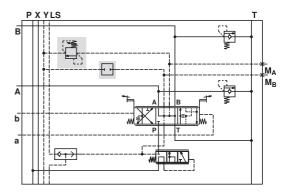
Ordering details:	Brief description	Symbol
S	 with pressure compensator with load-holding function ¹⁾ max. flow rate 130 l/min 	winiti

1) The load-holding function is not leakage oil free.

Directional valve elements: LS pressure limitation

200 / 250

300 350


With LS pressure-relief valve and LS screw cap

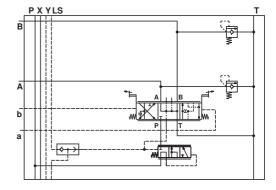
Ordering details:

s	N	/ Q	J		Н	_	Н	Н
---	---	-----	---	--	---	---	---	---

Brief description

- Pressure in bar for consumer port A (3-digit)
- Screw cap for consumer port B
- The LS pressure limitation on the directional valve element can be retrofitted for the "QMQ" model.
- The LS pressure can be externally influenced via ports $\rm M_A$ and $\rm M_B.$ These ports can also be used as test ports.

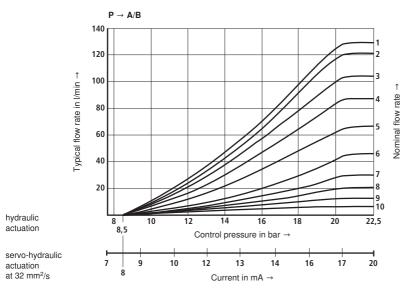
0 5Ŏ


100 \150

Without LS pressure-relief valves Ordering details:

Brief description

- LS-DB cannot be retrofitted
- Housing without test ports



Directional valve elements: main spool

Main spool variants

Ordering details	Main application	Symbol
Flow rate details in I/min		
E –	Hydro-cylinder as a consumer	
J –	Hydro-motors as consumers	
Q	Application with specified remaining orifice $(A/B \rightarrow T)$ Consumer port relieved in neutral position	
R –	Regeneration function (P, B \rightarrow A)	
W –	Floating position	
P –	Plunger cylinder as consumer	

Spool characteristic curves (symmetrical spools)

Directional valve elements: flow rate

Symmetrical spools

Spool	Pressure		Flow rate in l/min (for spool characteristic curve see page 21)						
type	compensator								
		130-130 (1)	100-100	073-073	052-052	034–034	023–023	014–014	007–007
E, J, Q	S	120-120 (2)	085-085 (4)	065-065 (5)	045-045 (6)	030-030 (7)	020-020 (8)	012-012 (9)	006-006 (10)
		100–100 ⁽³⁾	070–070	057–057	038–038	026-026	017-017	010-010	005–005

Asymmetrical spools

Spool type	Pressure compensator	Flow rate in I/min						
		100–073	100-052	052–034	034–023	023-014		
E, J, Q	S	085–065	085–045	045–030	030–020	020-012		
		070-057	070–038	038-026	026-017	017-010		

Floating position, regeneration and plunger spool

Spool	Pressure	Nominal flow rate in I/min (others on request)					
type	compensator						
W	S				030-030		
R	S	130–101	085–030	065–025			
Р	S	140-000					

 $^{(1)}$... $^{(10)}$ For information on spool characteristics see page 18.

IF Note!

Please contact the technical sales department.

Example: - Spool type J

Solution:

→ 85 litre spool + 2 modules = 100 l/min

- Pressure compensator S
- Reference value: Q_{Consumer} = 90 l/min

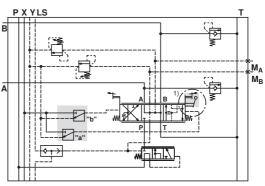
→ Set 90 litre via travel limitation.

Spool type	Pressure compensator	Flow rate in I/min	
		100–100	
E, J, Q	S	085–085	1
		070–070	1
L	1	1	

Flow rate without module (pressure compensator $\Delta p = 4$ to 7 bar) Flow rate with 1 module (pressure compensator $\Delta p = 6$ to 9.5 bar) Flow rate with 2 modules (pressure compensator $\Delta p = 8.5$ to 11.5 bar)

IF Note!

Position directional valve elements with maximum flow rate as close as possible to the inlet element.

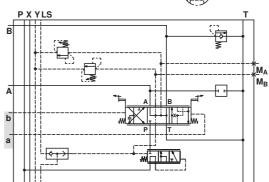

Directional valve elements: actuation types cover A

Mechanical

Ordering details:

Brief description

- Mechanical actuation of main spool. If not actuated, centring in centre position by means of springs.
- All options for hand lever positions are possible (B, F, D etc.), also see type code on page 10, 24
- 1) Rotating hand lever
- 2) Non-rotating hand lever


Hydraulic

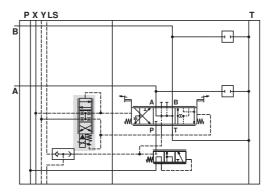
Ord	lerina	detai	ls:

S M J	Η –	Q	Н
-------	-----	---	---

Brief description

 Hydraulic actuation of main spool.
 If not actuated, centring in centre position by means of springs.

S ZZZ	: J		s	_	Q	Q
-------	-----	--	---	---	---	---

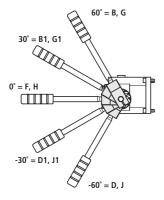

Brief description

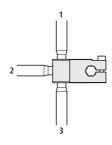
- Voltage: min. 7 VDC
- Current type: direct current
- Rated current: ± 20 mA
- Max. current: ± 25 mA
- Dither signal (recommended):
 - Frequency f: 100 Hz +10 %
 - Amplitude I_{ss}: 5 mA

▲ Caution!

Design by technical sales.

Observe the design information for control oil supply with servo-hydraulic operation on page 14.


Directional valve elements: actuation types cover B


751

Mechanical - actuation with hand lever

Clamping piece with lever

(Example: Lever connection in pos. 2)

Lever connection on clamping piece

		top,	60°	top,	30°	straig	ht, 0°	botton	n, -30°	botton	n, -60°
Clamping	 rotating 	В	1	B1	1	F	1	D1	1	D	1
piece with	-	В	2	B1	2	F	2	D1	2	D	2
lever		В	3	B1	3	F	3	D1	3	D	3
	 non-rotating 	G	1	G1	1	Н	1	J1	1	J	1
		G	2	G1	2	Н	2	J1	2	J	2
		G	3	G1	3	Н	3	J1	3	J	3
Clamping	 rotating 	-	Г	Т	1	ι	J	V	1	\	/
piece without lever	- non-rotating	(ç	C	21	ę	3	C	1	C	2

Actuating force (on hand lever):

- mechanical < 20 N

- hydraulic, hand lever overlaid < 50 N

Further hand lever options (aluminium-free) on request.

6

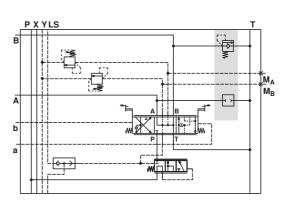
Directional valve elements: secondary valves

Relief/supply valves, not adjustable

Ordering details:

s	M	J		н	-	Q	H150
---	---	---	--	---	---	---	------

Brief description


- Non-adjustable relief/supply valve
- Pressure in bar behind H ... required (3-digit)

- Example: Q, H150

Q: screw cap for consumer port A H150: relief/supply valve, set to 150 bar for consumer port B

A Caution!

Only suitable for the reduction of pressure peaks, not to be used as a pressure relief valve!

Preferred pressure settings for relief valves with supply function

	Pressure setting in bar i	n consumer port A and B	
H050 = 50 bar	H140 = 140 bar	H210 = 210 bar	H280 = 280 bar
H063 = 63 bar	H150 = 150 bar	H230 = 230 bar	H300 = 300 bar
H080 = 80 bar	H160 = 160 bar	H240 = 240 bar	H320 = 320 bar
H100 = 100 bar	H175 = 175 bar	H250 = 250 bar	H350 = 350 bar
H125 = 125 bar	H190 = 190 bar		

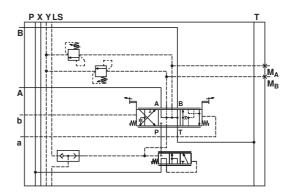
▲ Caution!

Relief valves are firmly set.

Without secondary valves

Ordering details:

s	M	J		н	-	Ζ	Z
---	---	---	--	---	---	---	---


Brief description

- Secondary valves cannot be retrofitted

- Consumer port G 3/4

A Caution!

Secondary pressure limitation must be established by customer if necessary.

753

End elements

End element with LS relief Ordering details:

End element LA with additional P and T port Ordering details:

End element with internal control oil supply for servo-hydraulic actuation

Ordering details:

- Draws oil from the P line, pressure reduced to 35 bar (firmly set), pressure relief valve set to 45 bar

A Caution!

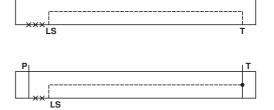
Observe the design information for control oil supply with servo-hydraulic operation on page 14.

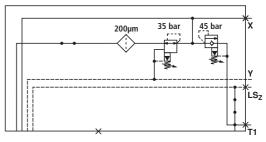
End element with LS connection Ordering details:

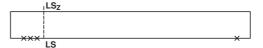
Brief description

- Supply of LS signals connected in parallel

- LS relief must be ensured externally


End element LZ with additional P and T port Ordering details:



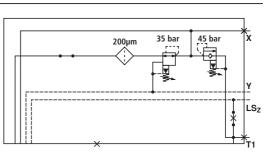

Brief description

- Supply of LS signals connected in parallel

- LS relief must be ensured externally

End elements

End element with internal control oil supply for servo-hydraulic actuation Ordering details:


LZK

Brief description

- Draws oil from the P line, pressure reduced to 35 bar (firmly set), pressure relief valve set to 45 bar
- Supply of LS signals connected in parallel
- LS relief must be ensured externally

A Caution!

Observe the design information for control oil supply with servo-hydraulic operation on page 14.

End element for combination with central inlet element

End element for use with central inlet element Ordering details:

~	LS
^	
i	
	'
i ×	

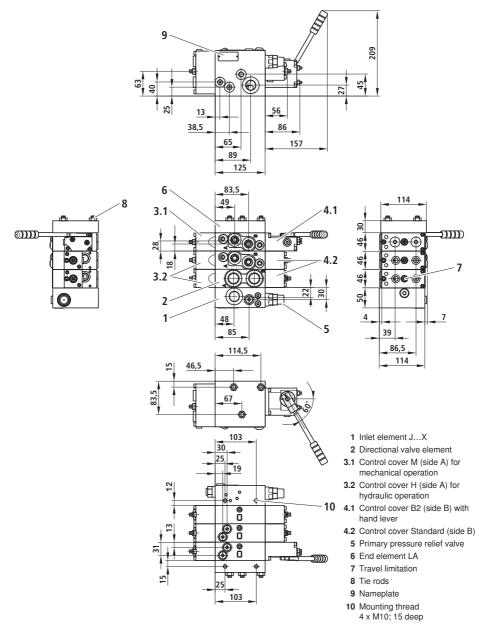
M4 - 12 - 2X / LU

Unit dimensions: Line connection

Inlet element, lateral	Closed Center	Р	G 3/4
		Т	G 3/4
		LS	G 1/4
		Х, Ү	G 1/4
		М	G 1/4
	Open Center	Р	G 3/4
		Т	G 1
		LS	G 1/4
		Х, Ү	G 1/4
		М	G 1/4
nlet element, central	Closed Center	Р	G 1
		Т	G 1
		LS	G 1/4
		Х, Ү	G 1/4
		MP	G 1/4
Directional control valve element	with secondary valves	А, В	G 1/2
	without secondary valves ZZ	А, В	G 3/4
	without secondary valves XX	А, В	G 1/2
		a, b	G 1/4
		M _A , M _B	G 1/4
		M _a , M _b	G 1/8
nd element		P	G 1/2
		т	G 1/2
		LS	G 1/4
		LSz	G 1/4
		Х, Ү	G 1/4
	for LAPT, LZPT	Ρ, Τ	G 3/4
	for LAK, LZK	Х, Ү	G 3/8

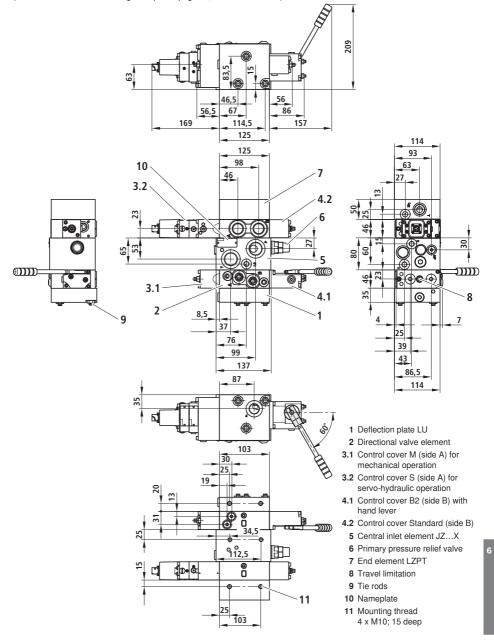
- = Pump
- **A**, **B** = Consumer **b** = Control line
 - = Tank
 - = Tarik
 - = Pilot supply
 - = Control oil return
 - = Load Sensing (LS)
- .s_z = LS supply
- **I**, **MP** = Test port pump
- $M_A, M_B =$ Test ports LS pressure
- $M_a, M_b =$ Test ports control pressure
 - = External consumer

M10 securing screws


in accordance with EN ISO 4762 or EN ISO 4014:

Property class:	8.8	10.9
Tightening torque:	41 ± 2 Nm	60 ± 3 Nm

Connections in accordance with ISO 1179-1


Unit dimensions: Control block with lateral inlet element

(in accordance with the ordering example on page 12, dimensions in mm)

Unit dimensions: Control block with central inlet element and priority valve

(in accordance with the ordering example on page 13, dimensions in mm)

M4-12-XC, M4-12-XH | RE 64276-X-B2/05.2011

Bosch Rexroth AG Hydraulics Zum Eisengiesser 1 97816 Lohr am Main, Germany Tel: +49 (0) 93 52 / 18-0 Fax: +49 (0) 93 52 / 18-23 58 info.brm-mc@boschrexroth.de www.boschrexroth.de © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. Without their consent it may not be reproduced or given to third parties. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The given information does not release the user from the obligation of own judgement and verification. It must be remembered that our products are subject to a natural process of wear and aging

Electric Drives and Controls

Hydraulics

759

Service

Rexroth **Bosch Group**

Load-sensing control block in sandwich-plate design

RE 64283-X-B2/05.2011 1/32 Replaces: 04.2009

Model M4-15-XC and M4-15-XH

Nominal size 15 Series 2X Nominal pressure 350 bar (pump side) Nominal pressure 420 bar (consumer side) Maximum flow rate - pump side: 300 l/min at central input element 200 l/min at side input element - consumer side: 200 l/min with pressure balance and load retaining function 160 l/min with pressure balance and load retaining function

ATEX-devices For potentially explosive atmospheres

Operating Instructions Part II Technical Datasheet

Information about explosion protection:

Area of application according to Explosion Protection Directive 94/9/EC:

- IM2: Ignition protection type Ex ia I according to EN 60079-0: 2006 and EN 60079-11: 2007
- II2G: Ignition protection type Ex ia IIB T4 according to EN 60079-0: 2006 and EN 60079-11: 2007
- II2D: Ignition protection type Ex tD A21 IP67 T110 °C according to EN 61241-0: 2006 and EN 61241-1: 2004
- Ambient temperature range -20 °C ≤ T_o ≤ +80 °C

What you need to know about these Operating Instructions

These Operating Instructions apply to Rexroth explosion-proof valves and consist of the following three parts:

- Part I General Information RE 07010-X-B1
- Technical Datasheet RE 64283-X-B2 Part II
- Part III Product-specific Instructions RE 64283-X-B3

Mat.-No. R901219663

For further information on the correct use of Rexroth hydraulic products please refer to our publication entitled General product information on hydraulic products, RE 07008.

Summary of the contents

Content	Page		
Characteristics	3	Pressure balance	18
Function, section	4	LS pressure limitation	19
Symbol	4	Main piston	20
Technical data	5 to 7	Flow rate	21
Modular construction	8, 9	Actuation types, cover A	22
Ordering details	10 to 12	Actuation types, cover B	23
Ordering examples	13, 14	Secondary valves	24
Input elements	15 to 17	End elements	25 to 28
Directional control valve elements	18	Unit dimensions	29 to 31

Characteristics

System

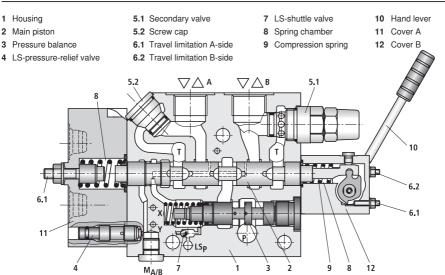
- Load-pressure independent flow rate control

- · Open Center for fixed displacement pump
- · Closed Center for variable displacement pump

Construction

- Sandwich-plate design
 - Input element
 - up to 9 directional control valve elements, of which max. 6 with servo control
 - up to 18 directional control valve elements with centralinput element, of which max. 6 with servo control
 - End element
- Actuation types
 - · mechanical (hand lever)
 - hydraulic
 - · servo-hydraulic

Flow rate


- load pressure compensated
- high repeating accuracy
- low hysteresis

Pressure limitation

- Input element
 - · pilot-operated pressure valves with large nominal width
- Directional control valve element / consumer ports
 - · compact pressure-control valves with supply function
- LS pressure limitation
 - selectable pressure setting per consumer port on request (design by technical sales)

Function, section

3

Control block M4-15

The directional control valves are proportional valves in accordance with the load-sensing principle.

Consumer activation

The flow direction and the size of the flow rate reaching the consumer ports (A or B) are determined at the main piston (2).

External pilot units control the position of the main piston (2). The extent of the control pressure in the spring chambers (8) determines the travel of the main piston ($\dot{P} \rightarrow A; P \rightarrow B$).

The pressure difference at the main piston (2) and therefore also the flow rate to the consumer is kept constant via the pressure balance (3).

Load pressure compensation

Pressure changes at the consumers or the pump are

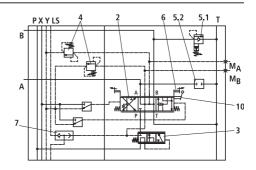
compensated respectively by the pressure balance (3). The flow rate to the consumer remains constant even under different loads.

Flow rate limitation

The maximum flow rate can be individually limited from the works to order specifications by means of travel stops (6).

Pressure limitation

The manipulation of the LS pressure of each consumer port can take place internally via the LS pressure relief valves (4) or externally via the LS ports MA, MP.


Relief valves with large nominal widths with combined supply function (5) protect consumer ports A and B from pressure peaks.

The highest load pressure is signalled to the pump via the LS line and the integrated shuttle valves (7).

Symbol

Connections:

- Ρ Pump
- Consumer Α, Β
- т Tank
- х Control oil supply
- ٧ Control oil drain
- LS Load sensing (LS)
- M_A, M_B external LS-ports

Technical data (please ask in case of applications outside the stated values!)

Mounting orientatio	on				any		
Type of port					Pipe thread according	a to ISO 228/1	
	put elei	ment, side		kg			<u>.</u>
		ment with priority va	lve	kg			
Ce	entral ir	nput element		kg	8.5		
	rection anical	al control valve elen	nent, me-	kg	6.9		
	rection draulic	al control valve elen	nent,	kg	7.1		
		al weight hand lever		kg	1.5		
Er	nd elem	nent		kg	5,8		
Surface protection			Paint				
Ambient temperatu	ire rang	ge	Э	°C	-20 to +80		
mechanical							
Actuating force at h	hand le	ver		N	< 20		
hydraulic							
Flow rate		Port P	q _{Vmax}	l/min	300 with central input	t element	
			-vmax	l/min	· · · · · · · · · · · · · · · · · · ·		
		Port A, B	q _{vmax}	l/min		ince and load retaining fi	unction (model "S")
			- VIIIdx	l/min		lance, without load reta	
Nominal pressure			p _{nom}	bar	350		
Max. operating pres	ssure	Р	p	bar	350		
at port		A / B	p	bar	420		
		LS	p	bar	330		
		Т	p	bar	30		
		Y	р	bar	depressurized to tank	κ	
Max. control press	ure	Х	р	bar	35		
at port		a, b	р	bar	35		
Control pressure ra	ange	hydraulic	р	bar	8.5 to 22.5		
required regulating	-∆p at	Model S	р	bar	18		
control block 1)		Model T	р	bar	25		
Primary pressure li	imitatio	n	р	bar		vorks to order specifica ut-off value of the pum	
LS pressure limitation p bar		The highest relief pre the valve manifold se	t the works to order sp ssure for the LS press at at the works must be t-off value of the pump	ure relief valves of at least 20 bar lowe			
Hydraulic fluid					Mineral oil (HL, HLP) request, ignition temp	to DIN 51524, other hyperature > 190 °C	ydraulic fluids on
Temperature range	e of hyd	draulic fluid	Э	°C	-20 to +80		
Viscosity range		hydraulic	v	mm²/s	10 to 380		
		servo-hydraulic	v	mm²/s	16 to 200 2)		
maximum permitted contamination level of hydraulic fluid Purity class to ISO 4406 (c)		Class 20/18/15, we retention rate of $\beta_{10} \ge$	ecommend for this a fil 2 75	ter with a minimum			
Information a	bout	explosion pro	tection				
Protection class in	accord	lance with Directive	94/9/EC		IM2	II2G	ll2D
max. surface temp	erature				-	T4	110 °C
Explosion protection	on type	valve	structural s	afety XC	c (EN 13463-5)		
			fail-	-safe XH	EN 60079-0, EN 60079-11	EN 60079-0, EN 60079-11	EN 61241-0, EN 61241-1

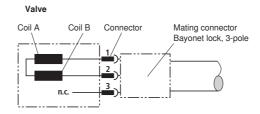
 \mathbb{I} Note The technical data has been established at a viscosity of v = 30 mm²/s (HLP46: 50 °C).

¹⁾ Observe the design information for control oil supply with servo-hydraulic operation on page 14.

²⁾ Between 200 and 380 mm²/s reduced maximum quantity.

Technical Data STDS 0014-1X

electric	
Protection class according to EN 60529:1991+A1:2000	IP 67 with mating connector correctly mounted and locked
Type of signal	Direct current analogue
Rated current mA	20
Resistance per coil (Total) Ω	135 (270)
Inductivity (Connection in series) H	1.7
Connector (Bayonet lock)	3-pole


Information on explosion protection

Type examination certificate			BVS 08 ATEX E031
Protection class according to directive 94	/9/EC		IM2
Type of protection according to EN 60079-0:2006, EN 60079-11:2007			Ex ia I
Ambient temperature range		°C	$-20 \le T_a \le +100$
The electric actuation must be realized	U _{max}	V	17.5
from intrinsically safe electrical circuits	I _{max}	mA	150
with the following maximum values	P _{max}	mW	657

A WARNING – Risk of explosion

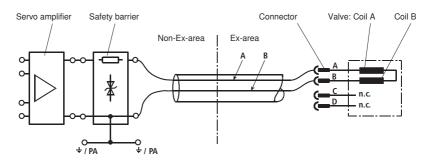
- The connection with other devices must be checked separately.
- As soon as the valve has been operated with higher electric power than the one specified above, it must no longer be used in explosive areas.

Electrical connection

Mating connector, bayonet lock, 3-pole: Type: 845-11-1325-001, company Souriau

Relating mating connector see data sheet of the company Souriau, series 845. The servo valve may only be supplied through these mating connectors.

Technical Data STDS 0015-1X


electric					
Protection class	DIN 40050-9:1993				with mating connector correctly mounted
according to	EN 60529:1991+A	1:2000		IP 67	and locked
Type of signal				Direct current	t analogue
Rated current			mA	20	
Resistance per coil (Total)		Ω	135 (270)	
Inductivity (Connecti	on in series)		Н	1.7	
Connector (Compati	ble with MS 3102 C1	4S-2P)		4-pole	
Information on expl	osion protection				
Type examination ce	ertificate			PTB 05 ATEX	K 2058
Protection class acc	ording to directive 94	/9/EC		II2G, II2D	
Type of protection ac EN 60079-0:2006, E				Ex ia IIB T4	
Type of protection ac EN 61241-0:2006 an				Ex tD A21 IP6	67 T110°C
Maximum surface te	mperature ²⁾		°C	110	
Ambient temperature	e range		°C	$-20 \le T_a \le +1$	00
Hydraulic fluid tempe	erature range		°C	-20 +100	
Maximum values for	supply circuits	U _{max}	V	17,5	
		Imax	mA	150	
		P _{max}	mW	657	
Important:		max			
In case of use in II20	, the valve may only				
be supplied electrical					
intrinsically safe elec					Stahl, type 9001/02-133-150-101 or
Recommended safet	y barrier 1)		channel	9001/02-175-	100-101

1) Only necessary with II2G, separate order

2) Surface temperature > 50 °C, provide contact protection

Electrical connection

The electrical actuation with plus (+) to A and minus (-) to B provides for pressure at port A > pressure at port B and/or flow from P to A and B to T. Pins C and D on the connector are not connected.

Important:

- In case of use in II2D, the safety barrier is not necessary.

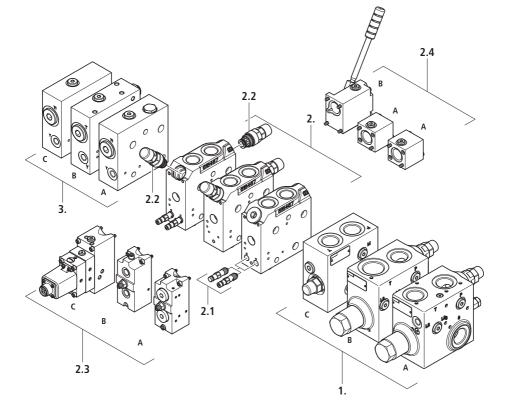
- In case of use in II2D, the mating connector must meet the requirements according to EN 61241-0:2006.

Modular construction: Control block with side input element

Control blocks from series M4-15 are of modular construction. They can be optimally assembled for the respective application.

1. Input element

- A: Closed Center "VR" with external priority consumer
- B: Open Center "P"
- C: Closed Center "J"


2. Directional control valve elements

- 2.1 LS pressure limitation
- 2.2 Secondary valves
- 2.3 Actuation of cover, A-side
 - A: Mechanical actuation "M"
 - B: Hydraulic actuation "H"
 - C: Servo-hydraulic actuation "S"

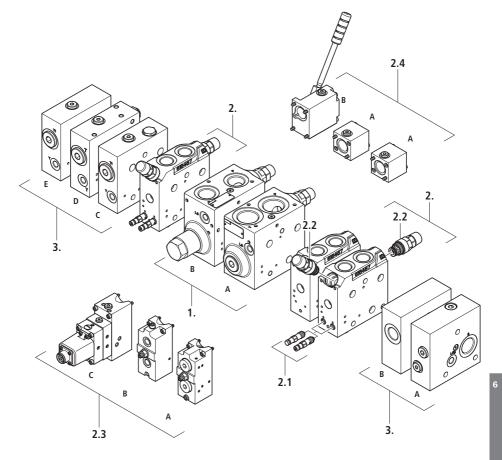
- 2.4 Actuation of cover, B-side
 - A: Standard cover "-"
 - B: Mechanical actuation "B2" with hand lever
- 3. End element

766

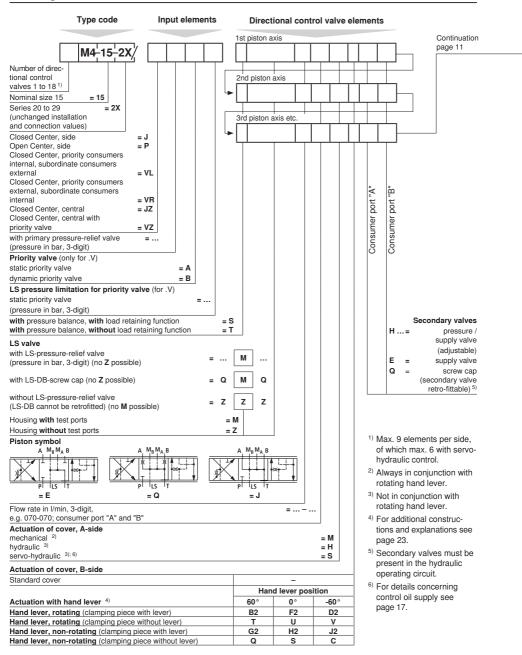
- A: With LS relief "LA" and "LZ"
- B: With LS connection and control oil supply "LAY", "LAK", "LZY" and "LZK"
- C: With LS connection and control oil supply "LAX" and "LZX"

Modular construction: Control block with central input element

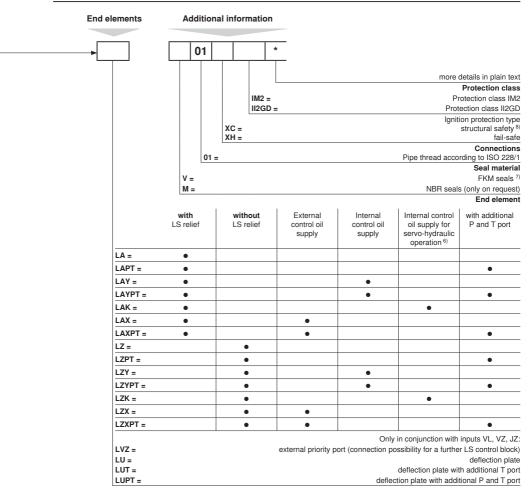
1. Central input element


- A: Closed Center central "JZ"
- B: Closed Center central "VZ" with priority valve
- 2. Directional control valve elements
- 2.1 LS pressure limitation
- 2.2 Secondary valves
- 2.3 Actuation of cover, A-side
 - A: Mechanical actuation "M"
 - B: Hydraulic actuation "H"
 - C: Servo-hydraulic actuation "S"

2.4 Actuation of cover, B-side


- A: Standard cover "--"
- B: Mechanical actuation "B2" with hand lever

3. End element

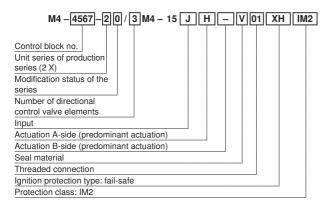

- A: Deflection plate with external priority port "LVZ"
- B: Deflection plate "LU"
- C: With LS relief "LA" and "LZ"
- D: With LS connection and control oil supply "LAY", "LAK", "LZY" and "LZK"
- E: With LS connection and control oil supply "LAX" and "LZX"

Ordering details

Ordering details

⁶⁾ For details concerning control oil supply see page 17.

⁷⁾ The block preferably contains FKM, but also NBR seals. Make sure that the seal is suitable for the hydraulic fluid used.


8) Always in conjunction with protection class IM2

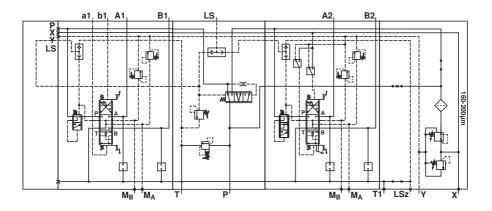
Ordering details

Type code

Entire control blocks are defined according to the type code. The order text is intended for the definition of the technical characteristics and requirements. A type code and a material number are derived from the order text by the Bosch Rexroth sales organisation.

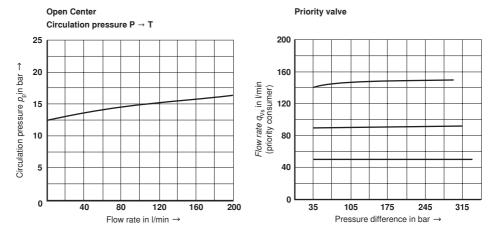
Example of a type code of an M4-15 control block with three directional control valve elements:

6


Ordering example for Closed Center with side input element

Example:	 Triple control block Variable-displacement pump q_{V max} = 200 l/min 	Ordering d	etails: - 15 ⁺ 2X / J250
	 Closed Center with primary pres relief valve at the side, set to 25 	sure-) bar	
Directional control valve elements 1st piston axis	 With pressure balance, without I retaining function With LS pressure relief valve for consumer port A 180 bar, consumer port B 120 bar Piston symbol J, flow rate in A and B 100 l/min Actuation: hydraulic Secondary valve holes closed 	T 180M	
2nd piston axis	 With pressure balance, with load retaining function With LS pressure relief valve for consumer port A and B 180 bar Piston symbol E, flow rate in A and B 85 l/min Actuation: hydraulic Secondary valves: pressure/sup valves, consumer port A and B 3 	S 180M	
3rd piston axis	 With pressure balance, with load retaining function With LS pressure relief valve for consumer port A 180 bar, consumer port B 120 bar Piston symbol E, flow rate in A and B 85 l/min Actuation: servo-hydraulic Actuation with hand lever (up), no Secondary valves: pressure/sup valves, consumer port A and B 3 	S 180M	
End element	 With internal LS relief With internal control oil supply for hydraulic operation 	End elemen	t
Additional information	FKM seals Fipe thread connections Ignition protection type: fail-safe Protection class: IM2	V 01	XH IM2
	1. b1, A1, B1, a2, b	2, A2, B2,	A3, B3,

Ordering example for Closed Center for central input with primary valve

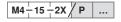

Example:	 Double control block Variable displacement pump q_{V max} = 200 l/min 	Ordering details:
Directional control valve element 1st piston axis	 ctional control valves, end element Deflection plate With pressure balance, without load retaining function With LS pressure relief valves, consumer port A 270 bar, consumer port B 300 bar Piston symbol E, flow rate in A and B 100 l/min Actuation: hydraulic Secondary valve holes closed 	1st piston axis T 270M300 E 100-100 H – Q Q
Input element Directional control valve element 2nd piston axis	 Primary pressure relief valve, set to 350 bar With static priority valve, set to 250 bar With pressure balance, with load retaining function With LS pressure relief valves, set to 250 bar 	Input element VZ 350 A 250 2nd piston axis S 270M300 E 090-090 M B2 Q Q
End element Additional information	 Actuation: mechanical Hand lever actuation (up) Secondary valve holes closed With LS relief, without LS connection With internal control oil supply FKM seals Pipe thread connections Ignition protection type: structural safety Protection class: IM2 e.g. for coal mining 	End element LAY V 01 XC IM2

- Protection class: IM2, e.g. for coal mining

Input elements

Characteristic curves (measured at v = 41 mm²/s and ϑ = 50 °C)

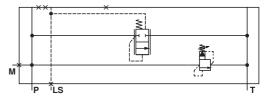
773


Closed Center with primary pressure relief valve Ordering details:

M4-15-2X / J

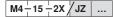
Brief description

- For variable displacement pumps up to 200 l/min
- Pressure in bar behind J... required (3-digit)
- Technical data for primary valve to RE 64642, characteristic curve D5


Open Center with primary pressure relief valve Ordering details:

Brief description

- for fixed displacement pumps up to 200 l/min
- Pressure in bar behind P... required (3-digit)
- Technical data for primary valve to RE 64642, characteristic curve D5


Input elements

Closed Center, priority consumers internal, subordinate consumers external. with primary pressure-relief valve Ordering details: M4-15-2X /VL Α Brief description - For variable displacement pumps up to 200 l/min - Pressure in bar behind VL... for primary pressure-relief valve required (3-digit) Pressure in bar behind A... for LS pressure _ relief valve for priority valve required (3-digit) Closed Center, priority consumers external, subordinate consumers internal. with primary pressure-relief valve Ordering details:

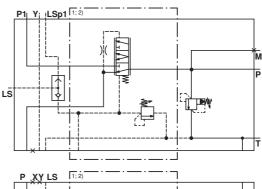
Brief description

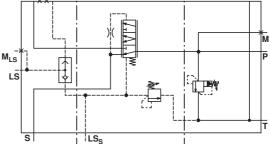
- For variable displacement pumps up to 200 l/min
- Pressure in bar behind VR... for primary pressure-relief valve required (3-digit)
- Pressure in bar behind A... for LS pressure relief valve for priority valve required (3-digit)

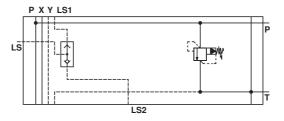
Closed Center, with primary pressure relief valve Ordering details:

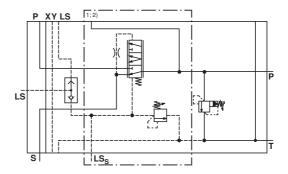
Brief description

- For variable displacement pumps up to 300 l/min
- Pressure in bar behind JZ... for primary pressure-relief valve required (3-digit)
- Technical data for primary valve to RE 64642, characteristic curve D5

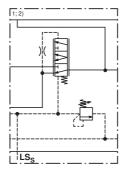

Closed Center with priority valve, with primary pressure relief valve Ordering details:

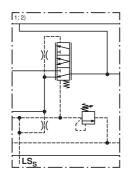

M4-15-2X/V	ΖΑ
------------	----


Brief description


- For variable displacement pumps up to 200 l/min
- Pressure in bar behind VZ... for primary pressure-relief valve required (3-digit)
- Pressure in bar behind A... for LS pressure relief valve for priority valve required (3-digit)

1; 2) see page 17





Input elements

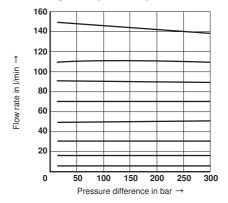
 Version "V ... A" is recommended for priority consumers with a fixed flow rate.

²⁾ Version "V ... B" is recommended for dynamic priority consumers (e.g. steering).

Design information for control oil supply with servo-hydraulic operation

If a servo-hydraulic actuation is used in the control block, please observe the following:

External control oil supply:


- $p_{st} = 30 + 2$ bar constant
- $q_{st} = 2$ l/min per servo-hydraulic piston axis
- Imperative for input element P

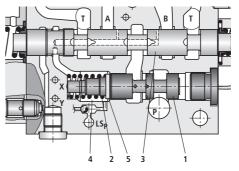
Internal control oil supply:

- Maximum 6 servo-hydraulically controlled piston axes possible
- No control oil supply for external consumers
- Δp on the input element must be at least 35 bar

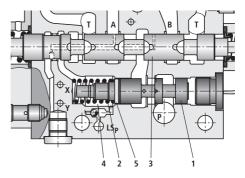
Directional control valve elements: pressure balance

Flow rate regulation by individual pressure balance

When the main piston is in the center position there is no connection from P to consumer ports A and B.


In this operating status, the pressure balance piston (1) is displaced to the left against the spring (2) by means of the pump pressure.

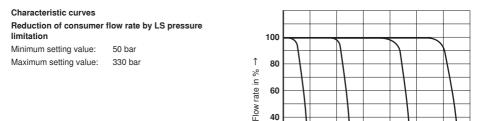
When the main piston (3) (= orifice) is actuated, the LS pressure enters the spring chamber (4) and pushes the pressure balance piston to the right into the adjustment position. The flow rate is kept constant even in the event of parallel operation of consumers with different load pressures.


The pressure balance "S" is equipped with a load retaining function. This operation is not leakage oil free.

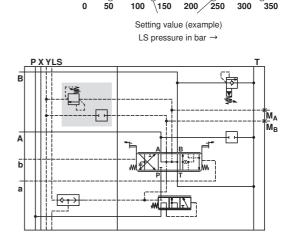
It is fitted with a ring (5) as standard. The number of rings inserted is dependent on the desired flow rate.

Main piston in center position

Main piston actuated



Pressure balance piston variants


Ordering details:	Brief description	Symbol
	 with pressure balance 	
S	 – with load retaining function ¹⁾ 	
	 max. flow rate 160 l/min 	
	 with pressure balance 	
Т	 – without load retaining function ¹⁾ 	
	- max. flow rate 200 l/min	

¹⁾ The load retaining function is not leakage oil free.

Directional control valve elements: LS pressure limitation

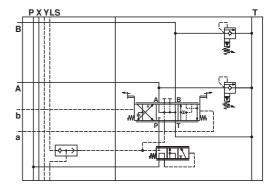
40 20

With LS pressure-relief valve and LS screw cap

Ordering details:

s	М	Q.	I	 н	_	Q	н

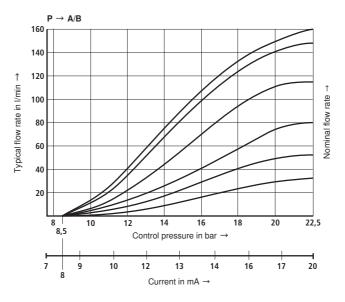
Brief description


- Pressure in bar for consumer port A (3-digit)
- Screw cap for consumer port B
- The LS pressure limitation on the directional control valve element can be retrofitted for the "QMQ" model.
- The LS pressure can be externally influenced via ports $\rm M_A$ and $\rm M_B.$ These ports can also be used as test ports.

Without LS pressure-relief valves Ordering details:

Brief description

- LS-DB cannot be retrofitted
- Housing without test ports



Directional control valve elements: Main piston

Main piston variants

Ordering details:	Main application	Symbol
Flow rate details in I/min		
E –	Hydro-cylinder as a consumer	
J –	Hydro-motors as consumers	
Q	Application with specified remaining orifice (A/B \rightarrow T) Consumer port relieved in neutral position	

Piston characteristic curves (symmetrical pistons)

hydraulic actuation

servo-hydraulic actuation at 32 mm²/s

Symmetrical pistons

Piston type	Pressure balance		Flow rate	in l/min (for pi	ston character	istic curve see	page 20)	
		160-160	150-150	120-120	080-080	050-050	032-032	023-023
E, J, Q	S	140-140	130-130	100-100	070-070	045-045	028-028	020-020 (8)
E, J, Q		120-120	110-110	085-085	060-060	040-040	025-025	017-017
	Т	200-200	190-190	160-160	100-100	065-065	040-040	

Asymmetrical pistons

Piston type	Pressure balance		Flow rate	e in l/min	
		150-120	120-080	080-050	050-032
E, J, Q	S	130-100	100-070	070-045	045-028
E, J, Q		110-085	085-060	060-040	040-025
	Т	190-160	160-100	100-065	065-040

Example:

Piston type J

- Pressure balance S
- Reference value: Q_{Consumer} = 140 l/min

Solution:

- → 130 litre piston + 2 modules = 150 l/min
- \rightarrow Set 140 litre via stroke limiter.

	Flow rate in I/min	Pressure balance	Piston type
\neg	150–150		
	130–130	S	E, J, Q
	110–110	Γ	

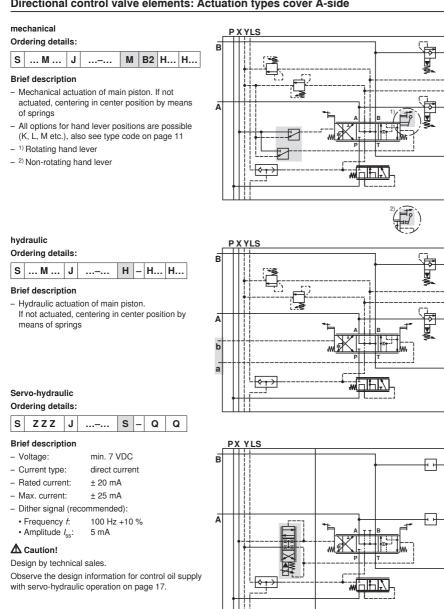
Flow rate without module (pressure balance $\Delta p = 6$ to 9 bar) \blacktriangleleft Flow rate with 1 module (pressure balance $\Delta p = 7.5$ to 10 bar) \blacktriangleleft Flow rate with 2 modules (pressure balance $\Delta p = 9$ to 12 bar) \blacktriangleleft

IF Note!

Position directional control valve elements with maximum flow rate as close as possible to the input element.

т

т

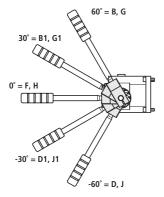

ÎΜ₄

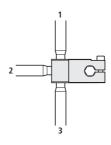
MB

ĪΜ₄

M

Directional control valve elements: Actuation types cover A-side


Directional control valve elements: Actuation types cover B-side


781

Mechanical actuation with hand lever

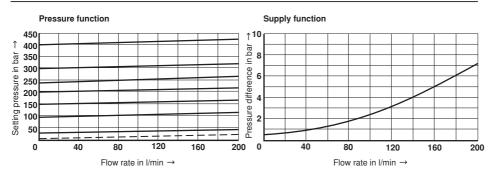
Clamping piece with lever

(Example: Lever connection in pos. 2)

Lever connection on clamping piece

		top,	60°	top,	30°	straig	ht, 0°	botton	n, -30°	botton	n, -60°
Clamping	- rotating	В	1	B1	1	F	1	D1	1	D	1
piece with	-	В	2	B1	2	F	2	D1	2	D	2
lever		В	3	B1	3	F	3	D1	3	D	3
	 non-rotating 	G	1	G1	1	Н	1	J1	1	J	1
		G	2	G1	2	Н	2	J1	2	J	2
		G	3	G1	3	Н	3	J1	3	J	3
Clamping	 rotating 	-	Г	Т	1	ι	J	V	1	١	/
piece without lever	– non-rotating	(ç	C	21	ę	3	С	1	C	C

Actuating force (on hand lever):


- mechanical < 20 N

- hydraulic, hand lever overlaid < 50 N

Further hand lever options (aluminium-free) on request.

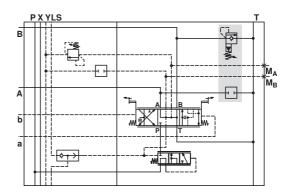
6

Directional control valve elements: Secondary valves

Pressure/supply valves, adjustable

Ordering details:

s	M Q	J		Н	-	Q	H200
---	-----	---	--	---	---	---	------

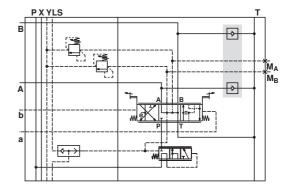

Brief description

- Adjustable pressure/supply valve, pilot operated
- Pressure in bar behind H ... required (3-digit)

- Example: QH200

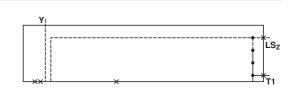
Q: Screw cap for consumer side A H200: pressure/supply valve, set to 200 bar for consumer port B

- Technical Data to RE 64642


Supply valves

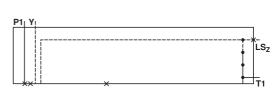
Ordering details:

s	M	J		н	_	Е	Е
---	---	---	--	---	---	---	---


Brief description

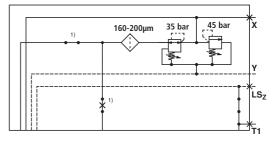
- Technical Data to RE 64642

End element with LS relief Ordering details:



End element with LS relief and additional P and T port

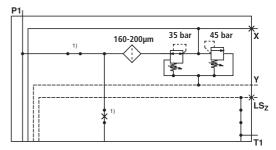
Ordering details:


End element with LS relief and internal control oil supply

Ordering details:

Brief description

 draws oil from the P line, pressure reduced to 35 bar (firmly set), pressure relief valve set to 45 bar



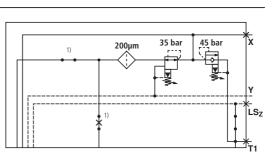
End element with LS relief, control oil supply and additional P and T port Ordering details:

Brief description

 draws oil from the P line, pressure reduced to 35 bar (firmly set), pressure relief valve set to 45 bar

¹⁾ The plug is changed if an input element with VR... or VZ... priority is used.

End element with LS relief and internal control oil supply with servo-hydraulic operation Ordering details:


LAK

Brief description

- Draws oil from the P line, pressure reduced to 35 bar (firmly set), pressure relief valve set to 45 bar
- 1) The plug is changed if an input element with VR... or VZ... priority is used.

A Caution!

Observe the design information for control oil supply with servo-hydraulic operation on page 17.

End element with LS relief and control oil supply Ordering details:

Brief description

- External control oil supply necessary p_{st max} = 35 bar constant

End element with LS relief, control oil supply and additional P and T port Ordering details:

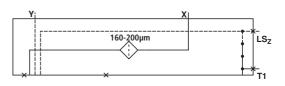
LAXPT

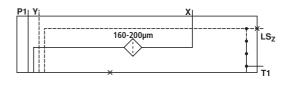
Brief description

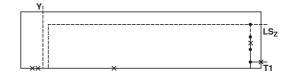
- External control oil supply necessary p_{st max} = 35 bar constant

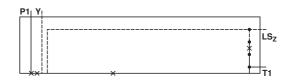
End element without LS relief Ordering details:

Brief description

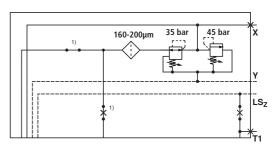

- Supply of LS signals connected in parallel
- LS relief must be ensured externally


End element without LS relief and additional P and T port Ordering details:


LZPT


Brief description

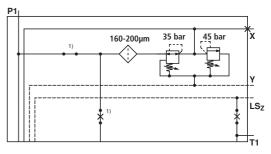
- Supply of LS signals connected in parallel
- LS relief must be ensured externally



End element without LS relief, with internal control oil supply Ordering details:

Brief description

- Draws oil from the P line, pressure reduced to 35 bar (firmly set), pressure relief valve set to 45 bar
- Supply of LS signals connected in parallel
- LS relief must be ensured externally

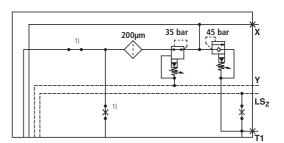


End element without LS relief, internal control oil supply and additional P and T port Ordering details:

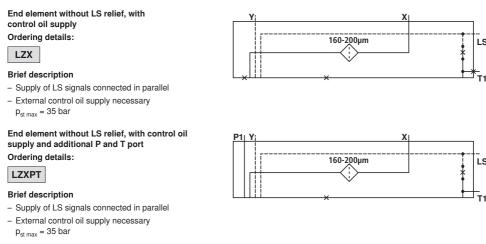
Brief description

- Draws oil from the P line, pressure reduced to 35 bar (firmly set), pressure relief valve set to 45 bar
- Supply of LS signals connected in parallel
- LS relief must be ensured externally

End element without LS relief and internal control oil supply with servo-hydraulic operation Ordering details:



Brief description


- Draws oil from the P line, pressure reduced to 35 bar (firmly set), pressure relief valve set to 45 bar
- Supply of LS signals connected in parallel
- LS relief must be ensured externally

A Caution!

Observe the design information for control oil supply with servo-hydraulic operation on page 17.

¹⁾ The plug is changed if an input element with VR... or VZ... priority is used.

End element with external priority port Ordering details:

Brief description

- For the connection of external

priority consumers

End elements for combination with central input element

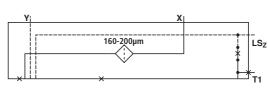

End element for central input element, deflection plate Ordering details:

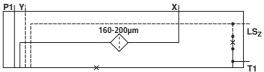
L	Ľ	,	

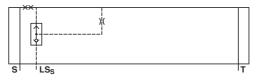
End element for central input element, deflection plate with additional T port

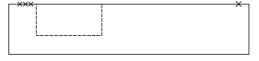
Ordering details:

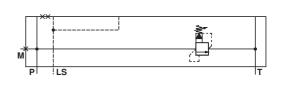
LUT


End element for central input element, deflection plate and additional P and T port


Ordering details:



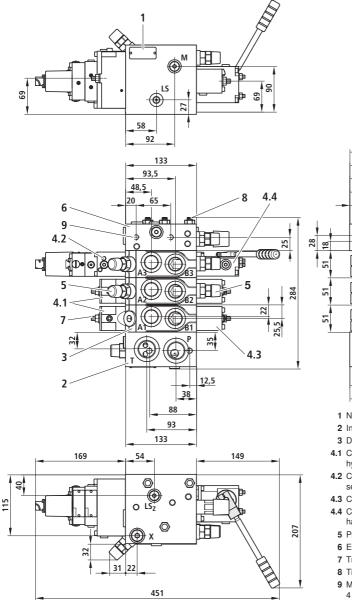

Brief description

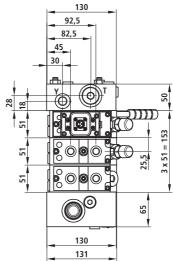

- Pressure in bar required (3-digit)

Unit dimensions: Line connection

Innut classest aids	Oleand Orman	D	0.1	Р		Pump
Input element, side	Closed Center	P	G 1	P1		Connection, subordinate
		т	G 1	A, B		Consumer
		LS, LS _S , LS ₁ ,	G 1/4	a, b		Control line
		LS _{P1} ,		T, T1		Tank
		Y	G 1/4	X		Pilot supply
		М	G 1/4	Y	=	Tank, non-pressurised
		S	G 1	LS	=	Load Sensing (LS)
	Open Center	Р	G 1	LSz		LS supply
		Т	G 1 1/4	LS _{P1}	=	LS connection subordinate consumer
		LS	G 1/4	LS	=	LS priority consumer
		Х, Ү	G 1/4	M		Test port pump
		М	G 1/4	M _A , M _B	=	Test ports LS pressure
Input element, central	Closed Center	Р	G 1 1/4			Test ports control pressure
		Т	G 1 1/4	S	=	Priority consumer
		LS	G 1/4]		
		LS _S , LS ₁ , LS ₂	G 1/4	1		
		Х, Ү	G 1/4]		
		S	G			
Directional control valve element	with secondary valves	А, В	G 3/4			
		a, b	G 1/4	1		
		M _A , M _B	G 1/4	1		
		M _a , M _b	G 1/8]		
End element		Р	G 3/4	1		
		T1	G 3/4]		
		LS	G 1/4]		
		LSz	G 1/4	1		
		Х, Ү	G 1/4	1		
	for LAK, LZK	Х, Ү	G 3/8	1		

M10 securing screws


in accordance with EN ISO 4762 or EN ISO 4014:


Property class:	8.8	10.9
Tightening torque	41 ± 2 Nm	60 ± 3 Nm

Connections in accordance with ISO 1179-1

Unit dimensions: Control block with side input element

(in accordance with the ordering example on page 13, dimensions in mm)

- 1 Nameplate
- 2 Input element J...X
- 3 Directional control valve element
- 4.1 Control cover H (side A) for hydraulic operation
- 4.2 Control cover S (side A) for servo-hydraulic operation
- 4.3 Control cover Standard (side B)
- 4.4 Control cover G2 (side B) with hand lever
 - 5 Primary pressure relief valve
- 6 End element LAK
- 7 Travel limitation
- 8 Tie rods
- 9 Mounting thread 4 x M10; 15 deep

Unit dimensions: Control block with central input element and priority valve

789

Bosch Rexroth AG Hydraulics Zum Eisengiesser 1 97816 Lohr am Main, Germany Tel: +49 (0) 93 52 / 18-0 Fax: +49 (0) 93 52 / 18-23 58 info.brm-mc@boschrexroth.de www.boschrexroth.de © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. Without their consent it may not be reproduced or given to third parties. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The given information does not release the user from the obligation of own judgement and verification. It must be remembered that our products are subject to a natural process of wear and aging Part II Data sheet

Series 10, 11 and 30 Size NG40 to 250 Nominal pressure 350 bar Maximum pressure 400 bar

Open circuit

Contents

Hydraulics

Pneumatics

Service

Rexroth Bosch Group

Axial Piston Variable Pump A4VSO for Explosive Areas II 3G c T4

RE 92050-01-X-B2/05.10 1/32

Details on explosion protection

Ordering code for standard program	2
Technical data	4
Characteristics	9
Overview of control devices	10
Dimensions size 40	12
Dimensions size 71	14
Dimensions size 125	16
Dimensions size 180	18
Dimensions size 250	20
Through drive	22
Overview of attachments	23
Permissible moment of inertia	24
Dimensions of combination pumps	25
Through drive dimensions	26
Installation instructions	31
General instructions	32

Range of applications according to ATEX Directive 94/9/EC Gas: II 3G c T4 in accordance with

- DIN EN 13463-1:2009-07
- DIN EN 13463-5:2004-03

Features

- Variable axial piston pump of swashplate design for open-circuit hydrostatic drives
- Flow is proportional to drive speed and displacement.
- The flow increases as the angle of the swashplate is adjusted from zero to its maximum value.
- Good suction behavior
- Low noise level
- Long service life
- Modular system
- Short control times
- Variable through drive possibilities
 - Optical swivel angle indicator
 - Freely variable installation position

For descriptions of control device, please refer to separate data sheets RE 92060, RE 92064, RE 92080

791

Ordering code for standard program

_							1	1	1						
		A4VS	0			1			-	Α			В	25	
	01	02	03	04	05		06	07		08	09	9	10	11	12
		aulic fluid /								40	71	125	180	250	
01		eral oil (witho								•	•	•	•	•	
	High	n-speed versi	on							-	-	-	-		н
	Axial	piston unit													
	r	shplate desi	gn, varial	ble											A4VS
	.		-												
02	-	ration mode p, open circi		al proces	IFO 250 P	oor movin	aum proc	ouro 400	bar						0
03	r un	ip, open circi	un, nonn	iai piessi	ule 330 i	Jai, maxin	num pres	sule 400	Dai						0
	Size														,
04	Disp	lacement V _g	_{max} in cr	1 ³						40	71	125	180	250	J
	Cont	rol device								40	71	125	180	250	
		nout control								•	•	•	•	•	ov
	Pres	sure control					For	urther no	otes	•	•	•	•	•	DR.
	Pres	sure control	for paral	lel operat	ion			electing		•	٠	•	•	•	DP.
	Flow	/ control						rol, pleas to page		•	٠	•	•	•	FR
	Pres	sure and flow	w contro	l				RE 9206		•	•	•	•	•	DFR.
	Pow	er control wi	th hypor	oolio ohar	actoristic			urther no							LR2
05	1.00		штурен	Juic chai	actensu	,		electing			•	-	-	-	LNZ
	Pow	er control wi	th remot	ely contro	llable po	wer		rol, pleas to page							LR3
	char	acteristic						RE 9206							LK3
								urther no							
								electing		1)	1)				
	Нуа	raulic control	, pressu	re-aepend	dent			rol, pleas to page		•"	•"	•		•	HD
								RE 9208							
	Serie	26								40	71	125	180	250	
		es 1, Index 0	(Index 1	for HD)							•	-	-	-	10 (11) ¹⁾
06		es 3, index 0	(index i							-	-	•	•	•	30
		,										-	-	-	
		tion of rota								40	71	125	180	250	
07	View	ved from driv	e shaft					kwise		•	•	•	•	•	R
							COUI	nter-clock	wise	0	0	0	0	0	L
	Seal	and ATEX v	ersion												
08	FKM	1 (fluor-caout	chouc) s	eals and	ATEX ve	rsion II 3	G T4								Α
	Drive	e shaft													
		illel keyed sh	aft DIN 6	6885											Р
09		ned shaft DI													z
	<u> </u>										-	105	100		
10		nting flange	-f 160 o	010.0			4-hc	la		40	71	125	180	250	
10	ivietr	ric, on basis	011303	019-2			4-nc	ne		•	•	•	•	•	В

1) Version with HD control only in series 11

• = Available O = On request - = Not available

Ordering code for standard program

	A4VS	0			/			-	Α		В	25	
01	02	03	04	05		06	07		08	09	10	11	12

793

Service line ports	40	71	125	180	250	
Port B and S: SAE flange port B and S offset 90° to the side, metric fixing thread. 2nd pressure port B ₁ opposite B – plugged with flange plate on delivery.	•	•	•	•	•	25

	Through drive ¹⁾			40	71	125	180	250		
	Without auxiliary pum	p, without throug	gh drive		۲	•			N00	
	With through drive for	•	۲	-	-	-	K			
	Universal through driv	/e		-	-	•	•		U	
	Flange ²⁾	Coupling for splined shaft	For mounting							
12	125, 4-hole	32x2x14x9g	A4VSO for explosive areas, NG40	•	٠	•			31	
	140, 4-hole	40x2x18x9g	A4VSO for explosive areas, NG71	-	۲				33	
	160, 4-hole	50x2x24x9g	A4VSO for explosive areas, NG125	-	-	٠	•		34	
	160, 4-hole	50x2x24x9g	A4VSO for explosive areas, NG180	-	-	-			34	
	224, 4-hole	60x2x28x9g	A4VSO for explosive areas, NG250	-	-	-	-		35	

Features of the ATEX version

The ATEX version is an advanced development of the A4VSO for compliance with Directive 94/9/EC (ATEX). External features distinguishing it from the standard pump RE 92050 are the ground connection, the Ex marking and the CE marking on the name plate. Please refer to ATEX operating instructions RE 92050-01-X-B1.

Note

When ordering, please state which device group, category, explosion group, temperature class and ignition protection type are required for your planned ATEX application.

Note

Potential equalization: the pump must be grounded. For grounding points, please refer to the drawings starting on page 12. Compared to the standard pump, there are restrictions in the technical data relating to temperature, case pressure and bearing flushing / installation position.

Note

In order to avoid mechanically generated sparks from contaminants made of aluminum with iron oxide and/or particles of rust of the surface³⁾, the pump is painted as standard with corrosion protecting. Please state the required colour when ordering.

Note

The service life of the bearings must be calculated. The load cycle forms the basis for this. Please contact us.

1) All attachment pumps must correspond to the ATEX classification for the application concerned.

- 2) Metric in accordance with ISO 3019-2
- 3) See DIN EN 13463-1, 6.4.2.1

• = Available O = On request - = Not available

Hydraulic fluid

Prior to project planning, please refer to the detailed information in our data sheet RE 90220 (mineral oil) concerning the choice of hydraulic fluids and application conditions.

The variable pump A4VSO for explosive areas can also be approved for other hydraulic fluids. If applicable, this will require a special approval procedure.

Operating viscosity range

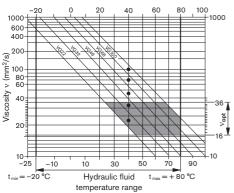
The unit can be operated in the operating viscosity range 16...100 mm²/s without restricting the technical data.

We recommend you to choose the operating viscosity (at operating temperature) in the optimum range for efficiency and useful life of

 $v_{opt} = opt.$ operating viscosity 16 to 36 mm²/s,

related to the tank temperature (open circuit).

Limits of viscosity range


The following borderline operating conditions for viscosity apply:

 $\begin{array}{rl} \nu_{min} &=& 10 \; mm^2/s \\ & & short-term \; (t < 3 \; min) \\ & & at \; max. \; permissible \; case \; drain \; temperature \\ & \; t_{max} = +80 \; ^\circ C \end{array}$

 $\begin{array}{rcl} \nu_{max} &=& 1000 \mbox{ mm}^{2}/s \\ & \mbox{only for pulling away (cold start, an operating viscosity of less than 100 \mbox{ mm}^{2}/s \mbox{ should be achieved} \\ & \mbox{within 15 min} \\ & t_{min} \mbox{ to } -20 \mbox{ °C} \end{array}$

For detailed information about use at low temperatures, see RE 90300-03-B.

Selection diagram

Details regarding the choice of hydraulic fluid

The correct selection of hydraulic fluid requires knowledge of the operating temperature in relation to the ambient temperature, in an open circuit the tank temperature.

The hydraulic fluid should be selected so that within the operating temperature range, the operating viscosity lies within the optimum range (v_{opt}) (see shaded section of the selection diagram). We recommended that the higher viscosity class be selected in each case.

Temperature range (cf. selection diagram)

 $t_{min} = -20 \ ^{\circ}C$

t_{max} =+80 °C

Example: At an ambient temperature of X °C, an operating temperature of 60° C is set in the circuit. In the optimum operating viscosity range (v_{opt} , shaded area), this corresponds to the viscosity classes VG 46 or VG 68; to be selected: VG 68.

Note

The case drain temperature, which is affected by pressure and speed, is always higher than the tank temperature. At no point of the component may the temperature be higher than 80 °C, however. When determining the viscosity in the bearing, it must be taken into account that the temperature of the hydraulic fluid in the bearing (depending on the pressure and rpm) is about 5 K higher than that of the case drain fluid at port T.

Note

Ignition temperature of the hydraulic fluid: the pump is approved for temperature class T4 in accordance with DIN EN 13463-1. Only hydraulic fluid with an ignition temperature of at least 185 °C may be used.

2 bar absolute

Technical data

Bearing flushing

In the following operating conditions, bearing flushing is necessary for reliable continuous operation:

- Operation with borderline conditions for temperature and viscosity

For vertical installation (drive shaft up) and for above-tank installation (regardless of the shaft position), bearing flushing is specified for lubricating the front bearing and the shaft seal.

Bearing flushing is realized at port U in the area of the front flange of the variable pump. The flushing fluid flows through the front bearing and emerges from case drain port together with the pump case drain fluid.

For the individual sizes, the following minimum flushing flows are necessary:

Size		40	71	125	180	250
Flushing flow	q _{Sp} ltr./min	3	4	5	7	10

For the flushing flows stated, there is a pressure differential of about 2 or 3 bar between port U (including fitting) and the case drain fluid chamber (series 10 and 11 or series 30, respectively).

Notes on series 30

If using an external bearing flushing, screw the throttle screw in port U in to the stop.

Filtration of the hydraulic fluid

The finer the filtration, the higher the cleanliness level of the hydraulic fluid and the longer the service life of the axial piston unit.

To ensure the functional reliability of the axial piston unit, cleanliness level of at least 20/18/15 according to ISO 4406 is necessary for the hydraulic fluid.

Case drain pressure

The permissible case drain pressure (case pressure) depends on the rpm.

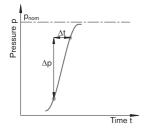
Max. case drain pressure (case pressure)

PL abs max

These data are guideline figures; a restriction may be necessary under certain operating conditions.

Flow direction

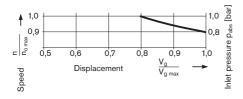
S to B


Operating pressure range

Pressure at the service line port B (pressure port)

Nominal pressure pnom	350 bar absolute
Maximum pressure p _{max} Total operating period	400 bar absolute 300 h
Single operating period	300 m
Minimum pressure (high-pressure side)	15 bar

for lower pressure, please contact us.


Rate of pressure change R _A	16000 bar/s
Rate of pressure change RA	10000 bai/s

Pressure at suction port S (inlet)

Minimum pressure (inlet)

In order to avoid damage to the axial piston unit, a minimum pressure must be guaranteed at the suction port S (inlet). The minimum pressure is dependent on the speed and displacement of the axial piston unit.

The inlet pressure is the static inflow pressure or the minimum dynamic value in case of pre-tension.

Note:

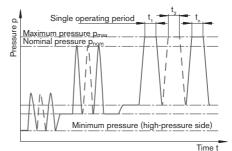
For max. permissible rpm $n_{o\mbox{ max. perm.}}$ (rpm limit), please refer to page 7.

Definition

Nominal pressure pnom

The nominal pressure corresponds to the maximum design pressure.

Maximum pressure pmax


The maximum pressure corresponds to the maximum operating pressure within the single operating period. The sum of the single operating periods must not exceed the total operating period.

Minimum pressure (high-pressure side)

Minimum pressure on the high-pressure side (B) that is required in order to prevent damage to the axial piston unit.

Rate of pressure change RA

Maximum permissible rate of pressure build-up and pressure reduction during a pressure change over the entire pressure range.

Total operating period = $t_1 + t_2 + \dots + t_n$

Table of values (theoretical values, without efficiencies and tolerances; values rounded)

Size		NG		40	71	125	180	250	250 H ¹⁾
Displacement		V _{g max}	cm ³	40	71	125	180	250	250
rpm ²⁾									
max. at V _{g max}		n _{o max}	rpm	2600	2200	1800	1800	1500	1800
Flow									
at n _{o max}		q _{vo max}	ltr./min	104	156	225	324	375	450
at $n_E = 1500 \text{ rpm}$		q _{VE max}	ltr./min	60	107	186	270	375	375
Power									
at n _{o max,} V _{g max} and A	P _{o max}	kW	61	91	131	189	219	262	
at $n_E = 1500$ rpm, $V_{g max}$ and $\Delta p = 350$ bar		P _{E max}	kW	35	62	109	158	219	219
Torque									
at $V_{g max}$ and $\Delta p = 350$	0 bar	T _{max}	Nm	223	395	696	1002	1391	1391
	$\Delta p = 100 \text{ bar}$	Т	Nm	64	113	199	286	398	398
Rotary stiffness	Drive shaft P	С	kNm/ rad	80	146	260	328	527	527
	Drive shaft Z	с	kNm/ rad	77	146	263	332	543	543
Moment of inertia for rot	tary group	J_{GR}	kgm ²	0.0049	0.0121	0.03	0.055	0.0959	0.0959
Maximum angular accel	eration ³⁾	α	rad/s ²	17000	11000	8000	6800	4800	4800
Filling capacity		V	L	2	2,5	5	4	10	10
Mass approx. (with pres	sure controller)	m	kg	39	53	88	102	184	184

1) High-speed version

2) The values shown are valid for an absolute pressure p_{abs} = 1 bar at suction port S and for operation with mineral operating materials with a specific mass of 0.88 kg/l.

3) The scope of application lies between the minimum required and maximum permissible speed.

It applies for external stimuli (e. g. engine 2 to 8 times rotary frequency, cardan shaft twice the rotary frequency). The maximum value applies for a single pump only.

The load capacity of the connection parts must be considered.

Note

Operation above the maximum values or below the minimum values may result in a loss of function, a reduced service life or in the destruction of the axial piston unit. We recommend testing the loadings by means of experiment or calculation / simulation and comparison with the permissible values.

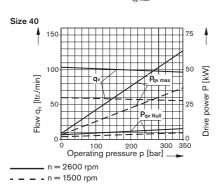
Calculation of characteristics

Flow	qv	=	$\frac{V_g \bullet n \bullet \eta_V}{1000}$		[ltr./min]
Torque	Т	=	$\frac{V_g \bullet \Delta_p}{20 \bullet \pi \bullet \eta_{mh}}$		[Nm]
Power	Ρ	=	$\frac{2 \pi \cdot T \cdot n}{60000} = \frac{q_V \cdot \Delta p}{600 \cdot \eta_t}$	_	[kW]

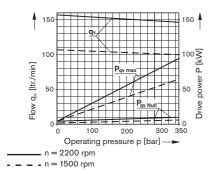
- V_a = Displacement per revolution in cm³
- $\Delta p = Differential pressure in bar$
- n = Speed in rpm
- $\eta_V =$ Volumetric efficiency
- η_{mh} = Mechanical-hydraulic efficiency
- η_t = Total efficiency ($\eta_t = \eta_V \cdot \eta_{mh}$)

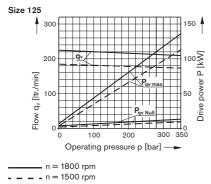
Permissible radial and axial loading on drive shaft

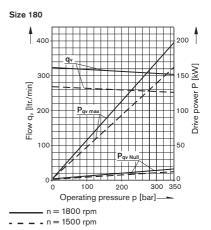
Size				40	71	125	180	250
Maximum radial force (at distance x/2 from shaft collar)	X/2 X/2	F _{q max}	N	1000	1200	1600	2000	2000
Maximum axial force ± F _{ax} ←	•	± F _{ax max}	N	600	800	1000	1400	1800

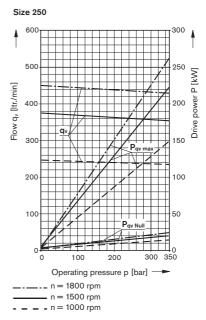

Characteristics

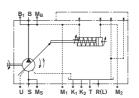
Drive power and flow


(operating material: hydraulic oil ISO VG 46 DIN 51519, t = 50 °C)


$$\eta_t = \frac{q_v \cdot p}{P_{q_v \max} \cdot 600}$$


$$\eta_v = \frac{q_v}{q_{v \text{ theor}}}$$

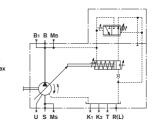




Overview of control devices¹⁾

Without control OV

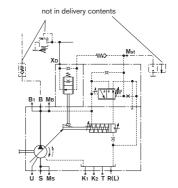
Control on DR basis without valve. The control piston is relieved on one side to the tank. The $V_{g\,max}$ limitation can be adjusted from 50 to 100%. The pump with OV control acts like a fixed pump in operation.



Pressure control DR (see RE 92060)

The DR pressure controller limits the maximum pressure at the pump outlet within the control range of the pump. The pressure can be freely set on the control valve. Setting range 20...350 bar

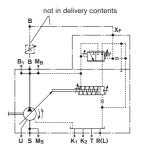
Alternatively Remotely controllable (DRG)



Pressure control for parallel operation DP (see RE 92060)

Suitable for pressure control for several axial piston units A4VSO for explosive areas in parallel operation.

Alternatively Flow control (DPF)


Flow control FR (see RE 92060)

Governs the flow rate (volume flow) in a hydraulic system.

Alternatively

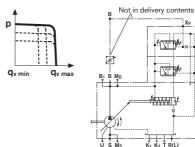
Remotely controllable pressure control (FRG) Connection from X_F to tank plugged (FR1, FRG1)

1) Note

All additional components from RE 92060 and RE 92064 must correspond to the ATEX classification for the application concerned.

N.

K₂ T R(L)

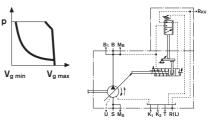

Overview of control devices¹⁾

Pressure and flow control DFR (see RE 92060)

This controller keeps the flow of the pump (volume flow) constant even under changing operating conditions. A mechanically adjustable pressure controller overlies the flow control.

Alternatively

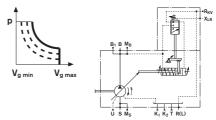
Connection from X_F to the tank plugged (DFR1)


Power control LR2 with hyperbolic characteristic (see RE 92064)

The hyperbolic power control keeps the specified drive power constant at the same drive speed.

Alternatively

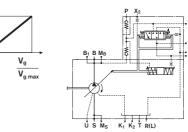
Pressure control (LR2D), remotely controllable (LR2G); Flow control (LR2F, LR2S); Hydraulic two-point control (LR2Z)


Not available from RE 92064: LR2.Y (electric relief valve)

Power control LR3 with remotely controllable power characteristic (see RE 92064)

This hyperbolic power control keeps the specified drive power constant, whereby the power characteristics are remotely controllable. Alternatively Pressure control (LR3D), remotely controllable (LR3G); Flow control (LR3F, LR3S); Hydraulic two-point control (LR3Z)

Not available from RE 92064: LR3.Y (electric relief valve)



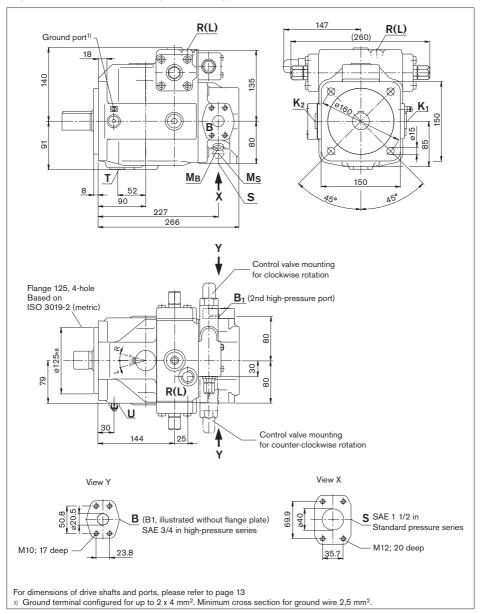
Hydraulic control HD, pilot-pressure related (see RE 92080)

Stepless adjustment of the pump displacement according to the pilot pressure. The control is proportional to the specified pilot pressure (difference between pilot pressure and case pressure).

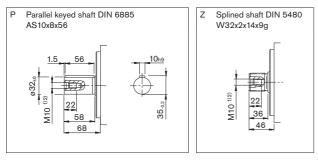
Alternatively: pilot characteristics (HD1, HD2, HD3); pressure control (HD.B); remotely controllable pressure control (HD.GB); power control (HD1P)

Not available from RE 92080: HD.,T and HD.,U (DBEP6 mounted)

1) Note


All additional components from RE 92060 and RE 92064 must correspond to the ATEX classification for the application concerned.

p_{St}


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Pressure control (example)

(for precise dimensions of the control unit, please refer to separate data sheets)

Drive shaft

Ports

Designation	Port for	Standard	Size ²⁾	Maximum pressure [bar] ³⁾	State
S	Suction Fixing threads	SAE J518 ⁴⁾ DIN 13	1 1/2 in M12 x 1.75; 20 deep	30	0
K ₁ , K ₂	Flushing	DIN 38525)	M22 x 1.5; 14 deep	2	Х
Т	Fluid drain	DIN 3852 ⁵⁾	M22 x 1.5; 14 deep	2	Х
MB	Measuring, pressure B	DIN 38525)	M14 x 1.5; 12 deep	400	Х
Ms	Measuring pressure S	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	30	Х
R(L)	Fluid filling + air bleeding (case drain port)	DIN 3852 ⁵⁾	M22 x 1.5; 14 deep	2	0
U	Flushing	DIN 38525)	M14 x 1.5; 12 deep	5	X ⁶⁾
for version 25	5				
В	Service line (high-pressure series) Fixing threads	SAE J518 ⁴⁾ DIN 13	3/4 in M10 x 1.5; 17 deep	400	0
B ₁	2nd service line (high pressure series) Fixing threads	SAE J518 ⁴⁾ DIN 13	3/4 in M10 x 1.5; 17 deep	400	X ⁷⁾

1) Center bore according to DIN 332 (thread according to DIN 13)

2) Please observe the general instructions on page 32 for the maximum tightening torques.

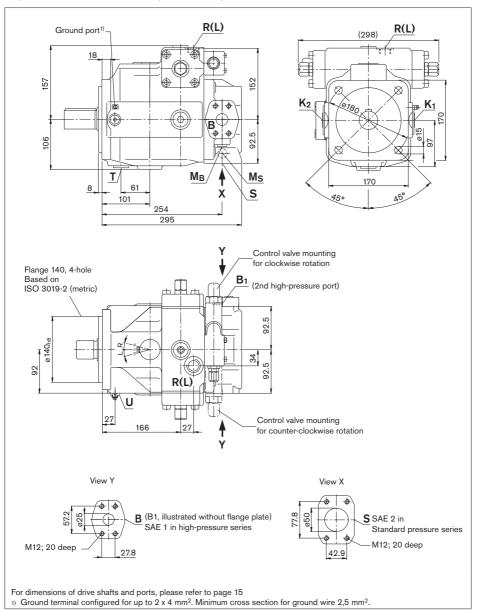
3) Short-term pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

4) Metric fixing thread differing from standard.

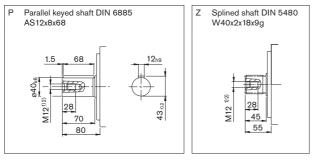
5) The spot face can be deeper than specified in the appropriate standard.

6) For above-tank installation and for all installation positions with "drive shaft up" a bearing flushing must be installed.

Plugged and high-pressure-proof with flange plate. Depending on application, B and/or B₁ must be connected. The unused port must be plugged with a flange plate.


O = Must be connected (plugged on delivery)

X = Plugged (in normal operation)


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Pressure control (example)

(for precise dimensions of the control unit, please refer to separate data sheets)

Drive shaft

Ports

Designation	Port for	Standard	Size ²⁾	Maximum pressure [bar]³)	State
S	Suction Fixing threads	SAE J518 ⁴⁾ DIN 13	2 in M12 x 1.75; 20 deep	30	0
K ₁ , K ₂	Flushing	DIN 38525)	M27 x 2; 16 deep	2	Х
Т	Fluid drain	DIN 3852 ⁵⁾	M27 x 2; 16 deep	2	Х
MB	Measuring pressure B	DIN 38525)	M14 x 1.5; 12 deep	400	Х
Ms	Measuring pressure S	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	30	Х
R(L)	Fluid filling + air bleeding (case drain port)	DIN 3852 ⁵⁾	M27 x 2; 16 deep	2	0
U	Flushing	DIN 38525)	M14 x 1.5; 12 deep	5	X ⁶⁾
for version 2	5				
В	Service line (high-pressure series) Fixing threads	SAE J518 ⁴⁾ DIN 13	1 in M12 x 1.75; 20 deep	400	0
B ₁	2nd service line (high pressure series)	SAE J5184)	1 in (plugged with flange plate)	400	X ⁷⁾
	Fixing threads	DIN 13	M12 x 1.75; 20 deep		

1) Center bore according to DIN 332 (thread according to DIN 13)

2) Please observe the general instructions on page 32 for the maximum tightening torques.

 Short-term pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

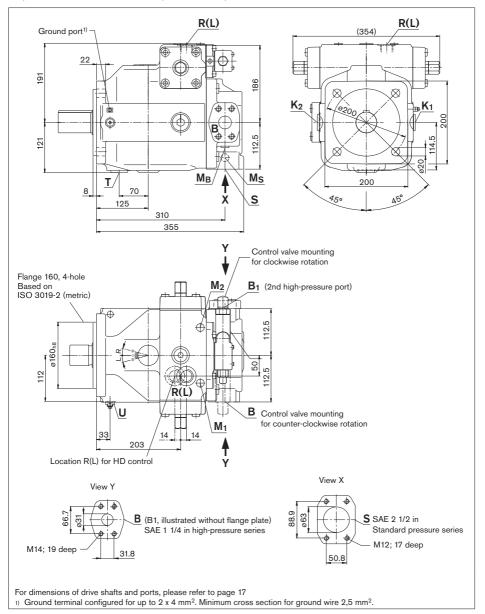
4) Metric fixing thread differing from standard

5) The spot face can be deeper than specified in the appropriate standard.

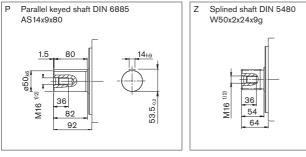
6) For above-tank installation and for all installation positions with "drive shaft up" a bearing flushing must be installed.

Plugged and high-pressure-proof with flange plate. Depending on application, B and/or B₁ must be connected. The unused port must be plugged with a flange plate.

O = Must be connected (plugged on delivery)


X = Plugged (in normal operation)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Pressure control (example)

(for precise dimensions of the control unit, please refer to separate data sheets)

Drive shaft

Ports

Designation	Port for	Standard	Size ²⁾	Maximum pressure [bar] ³⁾	State
S	Suction Fixing threads	SAE J518 ⁴⁾ DIN 13	2 1/2 in M12 x 1.75; 18 deep	30	0
K ₁ , K ₂	Flushing	DIN 38525)	M33 x 2; 18 deep	2	Х
Т	Fluid drain	DIN 38525)	M33 x 2; 18 deep	2	Х
MB	Measuring, pressure B	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	400	Х
Ms	Measuring pressure S	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	30	Х
R(L)	Fluid filling + air bleeding (case drain port)	DIN 3852 ⁵⁾	M33 x 2; 18 deep	2	0
U	Flushing	DIN 38525)	M14 x 1.5; 12 deep	5	X ⁶⁾
M ₁ , M ₂	Measuring control pressure	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	400	х
for version	25				
D	Service line (high pressure cories)	SAE 15104)	1 1/4 in	400	0

for version i					
В	Service line (high-pressure series) Fixing threads	SAE J518 ⁴⁾ DIN 13	1 1/4 in M14 x 2; 19 deep	400	0
B ₁	2nd service line (high pressure series)		flange plate)	400	X ⁷⁾
	Fixing threads	DIN 13	M14 x 2; 19 deep		

1) Center bore according to DIN 332 (thread according to DIN 13)

2) Please observe the general instructions on page 32 for the maximum tightening torques.

3) Short-term pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

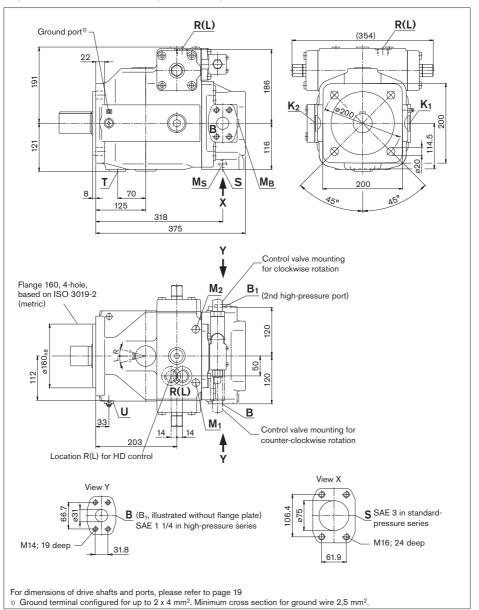
4) Metric fixing thread differing from standard

5) The spot face can be deeper than specified in the appropriate standard.

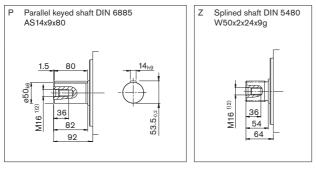
6) For above-tank installation and for all installation positions with "drive shaft up" a bearing flushing must be installed.

 γ Plugged and high-pressure-proof with flange plate. Depending on application, B and/or B₁ must be connected. The unused port must be plugged with a flange plate.

O = Must be connected (plugged on delivery)


X = Plugged (in normal operation)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Pressure control (example)

(for precise dimensions of the control unit, please refer to separate data sheets)

Drive shaft

Ports

Designation	Port for	Standard	Size ²⁾ Maximum pressur [bar] ³⁾		State
S	Suction Fixing thread S	SAE J518 ⁴⁾ DIN 13	3 in M16 x 2; 24 deep	30	0
K ₁ , K ₂	Flushing	DIN 3852 ⁵⁾	M33 x 2; 18 deep	2	Х
Т	Fluid drain	DIN 3852 ⁵⁾	M33 x 2; 18 deep	2	Х
MB	Measuring, pressure B	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	400	Х
Ms	Measuring pressure S	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	30	Х
R(L)	Fluid filling + air bleeding (case drain port)	DIN 3852 ⁵⁾	M33 x 2; 18 deep	2	0
U	Flushing	DIN 38525)	M14 x 1.5; 12 deep	5	X ⁶⁾
M ₁ , M ₂	Measuring control pressure	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	400	х
for version 2	5				
В	Service line (high-pressure series) Fixing threads	SAE J518 ⁴⁾ DIN 13	1 1/4 in M14 x 2; 19 deep	400	0
B ₁	2nd service line (high pressure series)	SAE J5184)	1 1/4 in (plugged with flange plate)	400	X ⁷⁾
	Fixing threads	DIN 13	M14 x 2; 19 deep		

1) Center bore according to DIN 332 (thread according to DIN 13)

2) Please observe the general instructions on page 32 for the maximum tightening torques.

3) Short-term pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

4) Metric fixing thread differing from standard

5) The spot face can be deeper than specified in the appropriate standard.

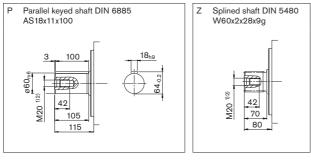
6) For above-tank installation and for all installation positions with "drive shaft up" a bearing flushing must be installed.

7) Plugged and high-pressure-proof with flange plate. Depending on application, B and/or B₁ must be connected. The unused port must be plugged with a flange plate.

O = Must be connected (plugged on delivery)

X = Plugged (in normal operation)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Pressure control (example)

(for precise dimensions of the control unit, please refer to separate data sheets)

Drive shaft

Ports

Designation	Port for	Standard	Size ²⁾	Maximum pressure [bar] ³⁾	State
S	Suction Fixing threads	SAE J518 ⁴⁾ DIN 13	3 in M16 x 2; 24 deep	30	0
K ₁ , K ₂	Flushing	DIN 3852 ⁵⁾	M42 x 2; 20 deep	2	Х
Т	Fluid drain	DIN 3852 ⁵⁾	M42 x 2; 20 deep	2	Х
MB	Measuring, pressure B	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	400	Х
Ms	Measuring pressure S	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	30	Х
R(L)	Fluid filling + air bleeding (case drain port)	DIN 38525)	M42 x 2; 20 deep	2	0
U	Flushing	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	5	X ⁶⁾
M ₁ , M ₂	Measuring control pressure	DIN 3852 ⁵⁾	M18 x 1.5; 12 deep	400	Х
for version 2	25				

TOT VEISION 2	20				
В	Service line (high-pressure series) Fixing threads	SAE J518 ⁴⁾ DIN 13	1 1/2 in M16 x 2; 25 deep	400	0
B ₁	2nd service line (high pressure series)	SAE J5184)	1 1/2 in (plugged with flange plate)	400	X ⁷⁾
	Fixing threads	DIN 13	M16 x 2; 25 deep		

1) Center bore according to DIN 332 (thread according to DIN 13)

2) Please observe the general instructions on page 32 for the maximum tightening torques.

 Short-term pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

4) Metric fixing thread differing from standard

5) The spot face can be deeper than specified in the appropriate standard.

6) For above-tank installation and for all installation positions with "drive shaft up" a bearing flushing must be installed.

7) Plugged and high-pressure-proof with flange plate. Depending on application, B and/or B₁ must be connected. The unused port must be plugged with a flange plate.

O = Must be connected (plugged on delivery)

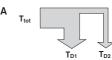
X = Plugged (in normal operation)

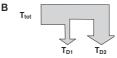
Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Through drive¹⁾

The axial piston unit A4VSO for explosive areas can be supplied with through drive, corresponding to the ordering code on page 3.

The through drive version is identified by the code K/U 31...35.


It is advisable to couple no more than three single pumps in series.


1) All attachment pumps must correspond to the ATEX classification for the application concerned.

Permissible drive and through-drive torques

Size	NG	40	71	125	180	250
Splined shaft						
Max. permissible overall drive torque on	shaft of pump 1					
(pump 1 + pump 2)	T _{tot max} Nm	446	790	1392	2004	2782
A Devenie sible through drive termine	T _{D1 max} Nm	223	395	696	1002	1391
A Permissible through-drive torque	T _{D2 max} Nm	223	395	696	1002	1391
B Permissible through-drive torque	T _{D1 max} Nm	223	395	696	1002	1391
B Permissible through-drive torque	T _{D2 max} Nm	223	395	696	1002	1391
Shaft key						
Max. permissible overall drive torque on	shaft of pump 1					
(pump 1 + pump 2)	T _{tot max} Nm	380	700	1392	1400	2300
	T _{D1 max} Nm	223	395	696	1002	1391
A Permissible through-drive torque	T _{D2 max} Nm	157	305	696	398	909
B. Damaiasikla there ush shine terrais	T _{D1 max} Nm	157	305	696	398	909
B Permissible through-drive torque	T _{D2 max} Nm	223	395	696	1002	1391

Torque distribution

Single pump with through drive

If no other pumps are to be fitted at the factory, the simple model designation is sufficient.

The delivery contents include:

- For all through drives: coupling, fixing screw, seal and if applicable an intermediate flange

Combination pumps

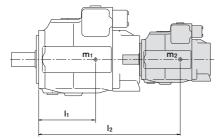
By mounting additional pumps, the user can make use of independent circuits.

If the combination pump comprises **2 Rexroth axial piston pumps** and if this is **supplied pre-assembled**, the two model designations are to be linked with "+".

Order example: A4VSO 125 DR / 30 R - APB25U33 + A4VSO 71 DR / 10 R - AZB25N00

Overview of attachments¹⁾

Through drive – A	4VSO for explosive areas		Attachment for 2nd pump	Through drive
Flange	Coupling for splined shaft	Short code	A4VSO for explosive areas NG (shaft)	Available for NG
Flange, ISO 3019-	-2 (metric)			
125, 4-hole	W32x2x14x9g ²⁾	K/U31	40 (Z)	40 to 250
140, 4-hole	W40x2x18x9g ²⁾	K/U33	71 (Z)	71 to 250
160, 4-hole	W50x2x24x9g ²⁾	U34	125 (Z)	125 to 250
			180 (Z)	180 to 250
224, 4-hole	W60x2x28x9g ²⁾	U35	250 (Z)	250


1) All attachment pumps must correspond to the ATEX classification for the application concerned.

2) In accordance with DIN 5480

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

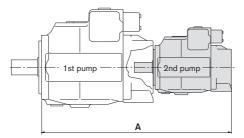
Permissible moment of inertia¹⁾

Based on mounting flange on primary pump

m1, m2 [kg] Pump mass

I1, I2 [mm] Distance from center of gravity

$$T_m = m_1 \cdot l_1 \cdot \frac{1}{102} + m_2 \cdot l_2 \cdot \frac{1}{102}$$
 [Nm]


Size			NG40	NG71	NG125	NG180	NG250
Permissible moment of inertia	T _{m perm.}	Nm	1800	2000	4200	4200	9300
Permissible moment of inertia for dynamic mass acceleration $10 \text{ g} \triangleq 98,1 \text{ m/sec}^2$	T _{m perm.}	Nm	180	200	420	420	930
Mass (A4VSODRA)	m	kg	39	53	88	102	184
Distance from center of gravity	l ₁	mm	120	140	170	180	210

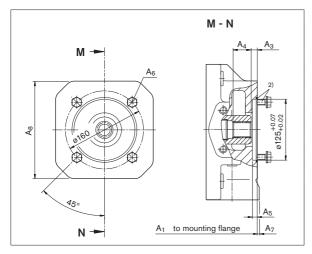
1) All attachment pumps must correspond to the ATEX classification for the application concerned.

Dimensions of combination pumps¹⁾

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

A4VSO for explosive areas + A4VSO for explosive areas

Overall length A

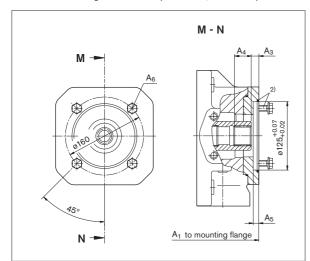

A4VSO for explosive areas		A4VSODRAN00 (2nd pump)						
(1st pump)	NG40	NG71	NG125	NG180	NG250			
NG40	554	-	-	-	-			
NG71	582	611	-	-	-			
NG125	635	664	724	-	-			
NG180	659	688	748	768	-			
NG250	719	748	808	828	904			

1) All attachment pumps must correspond to the ATEX classification for the application concerned.

Through drive dimensions¹⁾

K31 Flange ISO 3019-2 125, 4-hole Coupling in accordance with DIN 5480 N32x2x14x8H

for mounting an A4VSO for explosive areas, NG40 with splined shaft


NG	A ₁	A_3	A_4	A_5	A ₆ 3)
40	288	12.5	40	9	M12
71	316	12.5	33.6	9	M12

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

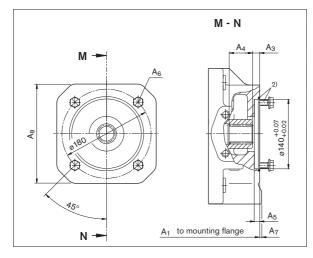
U31 Flange ISO 3019-2 125, 4-hole Coupling in accordance with DIN 5480 N32x2x14x8H

for mounting an A4VSO for explosive areas, NG40 with splined shaft

NG	A ₁	A ₃	A ₄	A_5	A ₆ ³⁾
	369	12.5		9	M12
180	393	12.5	35.6	9	M12
250	453	12.5	38	9	M12

1) All attachment pumps must correspond to the ATEX classification for the application concerned.

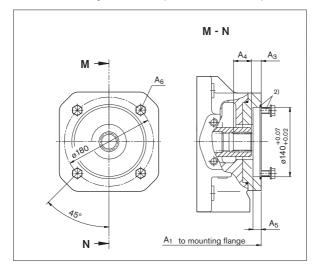
2) Fixing screws and O-ring are included in the delivery contents.


3) Thread according to DIN 13, observe the general instructions on page 32 for the maximum tightening torques.

Through drive dimensions¹⁾

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

K33 Flange ISO 3019-2 140, 4-hole Coupling in accordance with DIN 5480 N40x2x18x8H

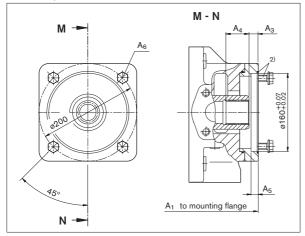

for mounting an A4VSO for explosive areas, NG71 with splined shaft

NG	A ₁	A_3	A ₄	A ₅	A ₆ 3)
71	316	11.5	A ₄ 42.8	9	M12
NG	A7	A ₈			
71	_	_			

U33 Flange ISO 3019-2 140, 4-hole Coupling in accordance with DIN 5480 N40x2x18x8H

for mounting an A4VSO for explosive areas, NG71 with splined shaft

NG	A ₁	A ₃	A 4 43.8	A5	A ₆ ³⁾
125	369	12.5	43.8	9	M12
180	393	12.5	43.8	9	M12
250	453	12.5	48.9	9	M12

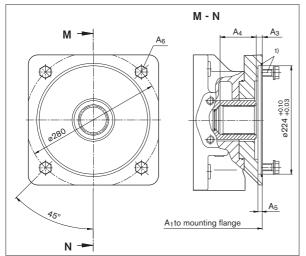

1) All attachment pumps must correspond to the ATEX classification for the application concerned.

- 2) Fixing screws and O-ring are included in the delivery contents.
- 3) Thread according to DIN 13, observe the general instructions on page 32 for the maximum tightening torques.

Through drive dimensions¹⁾

U34 Flange ISO 3019-2 160, 4-hole Coupling in accordance with DIN 5480 N50x2x24x8H

for mounting an A4VSO for explosive areas, NG125 or 180 with splined shaft



NG	A ₁	A ₃	A_4	A ₅	A ₆ 3)
125	369	12.5	51.6	9	M16
180	393	12.5	51.6	9	M16
250	453	12.5	54	9	M16

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

U35 Flange ISO 3019-2 224, 4-hole Coupling in accordance with DIN 5480 N60x2x28x8H

for mounting an A4VSO for explosive areas, NG250 with splined shaft

NG	A ₁	A ₃	A_4	A ₅	A ₆ ³⁾
250	469	12.5	75	9	M20

1) All attachment pumps must correspond to the ATEX classification for the application concerned.

2) Fixing screws and O-ring are included in the delivery contents.

3) Thread according to DIN 13, observe the general instructions on page 32 for the maximum tightening torques.

Notes

Notes

Installation instructions

General

During commissioning and operation, the axial piston unit must be filled with hydraulic fluid and air bled. This is also to be observed following a relatively long standstill as the system may empty via the hydraulic lines.

To achieve favorable noise values, all connecting lines (suction, pressure and case drain ports) are to be decoupled from the tank using flexible elements. Avoid using a check valve in the case drain line. Case drain fluid is to be fed directly to the tank without reducing the cross-sectional area.

For vertical installation (drive shaft up) and for above-tank installation (regardless of the shaft position), bearing flushing is specified for lubricating the front bearing and the shaft seal, see page 5.

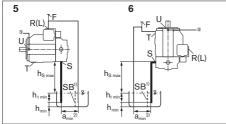
For horizontal installation, the highest available ports T, K₁, K₂, or R(L) is to be used for filling and then as case drain port.

If it is located outside the tank, a minimum pump inlet pressure (suction pressure) of 0.8 bar absolute must be observed.

Installation position

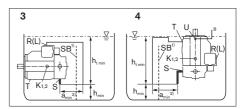
See examples below. Additional installation positions are available upon request.

Recommended installation position: 1


Below-tank installation (standard)

Pump under minimum fluid level in tank.

Above-tank installation


Pump above minimum fluid level of the tank.

 $h_{S max} = 800 \text{ mm}, h_{t min} = 200 \text{ mm}, h_{min} = 100 \text{ mm}$

Tank installation

Pump installed under minimum hydraulic fluid level in tank. The pump is completely below the hydraulic fluid.

- Swashplates (SB) prevent hot case drain fluid from being sucked directly back in again.
- 2) When designing the tank, ensure adequate distance between the suction line and the case drain line. This prevents the heated, return flow from being drawn directly back into the suction line.
- Install bearing flushing. For minimum flushing flow, please refer to page 5.

Installation position	Air bleed	Filling	
1	R(L)	S + R(L)	6
2	Т	S + T	
3	via the highest port R(L)	automatically via the open port R(L), by position below hydraulic fluid level	
4	via the highest port T and bearing flushing U	automatically via the open port T, by position below hydraulic fluid level	
5	F (R(L))	F (R(L))	
6	F (T)	F (T)	

General instructions

- The A4VSO pump for explosive areas is designed to be used in open circuits.
- Project planning, installation and commissioning of the axial piston unit require the involvement of qualified personnel.
- Before using the axial piston unit, please read the corresponding operating instructions completely and thoroughly. If necessary, these can be requested from Rexroth.
- The service line ports and function ports are only designed to accommodate hydraulic lines.
- During and shortly after operation, there is a risk of burns on the axial piston unit and especially on the solenoids. Take appropriate safety measures (e.g. by wearing protective clothing).
- Depending on the operating conditions of the axial piston unit (operating pressure, fluid temperature), the characteristic may shift.
- Pressure ports:

The ports and fixing threads are designed for the specified maximum pressure. The machine or system manufacturer must ensure that the connecting elements and lines correspond to the specified application conditions (pressure, flow, hydraulic fluid, temperature) with the necessary safety factors.

- The data and notes contained herein must be adhered to.
- The following tightening torques apply:
 - Threaded hole of the axial piston unit:

The maximum permissible tightening torques $M_{G\,max}$ are maximum values of the threaded holes and must not be exceeded. For values, see the following table.

- Fittings:

Observe the manufacturer's instruction regarding the tightening torques of the used fittings.

- Fixing screws:

For fixing screws according to DIN 13, we recommend checking the tightening torque individually according to VDI 2230.

- Locking screws:

For the metallic locking screws supplied with the axial piston unit, the required tightening torques of locking screws M_V apply. For values, see the following table.

- The product is not approved as a component for the safety concept of a general machine according to DIN EN ISO 13849.

- Independent of the setting, the system is to be protected against pressure overload.

Ports		Maximum permissible	Required tightening torque of the locking screws My	WAF hexagon socket of
Standard Threaded size		tightening torque of the first of the locking screw threaded holes $M_{G\mbox{ max}}$		the locking screws
DIN 3852	M14 x 1.5	80 Nm	35 Nm	6 mm
	M18 x 1.5	140 Nm	60 Nm	8 mm
	M22 x 1.5	210 Nm	80 Nm	10 mm
	M27 x 2	330 Nm	135 Nm	12 mm
	M33 x 2	540 Nm	225 Nm	17 mm
	M42 x 2	720 Nm	360 Nm	22 mm

 Bosch Rexroth AG

 Hydraulics

 Axial Piston Units

 An den Kelterwiesen 14

 72160 Horb a.N., Germany

 Telephone +49 (0) 74 51 92-0

 Fax +49 (0) 74 51 82 21

 info.brm-ak@boschrexroth.ce

 www.boschrexroth.ce

© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and agring.

Subject to change.

The Drive & Control Company

Bosch Rexroth AG

Zum Eisengießer 1 97816 Lohr, Germany Phone +49(0)9352/18-0 Fax +49(0)9352/18-40 info@boschrexroth.de www.boschrexroth.com

Find your local contact person here: www.boschrexroth.com/contact

Document no.: RE 00112-10 Material no.: R999000311 Versions no.: 2013-12 Replaces: RE 00112-07_2008-11 © Bosch Rexroth AG 2013 Subject to revisions!