

HYDAC INTERNATIONAL Innovative Solutions

Cooling Systems Air Cooled / Liquid Cooled

HYDAC About HYDAC

HYDAC stands for worldwide presence and accessibility to the customer. HYDAC has over 1000 distributors worldwide and more than 40+ wholly owned branches. Our know-how has evolved primarily from solving customers' problems, combined with the extensive experience of the entire HYDAC group.

HYDAC Products

Our product range extends from air to water oil coolers. HYDAC is capable of integrating products into cooler solutions for both industrial and mobile applications.

HYDAC Quality

HYDAC stands for quality and customer satisfaction. We are certified to ISO 9001 and can supply our products with certification if required. To ensure that our products are as innovative as possible, they are developed, manufactured, and tested by qualified personnel using advanced technology.

HYDAC Customer Service

Our internal staff and worldwide distribution network take care of the important matter of customer service. HYDAC values high standards, professional ethics, and mutual respect in all transactions with customers, vendors, and employees. We invest in our relationships by providing expertise, quality, dependability, and accessibility to foster growth and a sense of partnership. Our customer service representatives are committed to serving the customers' needs.

Energy and Environmental Technology

HYDAC Coolers have played a key role in providing innovative developments in hydroelectric, heating, wind, and waste power plants. HYDAC has vast expertise in solvent and waste water processing technologies.

Offshore Shipbuilding and Marine Technology

Maritime technology places special demands on material functionality and reliability. HYDAC products meet these demands due to our high quality and test standards. HYDAC products have been applied under the toughest conditions from drilling rigs to deep sea applications.

Mobile Market

The aim of our engineers has always been to reduce volume and weight, resulting in increased product performance. HYDAC Coolers are compact with high performance components for the Mobile Market, which can be found in construction, forestry, and agricultural equipment.

Industrial Engineering

Since we began, HYDAC has been involved in many industrial engineering applications. Our knowledge and expertise of many industries provides a comprehensive range of versatile hydraulic components. HYDAC offers custom cooling solutions for machine tools, plastic injection molding machines, test equipment, presses, and welding robots. Other industrial applications include: steel and heavy industry, power transmissions, and paper mills.

Process Technology

The core products of HYDAC process technology are coolers, electronics, filters, and filtration systems for the industrial and environmental processing industries. HYDAC products are found in chemical, petrochemical, and plastics industries. Also, paper and dye production, foundries, steel manufacturing, and power plants.

Table of Contents HYDAC

HYDAC Coolers Overview

Advantages
Selection Requirements
Selection Worksheet
OK / OKC / ELD / ELH / SC Series

Combi-Coolers

Combi-Coolers	. 5	7
Selection Worksheet	5	8

Mobile Coolers

Air Cooled	
ELD Series	 3
ELH Series	 9

Competitor Crossover

Wind Energy

Components, Systems, Service

Industrial Coolers

Air Cooled
OKC Series
OK Series
SC Series
Air Cooled Accessories35
Water Cooled
PFC Series
Selection Worksheet 46
Plate Heat Exchangers
HEX Series
H Series
Selection Worksheet

Advantages

The advantages of an off line cooling system are a stable cooling and filtration performance irrespective of variations in flow and duty cycle of the main hydraulic circuit. This allows the cooler to be sized to fit the heat load and not the maximum return flow of the main circuit. A further advantage is that the off-line cooler is completely isolated from surge pressures in the return line that can potentially damage the cooler. Also, maintenance can be performed on the filters without having to shut down the main system.

Selection Requirements

The following parameters need to be known to correctly size a cooler:

- How much heat needs to be removed from the system?
- What is the desired oil temperature?
- What is the supplied water temperature and ambient air temperature?
- What is the flow required?
- What is the desired oil to water flow ratio?
- · What is the viscosity of the oil?

1. Required Flow

As a rule of thumb, the pump should be sized so that it circulates approximately 25 to 30% of the reservoir's capacity. Note: Before sizing the heat exchanger, the flow rate needs to be known.

2. Heat Removed

The main function of the cooler is to transfer heat from the oil into the water. Heat load is generally described in units of HP, kW, or BTU's/Hr being removed. When designing a new system, a good rule of thumb is a cooler should be sized to remove approximately 25 to 30 % of the input HP or kW.

In an existing system with a heat problem and the heat load is not known, then a heat load test needs to be performed. The test is performed by measuring the temperature rise of the oil over a certain period of time. Take this temperature rise and time in minutes and use it in the following formula to determine the kW heat load.

Heat Load $Pv = \text{Temperature rise (°C)} \times \text{Specific Heat (1.88 KJ/Kgk)} \times \text{Density of oil (0.951 Kg/l)} \times \text{Volume (I)}$ Operating time (Minutes) X 60

 $HP = kW \times 1.341$

See example of heat load calculation below.

3. Oil/Water Temperatures

The inlet oil temperature is the desired temperature of the oil in the reservoir. The inlet water temperature is the water temperature entering the cooler unit.

4. Flow Ratio

Maximum capacity of a cooler is achieved when the oil to water ratio is 1:1. This is desirable where the water supply is plentiful, as this will be the smallest, least expensive cooler. As the ratio increases, the cooling capacity decreases and a larger cooler will be required. This option costs more initially, but will save on water usage.

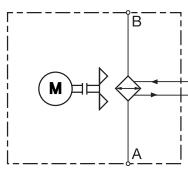
Heat Load Calculation Example

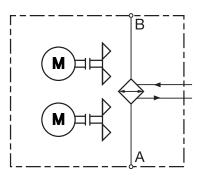
Trout Louis Gardana			
Pv (Heat Load)	=	kW	$PV = \frac{\Delta T \times SHoil \times SGoil \times V}{R} = kW$
ΔT (Temperature Rise)	=	34.4°C (93.9°F)	t x 60
SH (Specific Heat of oil)	=	1.88 KJ/Kgk	$Pv = \frac{34.4 \times 1.88 \times 0.915 \times 380}{100000000000000000000000000000000000$
SG (Specific Gravity of oil)	=	0.915 Kg/l	45 x 60
V (Tank Volume)	=	380 I (100 Gal)	$HP = 8.32 \times 1.341 = 11.16$
t (Time in Minutes)	=	45 min.	Heat to be removed = 11.16 HP

OK / OKC / ELD / ELH / SC

Technical Data Inquiry Sheet

Internal Use Only	
Project Responsibility	
Date	


Distributor:	Company Name:
Distributor Contact:	Customer Contact:
Distributor Phone:	Customer Phone:
Distributor Fax:	Customer Fax:
Distributor E-mail:	Customer E-mail:
The following basic informat	tion is needed for the proper sizing and ordering of a cooler unit.
Critical Sizing Data	
Heat Load To Be Removed: (HP)	
Oil Type: (ISO VG or SAE grade)	
Oil Flow: (gpm)	
Desired Oil Temperature: (°F)	
Ambient Temperature: (°F)	
Inlet Water Temperature: (°F)	
Dawer Data	
AC DC 115V1PH 12V 24V 24V	
115V1PH 12V	


ELD Series Air Cooled Oil Coolers for Mobile Applications

Hydraulic Symbol Sizes 1 - 4.5

Sizes 5 - 6

Description

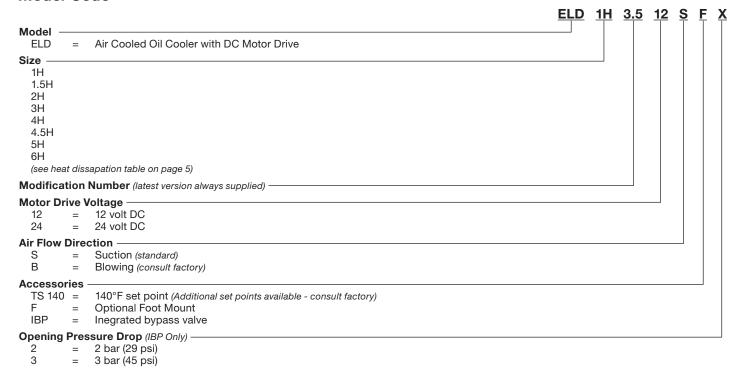
These coolers use a combination of high performance cooling elements combined long life DC electrical powered fans to give long trouble free operation in mobile hydraulic applications. The compact design allows the coolers to fit most equipment and provide the highest cooling performance in heat dissipation while minimizing space required.

Features

- Most coolers are designed with the inlet/outlet ports facing toward the back to help reduce fittings
- Available with internal pressure bypass
- All units feature a built in thermostat port
- 12 and 24 volt DC fans
- Up to 50 HP cooling capacity
- Rated flows up to 45 gpm
- Motor lifetimes up to 8,000 hours

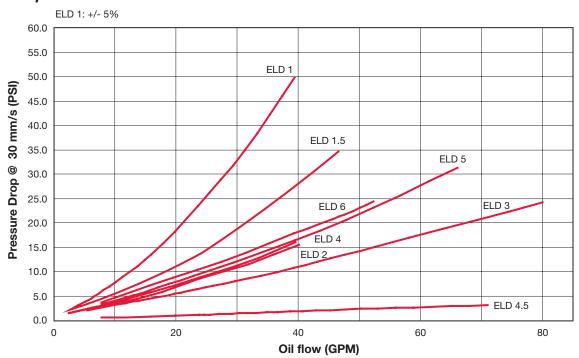
Applications

Automotive



Commercial Municipal

Model Code



ELD Series

Heat Dissapation

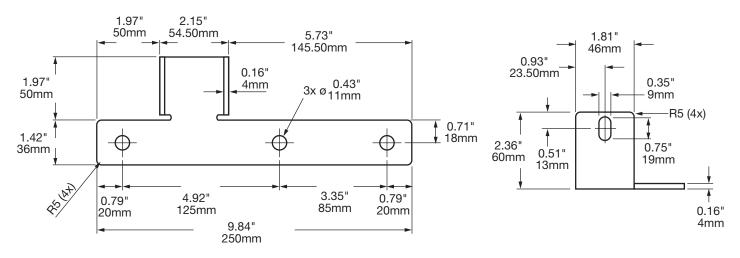
Pressure Drop

*Values measured at T = 72°F, may vary at lower dT values

*Pressure Drop Curves above using fluid with a viscosity of 30 mm2/s. For other viscosities the result must be multiplied by the K Factors below.

Viscosity (SSU)	46	70	102	150	213	250	315	464	695
Viscosity (mm²/s)	10	15	22	32	46	54	68	100	150
K Factor	0.5	0.65	0.77	1	1.3	1.52	1.9	2.8	5.3

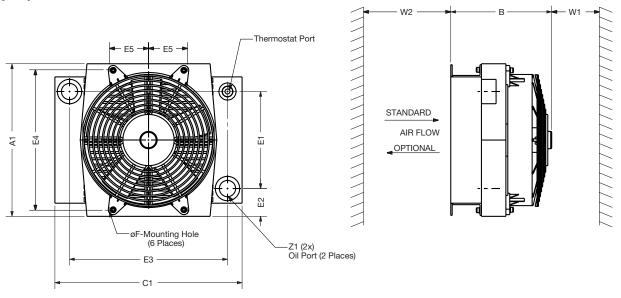
Engineering Data


Size	Motor Capacity (kW)	Amp Draw	Recommend- ed Fuse (A)	Protection Class IP	Fan Diameter (mm)	Noise Level dBa* (1 meter)	Weight (lbs.)
ELD 1 12 volt / 24 volt	0.11 / 0.11	8 / 3.2	15 / 7.5	67	190	73	8.8
ELD 1.5 12 volt / 24 volt	0.11 / 0.11	8 / 3.2	15 / 7.5	67	190	73	8.8
ELD 2 12 volt / 24 volt	0.16 / 0.16	9.4 / 5.2	20 / 15	67	255	74	20.688
ELD 3 12 volt / 24 volt	0.26 / 0.26	17.5 / 8.0	25 / 20	67	305	79	24.2
ELD 4 12 volt / 24 volt	0.35 / 0.35	22.5 / 10.5	30 / 20	67	385	76	34.98
ELD 4.5 12 volt / 24 volt	0.35 / 0.35	22.5 / 10.5	30 / 20	67	385	76	48.4
ELD 5 12 volt / 24 volt	0.53 / 0.53	35.0 / 16.0	2x25 / 2x20	67	305	80	66.66
ELD 6 12 volt / 24 volt	0.69 / 0.69	45.0 / 21.0	2x30 / 2x20	67	385	77	80.52

^{*}The noise levels are only a guide as acoustic properties vary and depend on the characteristics of the room, connections, viscosity, and resonance.

Construction

Housing	Welded Steel
Heat Exchanger	Aluminum
Fan	Plastic
Maximum Viscosity	2000 cst.
Maximum Oil Temperature	266°F
Maximum Operating Pressure	230 psi
Mounting Position	All positions
Fan Rotation	See arrow on fan
Fluids	Mineral Oil to Din 51524 Part 1 and 2


Accessories Foot Bracket - ELD 2-6 & ELH 2-5

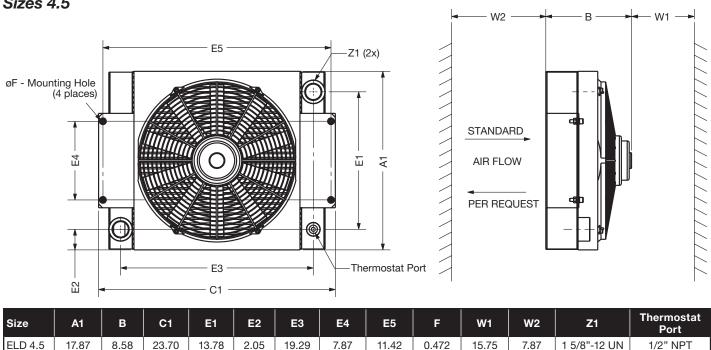
Dimensions are for general information only, all critical dimensions should be verified by requesting a certified print. Dimensions are in inches/(mm).


ELD Series

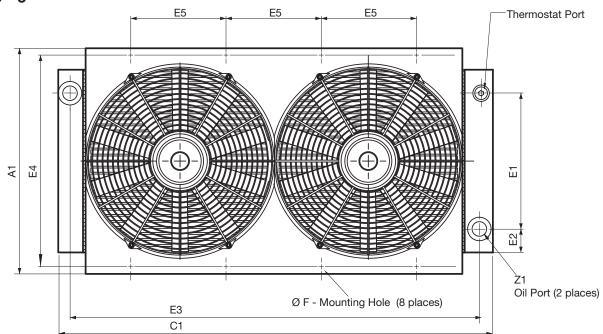
Dimensions Sizes 1 - 4

Size	A1	В	C1	E1	E2	E3	E4	E 5	F	W1	W2	Z 1	Thermostat Port
ELD 1	9.65	4.72	11.81	4.92	2.36	9.84	8.86	3.54	0.35	7.87	3.94	1 1/16"-12 UN	1/2" NPT
ELD 2	12.32	8.27	15.12	7.83	2.24	12.76	11.34	3.15	0.55 x 0.4	9.84	5.91	1 5/16"-12 UN	1/2" NPT
ELD 3	14.02	8.27	16.54	9.06	2.48	14.57	12.95	3.94	0.55 x 0.4	11.81	7.09	1 5/16"-12 UN	1/2" NPT
ELD 4	17.72	7.83	19.69	11.38	3.17	17.72	16.57	5.91	0.63 x 0.4	15.75	7.87	1 5/16"-12 UN	1/2" NPT

Size 1.5


Size	A1	В	C1	E1	E2	E 3	E4	E 5	E 6	E 7	F	W1	W2	Z 1	Thermostat Port
ELD 1.5	8.07	5.30	11.81	1.22	1.54	10.04	4.76	1.57	0.89	0.49	5/16"-18 UNC	0.31	0.16	1 1/16"-12 UN	1/2" NPT

Dimensions are for general information only, all critical dimensions should be verified by requesting a certified print.

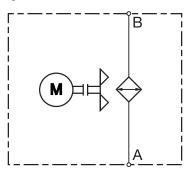


ELD Series

Dimensions Sizes 4.5

Sizes 5 - 6

Size	A1	В	C1	E1	E2	E3	E4	E 5	F	W1	W2	Z 1	Thermostat Port
ELD 5	18.70	9.25	31.89	12.64	3.03	29.53	17.72	6.69	0.63 x 0.35	15.75	7.87	1 5/8"-12 UN	1/2" NPT
ELD 6	20.94	8.86	37.40	14.69	3.11	35.04	19.80	7.87	0.71 x 0.35	19.69	9.84	1 5/8"-12 UN	1/2" NPT


Dimensions are for general information only, all critical dimensions should be verified by requesting a certified print. Dimensions are in inches.

ELH SeriesAir Cooled Oil Coolers for Mobile Applications

Hydraulic Symbol

Description

These coolers use a combination of high performance cooling elements combined with high capacity hydraulic drive fan to give long trouble free operation in mobile hydraulic applications. The compact design allows the coolers to fit most equipment and provide the highest cooling performance in heat dissipation while minimizing space required.

Features

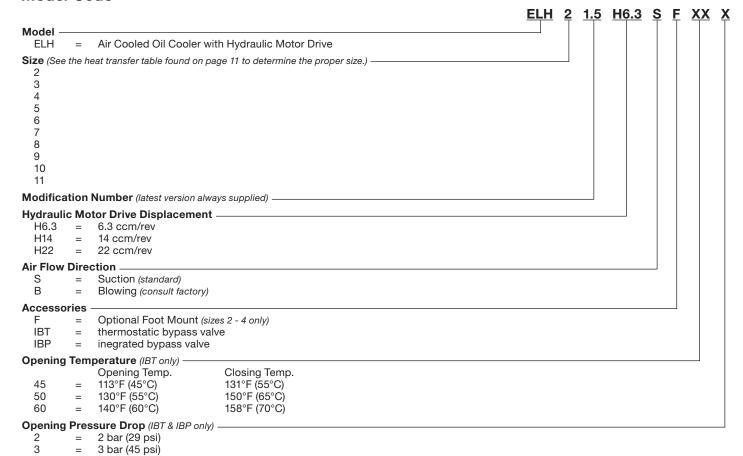
- ELD 2 5 coolers are designed with the inlet/outlet ports facing toward the back to help reduce fittings
- Available with internal pressure and temperature bypass
- All units feature a built in thermostat port
- Up to 180 HP cooling capacity
- Rated flows up to 90 gpm
- Hydraulic motor drive offers more cooling in a smaller package
- Optional thermal speed control and pressure relief
 (Consult Factory)

Applications

Agricultural

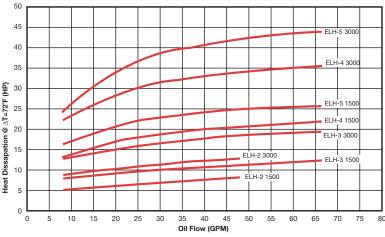
Automotiv

Construction

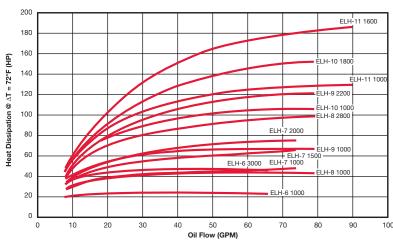


Deile

Commercial Augicinal

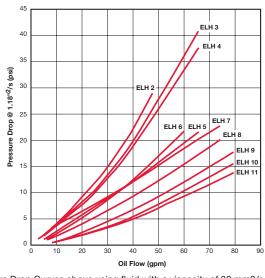


Model Code



ELH Series

Heat Dissapation Sizes 2 - 5



Sizes 6 - 11

Pressure Drops

Pressure differential Δp depending on flow rate Q and the viscosity of the oil.

*Pressure Drop Curves above using fluid with a viscosity of 30 mm2/s. For other viscosities the result must be multiplied by the K Factors below.

Motor Flow Calculation

The motor oil flow Q can be calculated at nominal motor oil operating pressure as follows

$$Q = \frac{Vg \times n}{103 \times nvol} = I/min$$

Vg = motor displacement (cm3/r)

n = fan speed (RPM)

nvol = volumetric efficiency = 90% at motor oil operating

pressure of 150 bar (2175 psi)

3.85 liter = 1 gallon

Viscosity (SSU)	46	70	102	150	213	250	315	464	695
Viscosity (mm²/s)	10	15	22	32	46	54	68	100	150
K Factor	0.5	0.65	0.77	1	1.3	1.52	1.9	2.8	5.3

Engineering Data

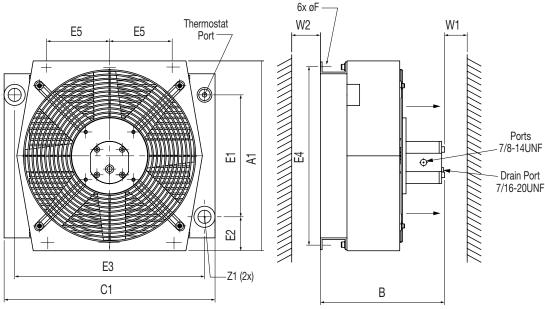
Model	Motor Displacement (cm3/rev)	Operating Speed Range (rpm)	∆p of motor @ max RPM @ 34 cts (psi)	Motor oil flow @ 1500 rpm (gpm)	Motor Max. Pressure (psi)	Continuous Motor Operating Pressure (psi)	Noise level @ 1000 RPM (dBa) (1 Meter)*	Weight (lbs.)
ELH 2	6.3 / 14 / 22	1000 / 3000	290	2.8 / 6 / 9.7	4350 / 4350 / 2900	3625 / 3625 / 2175	69	24.3
ELH 3	6.3 / 14 / 22	1000 / 3000	290	2.8 / 6 / 9.7	4350 / 4350 / 2900	3625 / 3625 / 2175	69	28.7
ELH 4	6.3 / 14 / 22	1000 / 3000	725 / 435 / 290	2.8 / 6 / 9.7	4350 / 4350 / 2900	3625 / 3625 / 2175	70	40.0
ELH 5	6.3 / 14 / 22	1000 / 3000	1015 / 435 / 290	2.8 / 6 / 9.7	4350 / 4350 / 2900	3625 / 3625 / 2175	70	53.0
ELH 6	6.3 / 14 / 22	1000 / 3000	2175 / 1015 / 725	2.8 / 6 / 9.7	4350 / 4350 / 2900	3625 / 3625 / 2175	70	94.6
ELH 7	14 / 22	1000 / 3000	TBA	6 / 9.7	4350 / 2900	3625 / 2175	77	TBA
ELH 8	6.3 / 14 / 22	1000 / 2800	2900 / 1160 / 870	2.8 / 6 / 9.7	4350 / 4350 / 2900	3625 / 3625 / 2175	76	147.7
ELH 9	14 / 22	1000 / 2200	1885 / 1305	6 / 9.7	4350 / 2900	3625 / 2175	78	187.4
ELH 10	14 / 22	1000 / 1800	3335 / 1885	6 / 9.7	4350 / 2900	3625 / 2175	82	242.5
ELH 11	14 / 22	1000 / 1600	3625 / 2175	6 / 9.7	4350 / 2900	3625 / 2175	83	341.7

^{*}The noise levels are only a guide as acoustic properties vary and depend on the characteristics of the room, connections, viscosity, and resonance.

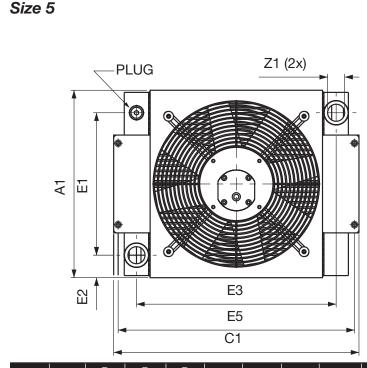
Construction

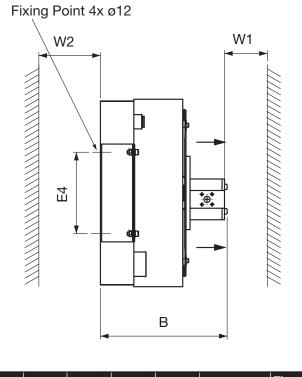
Housing	Welded Steel
Heat Exchanger	Aluminum
Fan	Plastic
Motor	Aluminum housing, Steel gears and shaft

Cooler Specifications


Maximum Viscosity	2000 cst.
Maximum Oil Temperature	266 F
Maximum Operating Pressure	230 psi
Mounting Position	All positions
Fluids	Mineral Oil to Din 51524 (for other fluids please consult factory)

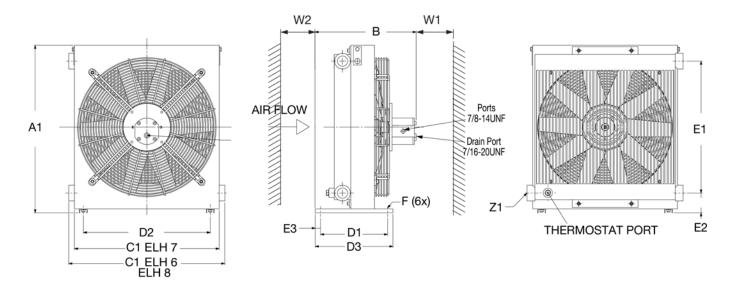
Hydraulic Motor Specifications


Fan Rotation	See arrow on housing
Fluids	Mineral Oil to Din 51524 DIN 51511
Filtration	ISO/DIS 4406 Code 19/16- Filtration grade B25>75
Maximum Outlet Side Pressure	1740 psi
Maximum Drian Pressure	29 psi
Fluid Viscosity Range	10 - 600 cst. (recommended 30 - 45 cst.)
Fluid Temperature Range	Up to 194° F

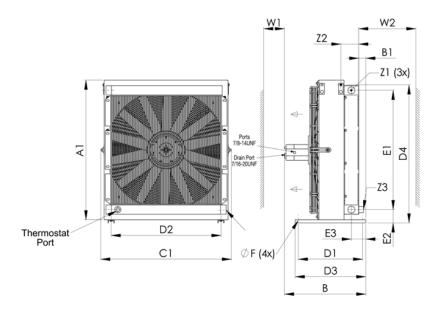

ELH Series

Dimensions Sizes 2 - 4

Size	A1	В 6.3 сс	B 14 cc	В 22 сс	C1	E1	E2	E3	E4	E 5	F	W1	W2	Z 1	Thermostat Port
ELH 2	12.32	10.63	11.14	11.70	15.12	7.83	2.20	12.76	11.34	3.15	0.55 x 0.4	7.87	5.91	1-5/16"-12 UN	1/2" NPT
ELH 3	14.02	10.99	11.49	12.05	16.54	9.06	2.48	14.57	12.95	3.94	0.55 x 0.4	9.84	7.09	1-5/16"-12 UN	1/2" NPT
ELH 4	17.72	11.56	12.06	12.62	19.69	11.38	3.17	17.72	16.57	5.91	0.49 x 0.39	13.78	7.87	1-5/16"-12 UN	1/2" NPT


Size	A1	В 6.3 сс	В 14 сс	В 22 сс	C1	E1	E2	E 3	E4	E 5	F	W1	W2	Z 1	Thermostat Port
ELH 5	18.11	12.25	12.73	13.29	23.70	13.78	2.17	19.29	7.87	22.83	0.47	15.75	9.84	1-5/8"-12 UN	1/2" NPT

Dimensions are for general information only, all critical dimensions should be verified by requesting a certified print. Dimensions are in inches.

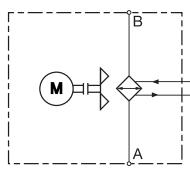

ELH Series

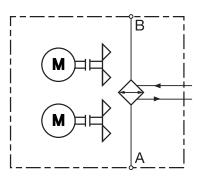
Dimensions Sizes 6 - 8

Size	A1	В 6.3 сс	В 14 сс	В 22 сс	C1	D1	D2	D3	E1	E2	E 3	F	W1	W2	Z 1	Thermostat Port
ELH 6	25.12	14.87	15.37	15.93	23.54	10.04	18.98	11.61	19.69	3.07	0.79	0.35	39.37	23.62	1-5/8"-12 UN	1/2" NPT
ELH 7	28.58	-	17.50	18.06	27.80	16.14	22.05	17.72	23.62	2.87	0.79	0.35	42.00	25.00	1-5/8"-12 (F)	1/2" NPT
ELH 8	30.08	15.06	15.57	16.13	27.64	10.04	18.98	11.61	24.74	3.06	0.79	0.35	43.31	27.56	1-5/8"-12 UN	1/2" NPT

Sizes 9 - 11

Size	A1	В 6.3 сс	В 14 сс	В 22 сс	C1	D1	D2	D3	E1	E2	E 3	F	W1	W2	Z1	Thermostat Port
ELH 9	35.83	-	19.88	20.44	32.56	16.14	27.56	17.72	29.92	3.35	3.62	0.35	47.24	35.43	1-7/8"-12 UN	1/2" NPT
ELH 10	41.73	-	20.72	21.28	38.28	18.11	27.56	19.69	35.83	3.54	3.66	0.35	55.12	35.43	1-7/8"-12 UN	1/2" NPT
ELH 11	46.40	-	21.49	22.05	42.91	18.11	27.56	19.69	41.73	2.95	3.66	0.35	62.99	39.37	1-7/8"-12 UN	1/2" NPT


Dimensions are for general information only, all critical dimensions should be verified by requesting a certified print. Dimensions are in inches.


OKC Series Air Cooled Oil Coolers

Hydraulic Symbol Sizes 1 - 5

Sizes 6 - 7

Description

These coolers use a combination of high performance cooling elements and high capacity, compact AC Electric powered fans to give long trouble free operation in hydraulic applications.

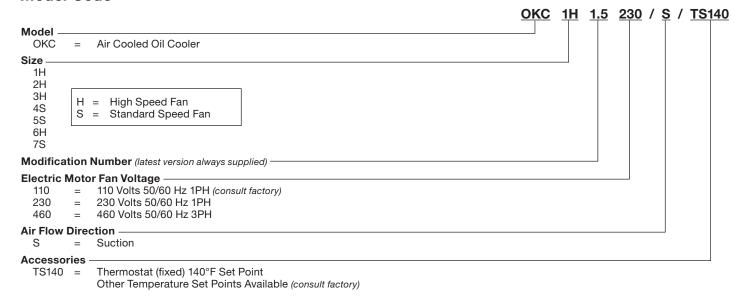
The compact design allows the coolers to fit most equipment and provide the highest cooling performance in heat dissipation while minimizing space required.

Features

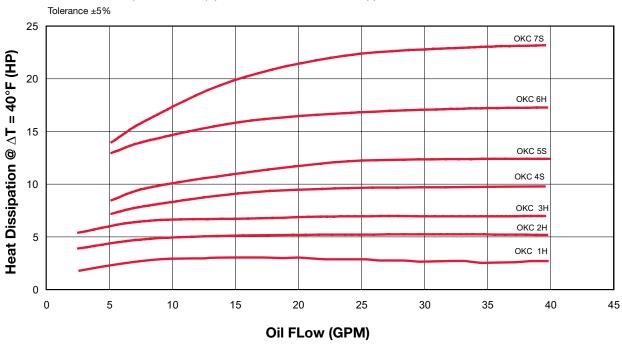
- · Cooling Range: up to 23 HP
- AC Motors in 230/460 Volt 50/60 Hz
- Hydraulic Pressure: 230 psi Dynamic

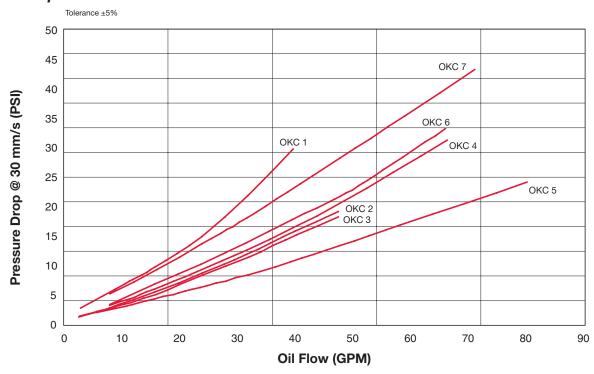
Applications

Pulp & Paper


Power Generation

Steel / Heavy Industry


Model Code


OKC Series

Heat Dissipation

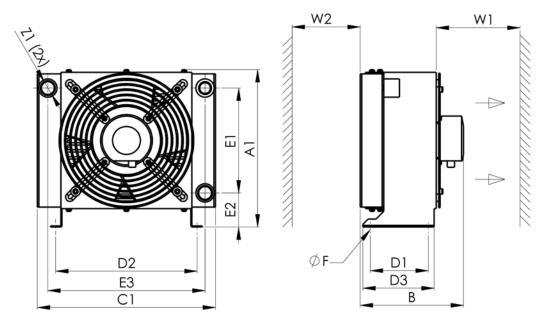
Cooling capacity depending on oil flow and the temperature differential ΔT between the oil inlet and air inlet. For calculations with low ΔT values (i.e. below 20°F), please contact our technical support.

Pressure Drop

*Pressure Drop Curves above using fluid with a viscosity of 30 mm2/s. For other viscosities the result must be multiplied by the K Factors below.

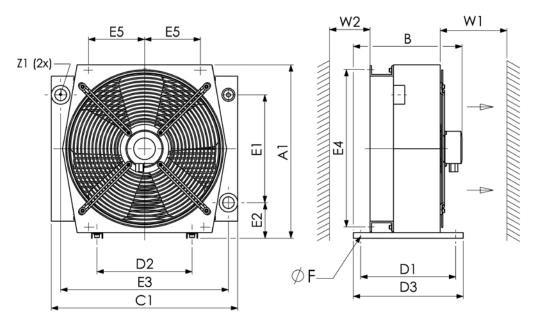
Viscosity (mm2/s)	10	15	22	32	46	54	68	100	150
K Factor	0.5	0.65	0.77	1	1.3	1.52	1.9	2.8	5.3

Engineering Data


Size	Voltage (V)	Amp Draw	Speed @ 60 Hz (rpm)	Noise Level dBa* (1 meter)	Max. Operating Pres. (psi)	Max. Oil Temperature (°F)	Max. Viscosity (mm2/s)	Weight (lbs.)
OKC 1H	230 / 460	0.52 / 0.25	3105 / 2990	71	230	266	2000	20
OKC 2H	230 / 460	0.52 / 0.30	2990 / 2875	71	230	266	2000	27
OKC 3H	230 / 460	0.74 / 0.41	2990 / 2875	75	230	266	2000	32
OKC 4S	230 / 460	0.91 / 0.50	1610 / 1887	69	230	266	2000	47
OKC 5S	230 / 460	0.91 / 0.50	1610 / 1887	72	230	266	2000	62
OKC 6H	230 / 460	0.74 / 0.41	2990 / 2875	75	230	266	2000	86
OKC 7S	230 / 460	0.91 / 0.50	1610 / 1887	71	230	266	2000	99

Construction

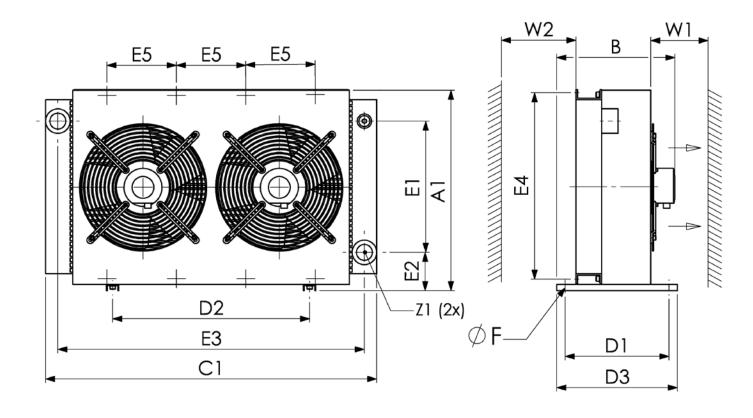
- Electrical connection box is included
- Capacitor is supplied with the cooler and mounted in the connection box
- All motor with IP55 have protection class F
- All mounting positions possible
- For direction of rotation see arrow on cooler housing
- Cooling Fluid: Mineral oil to DIN 51524


OKC Series

Dimensions Sizes 1

Size	A1	В	C1	D1	D2	D3	E1	E2	E3	W1	W2	Z1	F (6xø)	Plug
OKC 1	11.81	8.07	13.39	4.33	10.63	5.35	7.94	2.48	11.81	7.87	2.76	1 1/16" -12 UNF	8.33	1/2" NPT (F)

Sizes 2 - 5


Size	A 1	В	C1	D1	D2	D3	E1	E2	E3	E4	E 5	W1	W2	Z 1	F (4xø)	Plug
OKC 2	12.91	11.42	15.12	10.04	6.30	11.61	7.87	2.80	12.75	11.34	3.15	9.84	5.91	1 5/16" -12 UNF	0.35	1/2" NPT (F)
OKC 3	14.61	11.30	16.54	10.04	9.45	11.61	9.06	3.07	14.57	12.95	3.94	11.81	7.09	1 5/16" -12 UNF	0.35	1/2" NPT (F)
OKC 4	18.31	11.50	19.69	10.04	10.04	11.61	11.38	3.76	17.72	16.57	5.91	15.75	7.87	2 5/16" -12 UNF	0.35	1/2" NPT (F)
OKC 5	18.70	12.05	23.70	10.04	10.04	11.61	13.76	2.75	19.29	7.87	22.83	15.75	9.84	1 5/8" -12 UNF	0.35	1/2" NPT (F)

Dimensions are for general information only, all critical dimensions should be verified by requesting a certified print. Dimensions are in inches.

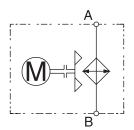
OKC Series

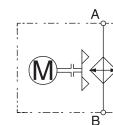
Dimensions Sizes 6 - 7

Size	A 1	В	C1	D1	D2	D3	E1	E2	E 3	E 4	E 5	W1	W2	Z 1	F (4xø)	Plug
OKC 6	19.49	11.38	31.89	10.04	18.98	11.61	12.68	3.70	29.53	17.72	6.69	15.75	7.87	1 5/8" -12 UNF	0.35	1/2" NPT (F)
OKC 7	21.54	11.38	37.40	10.04	18.98	11.61	14.69	3.72	35.04	19.80	7.87	19.80	9.84	1 5/8" -12 UNF	0.35	1/2" NPT (F)

Dimensions are for general information only, all critical dimensions should be verified by requesting a certified print. Dimensions are in inches.

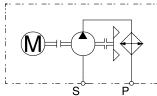
OK Series Air Cooled Oil Coolers


Description

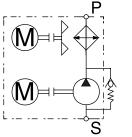

The OK Series cooler design uses a axial fan assembly which draws air through the cooler. This combination offers excellent cooling capacity with low noise.

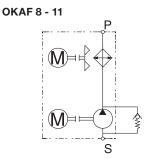
Features

- High efficient plate and fin style heat exchangers
- Externally mounted heat exchangers for easy maintenance and
- Modular pump and filter options for a plug and play fluid conditioning system
- Available with HYDAC MF and LPF series filters
- Accessories Include: Thermostats (adjustable and fixed), Integrated Thermostatic Bypass Valves, and Bypass Valves
- Up to 100 HP cooling capacity
- Packaged systems with pump flows ranging from 8.45 gpm to 47.5 gpm
- Maximum flows (w/o pump) up to 90 gpm


Hydraulic Symbol

OKAF 4 - 6


OKF 3-11



OKA 4 - 6

OKA 8 - 11

Applications

Gearboxes

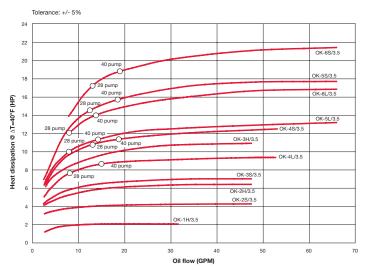
Power Generation

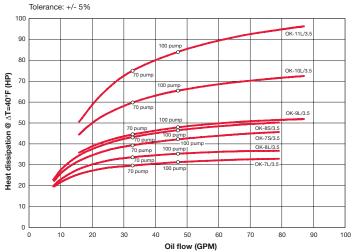
Pulp & Paper

Railways

Shipbuilding

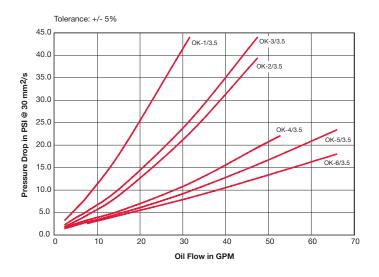
Steel / Heavy Industry

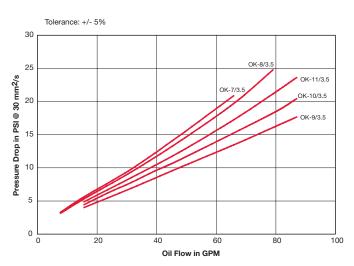



Model Code

	OK 1H 3.5 A 28 MF95 3 B TR1 XX X
Model OK = Basic Cooler OKF = Cooler with filter (sizes 3-11 only) OKA = Cooler with circulator pump (sizes 4-11 only) OKAF = Cooler with circulator pump and filter (sizes 4-11 only) Cooler Size 1H, 2H, 2S, 3H, 3S, 4L, 4S, 5L, 5S 6L, 6S, 7L, 7S, 8L, 8S, 9L, 10L, 11L Note: L = 1200 RPM, S = 1800 RPM, H = 3600 RPM (See the heat transfer table found on page 23 to determine the proper size.)	
Modification Number (latest version always supplied)	
Motor —	
A = 220 volt-1ph (size 1H only) B = 230/460 volt-3 ph (standard) (sizes 2-11 only) C 575 volt-3 ph (optional - contact factory)	
Pump (omit) = No Pump for OK/OKF models 28 = 28 ccm/rev, L = 8.4 gpm, S = 12.75 gpm (sizes 4L, 4S, 5L, 5S, 6L, 6S only) 40 = 40 ccm/rev, L = 12 gpm, S = 18.5 gpm (sizes 4L, 4S, 5L, 5S, 6L, 6S only) 70 = 70 ccm/rev, L/S = 34.3 gpm (sizes 7L, 7S, 8L, 8S, 9L, 10L, 11L only) 100 = 100 ccm/rev, L/S = 47.5 gpm (sizes 7L, 7S, 8L, 8S, 9L, 10L, 11L only)	
Filter Type (omit) = No filter MF95 = Spin-on 25 rated gpm MF190 = Spin-on 30 rated gpm MF195 = Spin-on 60 rated gpm LPF160 = cartridge filter 43 rated gpm LPF240 = cartridge filter 63 rated gpm LPF280 = cartridge filter 73 rated gpm Note: Other return line filters are available upon request. Consult the HYDAC Hydraulic & Lubo	e Oil Filters catalog for special fluids.
Micron Rating (omit) = No filter / OK and OKA models 3 = 3 micron, Absolute 5 = 5 micron, Absolute 10 = 10 micron, Absolute 20 = 20 micron, Absolute	
Filter Indicator (omit) = No filter B = Visual C = Electrical (AC/DC) (LPF filters only) D24 = Visual (lamp) and Electrical (switch) D115 = Visual (lamp) and Electrical (switch) D230 = Visual (lamp) and Electrical (switch) (LPF filters only)	nge for light
Accessories —	
(omit) = None TR1 = Reservoir Thermostat, adjustable 32° to 200°F AITR = Inline Thermostat, adjustable 32° to 200°F TS-120 = Inline Thermostat, fixed 120°F TS-140 = Inline Thermostat, fixed 140°F TS-160 = Inline Thermostat, fixed 160°F IBT = Thermostatic bypass valve IBP = Inegrated bypass valve	
Opening Temperature (IBT only)	
Opening Temp. Closing Temp 45 = 113°F (45°C) 131°F (55°C) 50 = 130°F (55°C) 150°F (65°C) 60 = 140°F (60°C) 158°F (70°C)	
Opening Pressure Drop (IBT & IBP only) 2 = 2 bar (29 psi) 3 = 3 bar (45 psi)	

OK Series


Cooling Capacities Sizes 1 - 6 Sizes 7 - 11



Pressure Drops:

Pressure differential Δp depending on flow rate Q and the viscosity of the oil. Graph uses oil viscosity of 30mm2/s.

*Pressure Drop Curves above using fluid with a viscosity of 30 mm2/s. For other viscosities the result must be multiplied by the K Factors below.

Viscosity (SSU)	46	70	102	150	213	250	315	464	695
Viscosity (mm²/s)	10	15	22	32	46	54	68	100	150
K Factor	0.5	0.65	0.77	1	1.3	1.52	1.9	2.8	5.3

Engineering Data

General

Construction	Hausing	Welded steel housing, steel filter bracket, steel legs, steel blower wheel
Construction	Housing	
	Heat Exchanger	Aluminum
	Motors	TEFC, IEC frame, B5 flange
	Pump	Aluminum housing, steel inner pump ring, steel rotor, and steel vanes
Mounting Position		Horizontal, motor shaft
Maximum Pressure	w/o pump	230 psi (16 bar) Dynamic 290 psi (20 bar) Static
	with pump	OKA 4-6: 90 psi (6 bar)*
		OKA 7-11: 145 psi (10 bar)
Pump Rated Suction Pressure		11.8" Hg (-0.4 bar) to 44 psi (3 bar)
Fluids		Mineral oil to DIN 51524 Part 1 and 2
		Permissable contamination < NAS 12
Max Viscosity	w/o pump	2000 cst
	w/ pump	180cst
Ambient Temperature		50° - 104° F (10° - 40°C)
Maximum Oil Temperature	w/o pump	266° F (130°C)
	with pump	176° F (80°C)
Air Flow Direction		Pulled across heat exchanger

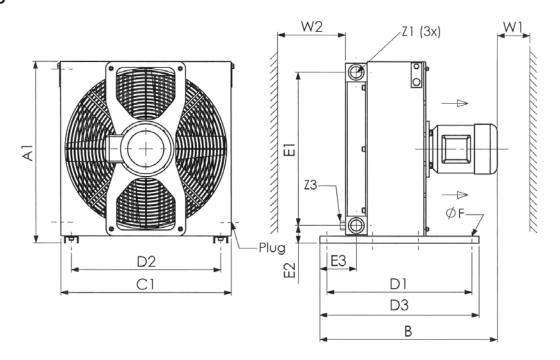
^{*}Note: Sizes OKA-4-6 do not include relief valve. Pressures higher than 90 psi (measured at pump outlet) will result in motor overload conditions Sizes OKA-8-11 come with a 145 psi relief valve built into the pump.

Specifications


Models	Set Up	Maximum Oil	Pump Displaceme	•	Noise	Motor Sp	ecifications	Weight
	001 0 p	Flow gpm	Level	gpm	dBa*1	Kw	RPM	lbs.
OK 1H	fan	26			60	0.21	3450	15
OK 2S	fan	40			64	0.29	1800	29
OK 2H	fan	40			80	0.21	3450	29
OK 3S, OKF 3S	fan	40			66	0.63	1725	37
OK 3H, OKF 3H	fan	40			85	0.29	3450	37
OK 4L, OKF 4L	fan	40			63	1.27	1160	68
OKA 4L, OKAF 4L	fan / pump	-	Code 28 - 8.45	Code 40 - 12	68	1.30	1160	75
OK 4S, OKF 4S	fan	_			72	0.43	1725	68
OKA 4S, OKAF 4S	fan / pump	_	Code 28 - 12.75	Code 40 - 18.5	75	2.07	1725	91
OK 5L, OKF 5L	fan	60			72	0.43	1160	99
OKA 5L, OKAF 5L	fan / pump		Code 28 - 8.45	Code 40 - 12	75	1.27	1160	106
OK 5S, OKF 5S fan	60				79	1.27	1725	99
OKA 5S, OKAF 5S	fan / pump		Code 28 - 12.75	Code 40 - 18.5	81	2.07	1725	106
OK 6L, OKF 6L	fan	60			72	0.43	1160	110
OKA 6L, OKAF 6L	fan / pump		Code 28 - 8.45	Code 40 - 12	77	1.27	1160	126
OK 6S, OKF 6S	fan	60			79	1.27	1725	119
OKA 6S, OKAF 6S	fan / pump	_	Code 28 - 12.75	Code 40 - 18.5	82	2.07	1725	126
OK 7L, OKF 7L	fan	74			80	1.27	1160	134
		_	Code 70 - 34.3*	Code 100 - 47.5	84	4.60	1725	107
OKA 7L, OKAF 7L	pump fan	_				1.30	1160	197
OK 7S, OKF 7S	fan	74			85	3.45	1725	153
01/4 70 01/45 70			Code 70 - 34.3*	Code 100 - 47.5	87	4.60	1725	197
OKA 7S, OKAF 7S	pump fan	_				3.45	1725	
OK 8L, OKF 8L	fan	74			80	1.27	1160	150
	numm fan		Code 70 - 34.3*	Code 100 - 47.5	84	4.60	1725	107
OKA 8L, OKAF 8L	pump fan	_				1.27	1160	197
OK-8S, OKF-8S	fan	74			85	3.45	1725	153
OKA 90 OKAE 90	numn fan		Code 70 - 34.3*	Code 100 - 47.5	87	4.60	1725	107
OKA-8S, OKAF-8S	pump fan	_				3.45		197
OK 9L, OKF 9L	fan	79	Code 70 - 34.3*	Code 100 - 47.5	80	1.27	1160	275
			Code 70 - 34.3*	Code 100 - 47.5	86	4.60	1725	330
OKA 9L, OKAF 9L	pump fan	_				1.27	1160	330
OK 10L, OKF 10L	fan	79			82	2.50	1160	315
OKA 101 OKAE 101	numn for		Code 70 - 34.3*	Code 100 - 47.5	86	4.60	1725	370
OKA 10L, OKAF 10L	pump fan	-				2.50	1160	3/0
OK 11L, OKF 11L	fan	79			83	3.45	1160	375
	pump		Code 70 - 34.3*	Code 100 - 47.5	86	4.60	1725	435
OKA 11L, OKAF 11L	fan	_				3.45	1160	435

^{*}The noise levels are only a guide as acoustic properties depend on the characteristics of the room, connections, viscosity and resonance.

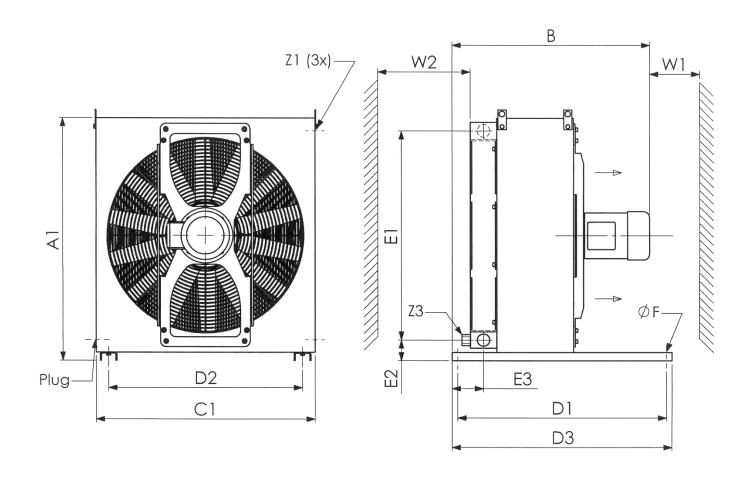
1) 3 Phase Motor


OK Series

Dimensions Size 1

Size	A1	C1	C2	D	D2	D3	E1	E2	E3	F	W1	W2	Z 1	Z 3
OK 1H	13.98	7.87	9.29	10.04	5.91	11.61	11.38	1.59	3.44	0.35	5.91	3.94	1 1/16"-12 (F)	-

Sizes 2 - 6

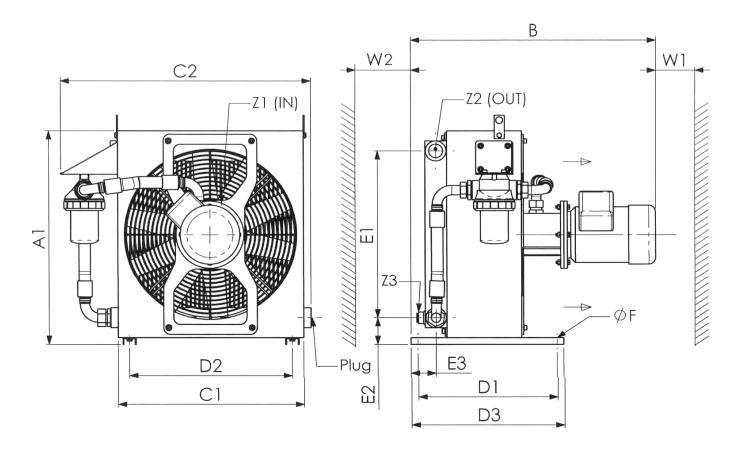

Size	A1	В	C1	D	D2	D3	E1	E2	E 3	F	W1	W2	Z 1	Z 3
OK 2S, H	13.98	15.79	12.99	10.04	6.30	11.61	11.38	1.59	2.28	0.35	19.69	7.87	1 1/16"-12 (F)	-
OK 3S, H	17.91	16.50	14.96	10.04	11.42	11.61	15.31	1.61	2.28	0.35	31.50	11.81	1 1/16"-12 (F)	-
OK 4L, S	20.47	20.75	19.09	16.14	16.73	17.72	17.28	1.99	4.07	0.35	47.24	15.75	1 5/16"-12 (F)	-
OK 5L, S	22.13	22.83	21.34	16.14	18.98	17.72	17.28	2.81	3.70	0.35	59.06	19.69	1 5/16"-12 (F)	-
OK6 L, S	25.20	23.90	23.35	16.14	18.98	17.72	19.69	3.15	2.91	0.35	70.87	23.62	1 5/8"-12 (F)	1/2" NPT

Dimensions are for general information only, all critical dimensions should be verified by requesting a certified print. Dimensions are in inches.

OK Series

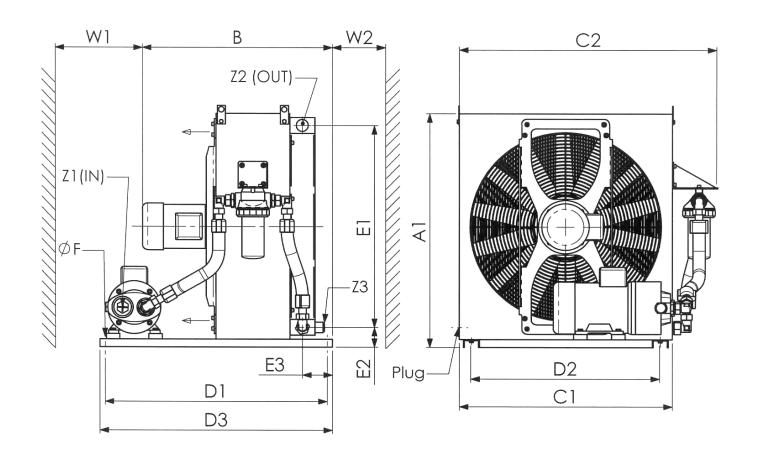
Dimensions Sizes 7 - 11

Size	A1	В	C1	D1	D2	D3	E1	E2	E3	F	W1	W2	Z1	Z 3
OK 7L, S	28.58	24.10	27.80	16.14	22.00	17.72	23.62	2.87	2.89	0.35	47.24	23.62	1 5/8"-12 (F)	1/2" NPT
OK 8L, S	28.54	24.10	27.76	16.14	22.05	17.72	24.80	2.30	2.89	0.35	47.24	23.62	1 5/8"-12 (F)	1/2" NPT
OK 9LS, H	34.65	27.91	31.10	29.53	27.56	31.10	29.92	2.95	4.65	0.47	98.43	35.43	1 7/8"-12 (F)	1/2" NPT
OK 10L	40.55	29.88	36.61	29.53	27.56	31.10	35.83	2.95	4.59	0.47	110.24	35.43	1 7/8"-12 (F)	1/2" NPT
OK 11L	46.46	31.65	41.34	29.53	27.56	31.10	41.73	2.95	4.59	0.47	118.11	39.37	1 7/8"-12 (F)	1/2" NPT


Dimensions are for general information only, all critical dimensions should be verified by requesting a certified print. Dimensions are in inches.

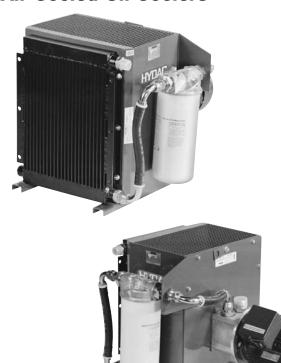
OKA / OKAF Series

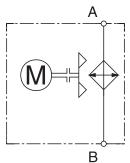
Dimensions Sizes 4 - 6

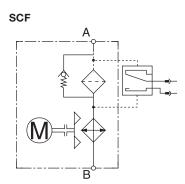

Size	A1	В	C1	C2	D1	D2	D3	E1	E2	E3	F	W1	W2	Z 1	Z2	Z 3
OKA 4L, S	20.47	27.17	19.09	19.09	16.14	16.73	17.72	17.28	1.99	4.09	0.35	47.24	15.75	1 5/8"-12 JIC-20(M)	1 5/16"-12 (F)	-
OKAF 4L, S	20.47	27.17	19.09	24.21	16.14	16.73	17.72	17.28	1.99	4.09	0.35	47.24	15.75	1 5/8"-12 JIC-20(M)	1 5/16"-12 (F)	-
OKA 5L, S	22.13	27.56	21.34	21.34	16.14	18.98	17.72	17.28	2.81	3.70	0.35	59.06	19.69	1 5/8"-12 JIC-20(M)	1 5/16"-12 (F)	-
OKAF 5L, S	22.13	27.56	21.34	21.46	16.14	18.98	17.72	17.28	2.81	3.70	0.35	59.06	19.69	1 5/8"-12 JIC-20(M)	1 5/16"-12 (F)	-
OKA 6L, S	25.20	28.35	22.99	27.99	16.14	18.98	17.72	19.69	3.15	2.89	0.35	70.87	23.62	1 5/8"-12 JIC-20(M)	1 5/8"-12 (F)	1/2" NPT
OKAF 6L, S	25.20	28.35	22.99	28.11	16.14	18.98	17.72	19.69	3.15	2.89	0.35	70.87	23.62	1 5/8"-12 JIC-20(M)	1 5/8"-12 (F)	1/2" NPT

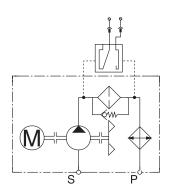
Dimensions are for general information only, all critical dimensions should be verified by requesting a certified print. Dimensions are in inches.

OKA / OKAF Series


Dimensions Sizes 7 - 11


Size	A1	В	C1	C2	D1	D2	D3	E1	E2	E 3	F	W1	W2	Z 1	Z2	Z 3
OKA 7L, S	28.98	23.62	27.80	27.80	22.05	22.05	23.62	23.62	3.27	2.89	0.35	47.24	23.62	2 1/2"-12 JIC-20(M)	1 5/8"-12 (F)	1/2" NPT
OKAF 7L, S	28.98	23.62	27.80	32.09	22.05	22.05	23.60	23.62	3.27	2.89	0.35	47.24	23.62	2 1/2"-12 JIC-20(M)	1 5/8"-12 (F)	1/2" NPT
OKA 8L, S	28.94	23.62	27.76	27.76	22.05	22.05	23.62	24.76	2.66	2.89	0.35	47.24	23.62	2 1/2-12 JIC-32(M)	1 5/8"-12 (F)	1/2" NPT
OKAF 8L, S	28.94	23.62	27.76	34.45	22.05	22.05	23.62	24.76	2.66	2.89	0.35	47.24	23.62	2 1/2-12 JIC-32(M)	1 5/8"-12 (F)	1/2" NPT
OKA 9L	34.65	27.91	31.10	31.10	32.68	27.56	34.25	29.92	2.95	4.65	0.47	47.24	35.43	2 1/2-12 JIC-32(M)	1 7/8"-12 (F)	1/2" NPT
OKAF 9L	34.65	27.91	31.10	36.85	32.68	27.56	34.25	29.92	2.95	4.65	0.47	98.43	35.43	2 1/2-12 JIC-32(M)	1 7/8"-12 (F)	1/2" NPT
OKA 10L	40.55	29.86	36.61	36.61	32.68	27.56	34.25	35.83	2.95	4.59	0.47	110.24	35.43	2 1/2-12 JIC-32(M)	1 7/8"-12 (F)	1/2" NPT
OKAF 10L	40.55	29.86	36.61	41.73	32.68	27.56	34.25	35.83	2.95	4.59	0.47	110.24	35.43	2 1/2-12 JIC-32(M)	1 7/8"-12 (F)	1/2" NPT
OKA 11L	46.46	31.63	41.34	41.34	32.68	27.56	34.25	41.73	2.95	4.59	0.47	118.11	39.37	2 1/2-12 JIC-32(M)	1 7/8"-12 (F)	1/2" NPT
OKAF 11L	46.46	31.63	41.34	46.46	32.68	27.56	34.25	41.73	2.95	4.59	0.47	118.11	39.37	2 1/2-12 JIC-32(M)	1 7/8"-12 (F)	1/2" NPT


Dimensions are for general information only, all critical dimensions should be verified by requesting a certified print. Dimensions are in inches.


SC Series Air Cooled Oil Coolers

Hydraulic Symbol

Description

The SC Series cooler design uses a large radial blower wheel assembly which spins slowly to draw air through an oversized cooler. This combination offers excellent cooling capacity with low noise.

Features

- High efficient plate and fin style heat exchangers
- Externally mounted heat exchangers for easy maintenance and cleaning
- Modular pump and filter options for a plug and play fluid conditioning system
- Available with HYDAC MF and LPF series filters
- Accessories Include: Thermostats (adjustable and fixed), Integrated Thermostatic Bypass Valves, and Bypass Valves
- Down to 64 dBa noise level
- Up to 16 HP cooling capacity
- Warm air is directed up and away from work area
- Packaged systems with pump flows ranging from 3.1 gpm to 18.5 gpm
- Maximum flows (w/o pump)
- up to 42 gpm

Applications

SCA

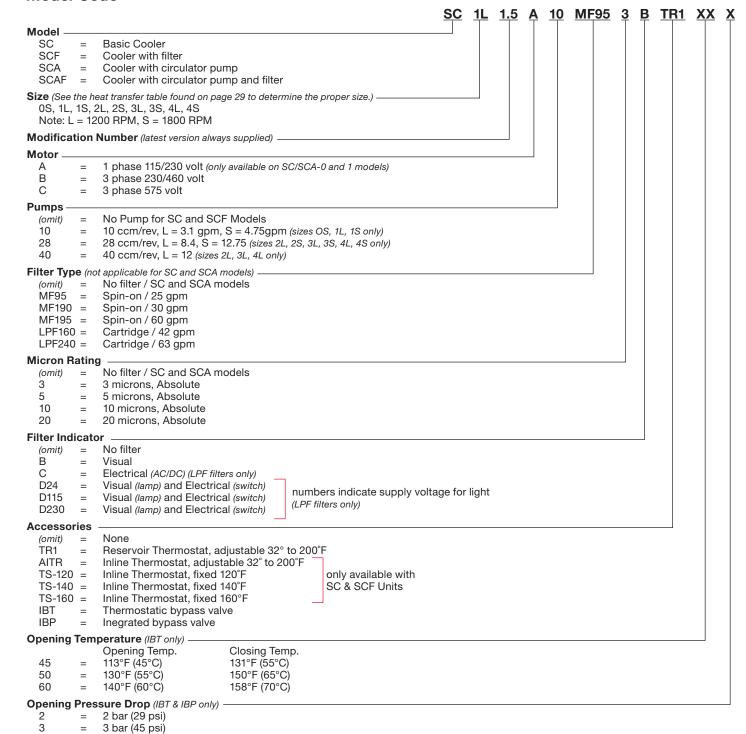
Gearboxes

Pulp & Paper

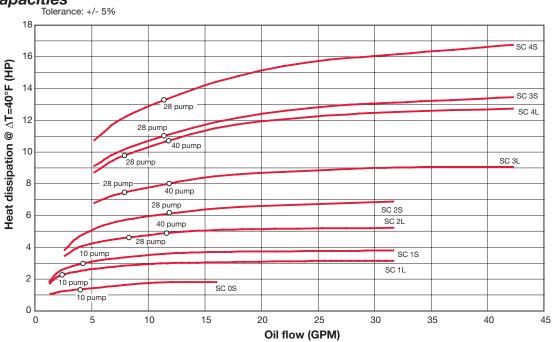
Railways

SCAF

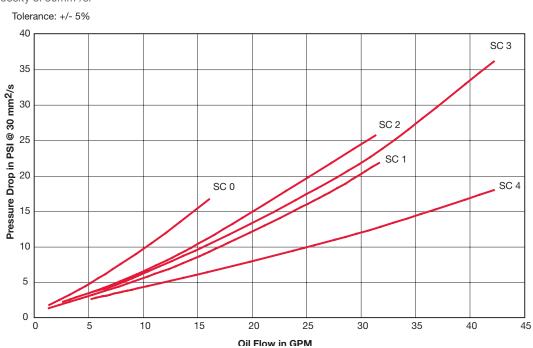
Shipbuilding


Power Generation

Steel / Heavy Industry



Model Code


SC Series

Cooling Capacities

Pressure Drops

Pressure differential Δp depending on flow rate Q and the viscosity of the oil. Graph uses oil viscosity of $30 \text{mm}^2/\text{s}$.

*Pressure Drop Curves above using fluid with a viscosity of 30 mm2/s. For other viscosities the result must be multiplied by the K Factors below.

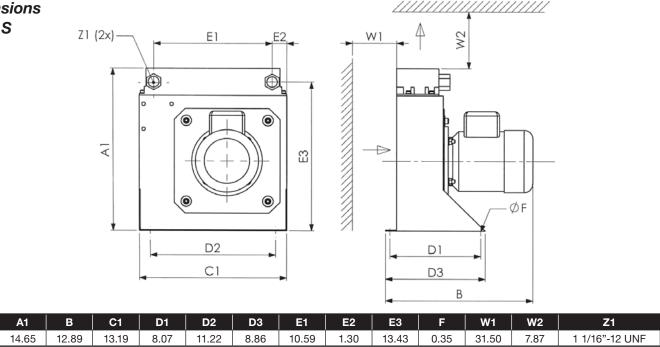
Viscosity (SSU)	46	70	102	150	213	250	315	464	695
Viscosity (mm²/s)	10	15	22	32	46	54	68	100	150
K Factor	0.5	0.65	0.77	1	1.3	1.52	1.9	2.8	5.3

Engineering Data

Construction	Housing	Welded steel housing, steel filter bracket, steel legs, steel blower wheel						
	Heat Exchanger	Aluminum						
	Motors	TEFC, IEC Frame B5 Flange						
	Pump	Aluminum housing, steel inner pump ring, steel rotor, and steel vanes						
Mounting Position		Horizontal, motor shaft						
Maximum Pressure	W/o Pump	230 psi (16 BAR) Dynamic 290 psi (20 BAR) Static						
	With Pump	90 psi (6 BAR)*						
Rated Suction Pressure		11.8" Hg (4 BAR) to 44 psi (3 BAR)						
Fluids		Mineral oil to DIN 51524 Part 1 and 2						
Contamination Limit		Permissible contamination < NAS 12						
Max Viscosity	W/o Pump	2000 cst						
	With Pump	180 cst						
Ambient Temperature		50°F (10°C) to 104°F (40°C)						
Maximum Oil Temperature	W/o Pump	266°F (130°C)						
	With Pump	175°F (80°C)						
Air Flow Direction		Pulled across Heat Exchanger						

^{*}Note: SCA/SCAF units do not include relief valve. Pressure higher than 90 psi (measured at pump outlet) will result in motor overload conditions.

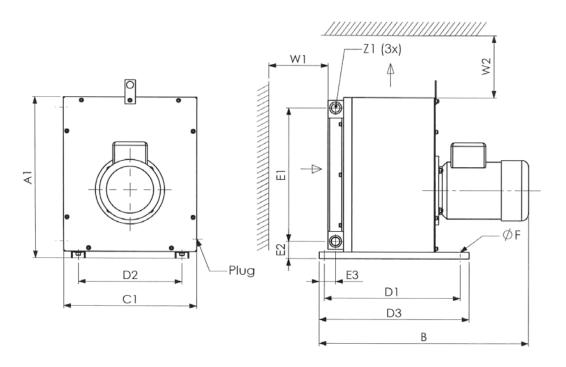
Specifications


		Fluid Spe	cifications	Motor Specifications					
Model	Description	Max. Oil Flow Without Pump gpm	Pump Disp Per Pum gp	np Code	Noise Level dBa*1	kW	RPM	Weight Ibs.	
SC 0, SCF 0	Fan	16	-	-	68	0.21	1800	31	
SCA 0,SCAF 0	Fan/Pump	-	Code 10 - 4.75	=	70	0.43	1800	51	
SC 1L, SCF 1L	Fan	32	-	=	64	0.30	1200	47	
SCA 1L, SCAF 1L	Fan/Pump	-	Code 10 - 3.1	=	68	0.43	1200	69	
SC 1S, SCF 1S	Fan	32	-	=	69	0.30	1800	47	
SCA 1S, SCAF 1S	Fan/Pump	-	Code 10 - 4.75	-	71	0.43	1800	69	
SC 2L, SCF 2L	Fan	32	-	-	66	0.43	1200	71	
SCA 2L, SCAF 2L	Fan/Pump	-	Code 28 - 8.45	Code 40 -12	68	1.30	1200	99	
SC 2S, SCF 2S	Fan	32	-	=	76	0.70	1800	71	
SCA 2S, SCAF 2S	Fan/Pump	-	Code 28 - 12.75	-	77	1.80	1800	99	
SC 3L, SCF 3L	Fan	42	-	-	73	0.70	1200	104	
SCA 3L, SCAF 3L	Fan/Pump	-	Code 28 - 8.45	Code 40 - 12	73	1.30	1200	148	
SC 3S, SCF 3S	Fan	42	-	-	82	0.91	1800	104	
SCA 3S, SCAF 3S	Fan/Pump	-	Code 28 - 12.75	=	84	2.20	1800	148	
SC 4L, SCF 4L	Fan	42	-	-	73	0.70	1200	108	
SCA 4L, SCAF 4L	Fan/Pump	-	Code 28 - 8.45	Code 40 - 12	73	1.30	1200	152	
SC 4S, SCF 4S	Fan	42	-	-	82	0.91	1800	108	
SCA 4S, SCAF 4S	Fan/Pump	-	Code 28 - 12.75	-	84	2.20	1800	152	

^{*}The noise levels are only a guide as acoustic properties depend on the characteristics of the room, connections, viscosity and resonance.

^{1) 3} Phase Motor

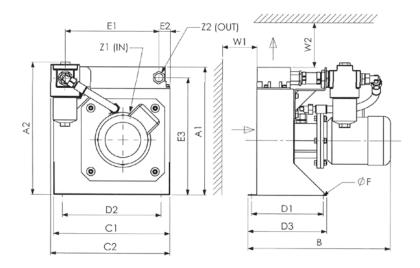
SC Series


Dimensions Size 0 S

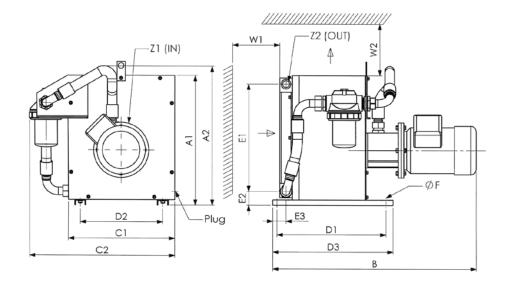
Sizes 1 - 4 L, S

Model

SC 0S


Model	A1	В	C1	D1	D2	D3	E1	E2	E 3	F	W1	W2	Z 1
SC 1L, S	14.76	20.47	13.58	12.60	11.22	14.17	11.38	1.99	1.87	0.35	39.37	11.81	1 1/16"-12 UNF
SC 2L, S	18.50	23.70	15.16	15.35	11.81	16.93	15.31	1.99	1.87	0.35	59.06	15.75	1 1/16"-12 UNF
SC 3L, S	20.87	27.68	17.72	18.50	14.17	19.69	17.28	2.19	2.46	0.35	78.74	19.69	1 1/16"-12 UNF
SC 4L, S	20.87	27.68	17.72	18.50	14.17	19.69	17.28	2.19	2.11	0.35	78.74	19.69	15/16"-12 UNF

Dimensions are for general information only, all critical dimensions should be verified by requesting a certified print.

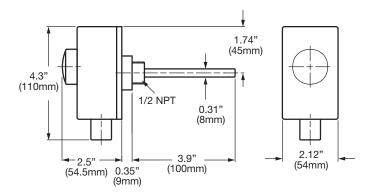

SCA / SCAF Series

Dimensions Sizes 0 S

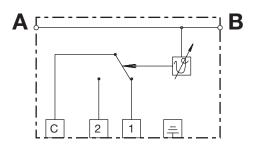
Model	A1	A2	В	C1	C2	D1	D2	D3	E1	E2	E 3	F	W1	W2	Z 1	Z2
SCA 0S	14.65	0.00	17.05	13.19	0.00	8.07	11.22	8.86	9.53	1.67	13.27	0.35	7.87	31.50	3/4"-12 JIC-8(M)	1 1/16"-12 UNF
SCAF 0S	14.65	15.20	16.06	13.19	13.54	8.07	11.22	8.86	9.53	1.67	13.27	0.35	7.87	31.50	3/4"-12 JIC-8(M)	1 1/16"-12 UNF

Sizes 1 - 4 L, S

Model	A1	A2	В	C1	C2	D1	D2	D3	E1	E2	E 3	F	W1	W2	Z 1	Z2
SCA 1L, S	14.76	-	23.64	13.58	-	12.60	11.22	14.17	11.38	1.99	1.99	0.35	11.81	39.37	1 1/16"-12 JIC-12(M)	1 1/16"-12 UNF
SCAF 1L, S	14.76	15.35	23.64	13.58	19.13	12.60	11.22	14.17	11.38	1.99	1.99	0.35	11.81	39.37	1 1/16"-12 JIC-12(M)	1 1/16"-12 UNF
SCA 2L, S	18.50	-	28.66	15.16	-	15.35	11.81	16.93	15.31	1.99	1.99	0.35	15.75	59.06	1 5/16"-12 JIC-16(M)	1 1/16"-12 UNF
SCAF 2L, S	18.50	19.69	28.66	15.16	20.71	15.35	11.81	16.93	15.31	1.99	1.99	0.35	15.75	59.06	1 5/16"-12 JIC-16(M)	1 1/16"-12 UNF
SCA 3L, S	20.87	-	32.64	17.72	-	18.50	14.17	19.69	17.28	2.19	1.99	0.35	19.69	78.74	1 5/8"-12 JIC-20(M)	1 1/16"-12 UNF
SCAF 3L, S	20.87	22.05	32.64	17.72	22.93	18.50	14.17	19.69	17.28	2.19	1.99	0.35	19.69	78.74	1 5/8"-12 JIC-20(M)	1 1/16"-12 UNF
SCA 4L, S	20.87	-	32.64	17.72	-	18.50	14.17	19.69	17.28	2.19	1.99	0.35	19.69	78.74	1 5/8"-12 JIC-20(M)	1 5/16"-12 UNF
SCAF 4L, S	20.87	22.05	32.64	17.72	22.93	18.50	14.17	19.69	17.28	2.19	1.99	0.35	19.69	78.74	1 5/8"-12 JIC-20(M)	1 5/16"-12 UNF

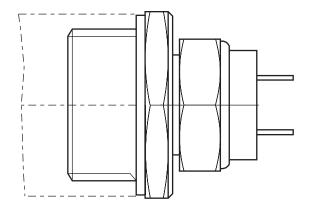

Dimensions are for general information only, all critical dimensions should be verified by requesting a certified print. Dimensions are in inches.

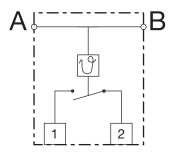
34


HYDAC Cooler Accessories

TR1 Series

Adjustable Temperature Switch Tank Mounted


Hydraulic Symbol


TR1/AITR Adjustable Thermostat

Temperature Range	0 to 200° F
	(0 to 95° C)
Switching Differential	5°F (2.5° C)
Voltage	220V/440V
Amps	10A/220V
	5A/440V
Enclosure	IP50
Conduit Connector	1/2"
Max. psi	150

TS Series

Hydraulic Symbol

TS Technical Data

Voltage	12/24 VDC
	220/440V
Amps	6A / 120V, 4A / 240V, 4A / 12VDC, 2A / 24VDC
Accuracy	±3%

Filters

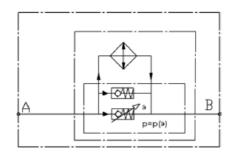
The SC and OK series coolers offer MF Spin-ons and LPF series filters, which feature Betamicron media. For more detailed information on filters see HYDAC Hydraulic & Lube Oil Filters catalog #02081318. Other filters are available upon request.

Note: It is important that the pressure drop across the filter element does not get too high. Oils with a viscosity of ISO VG46 or lower will have a ΔP lower than 10 psi. It is best to check the pressure drops of high viscosity fluids. Pressure drop across a clean filter assembly should not exceed more than 10 psi.

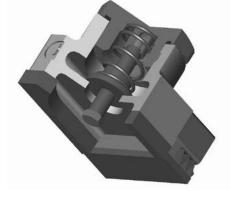
Filter selection is determined by:

- 1. Selecting desired series filter, MF or LPF
- 2. What is the allowable contamination level of the system? From this determine the micron rating of your filter.
- 3. Determine the size of the filter by the flow rate going through the cooler system. Refer to HYDAC Hydraulic & Lube Oil Filters catalog #02081318 for flow rate and pressure drop information on particular filters. Keep in mind the physical size of the cooler versus the size of the element.

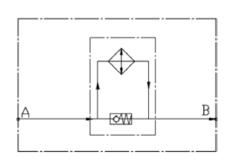
Cooler Acessories HYDAC


Bypass

IBT Thermostatic Bypass Hydraulic Symbol



Hydraulic Symbol



Features

- Fixed setting temperature valve
- · Precise Temperature control
- Low pressure drop
- Shock resistant
- · Can function in any position
- Maximum pressure 230 psi (16 bar)
- Maintenance-free

Model Code

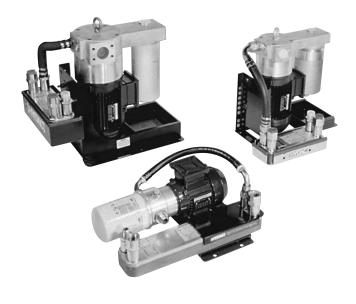
OK-4	IBT	XX	/	Χ
	\top	\top		Т

Model					
IBT	=	thermostatic bypass valve			
IBP	=	inegrated bypass valve			
Opening Temperature (IBT only)					

Temp. Closing Temp
C) 131°F (55°C)
°C) 150°F (65°C)
°C) 158°F (70°C)

Opening Pressure Drop

2	=	2 bar (29 psi)
3	=	3 bar (45 psi)

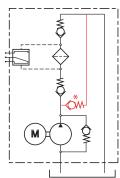

Warning:

These valves are added to a cooling element in conjunction with a flow channel that is braised into the original construction.

(They need one special cooling element which maintains the same dimensions and points of fixing)

HYDAC Pump / Filter / Coolers

PFC Series Pump / Filter / Cooler Units



Hydraulic Symbol

М

PFC 2/3

PF 2/3

* Filtration bypass optional on PF/PFC-3.

Description

The PFC pump/filter/cooler unit is a compact, easy-to-install unit for off-line filtration/cooling circuits. Installation is simply a matter of hooking up the hydraulic and water lines and connecting the electrical power.

Features

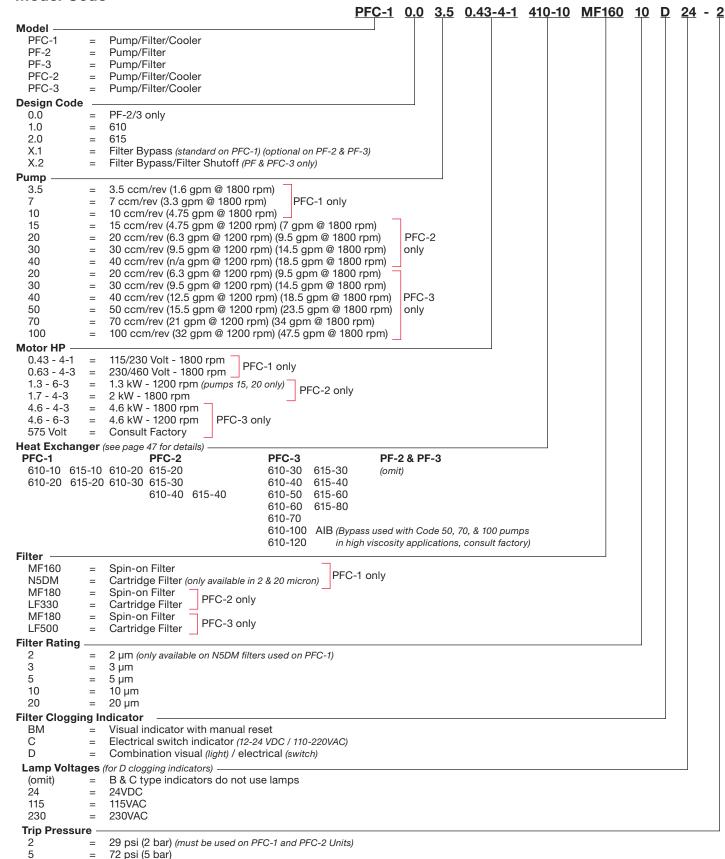
- Plate type heat exchangers
- Rotary vane pump
- MF, Dimicron or LF series HYDAC filters
- Built in filter Clogging indicators
- Clean and easy replacement of filter element due to isolating check valves located up and down stream of the filter (PFC 2/3)
- Removable drip pan under filter (PFC 2/3)
- Reduced installation costs
- Simple compact design
- Heavy duty construction

Ratings:

- · Cooling Capacities: PFC-1: over 15 HP PFC-2: over 40 HP PFC-3: over 100 HP
- Pump Flow Rates: PFC-1: 1.6 to 4.75 gpm PFC-2: 4.75 to 18.5 gpm PFC-3: 6.3 to 47.5 gpm
- Oil Viscosities: up to 22,000 SSU

Applications

Pulp & Paper


Power Generation

Steel / Heavy Industry

Pump / Filter / Coolers HYDAC

Model Code

HYDAC Pump / Filter / Coolers

Engineering Data

Model		PFC-1	PFC-2 / PFC-3
Mounting Position		Horizontal/Vertical	Vertical
Operating Pressures	Oil side	110 psi (7.5 bar) Relief Valve Setting	PFC-2: 90 psi (6 bar) PFC-3: 140 psi (9.5 bar)
	Water side	435 psi (30 bar)	435 psi (30 bar)
	Filter Bypass	44 psi (3 bar)	44 psi optional (PF/PFC-3 only)
Rated Suction Pressure		11.8" Hg (-0.4 bar) to 44 psi (3 bar)	11.8" Hg (-0.4 bar) to 44 psi (3 bar)
Pressure Drops	Housing	7.5 psi (0.5 bar)	7.5 psi (0.5 bar)
	Check Valves	n/a	7.5 psi (1 bar) each
Fluid Temperatures	Oil side	50°F (10°C) to 176°F (80°C)	50° F (10°C) to 176°F (80°C)
	Water side	40°F (5°C) to 140°F (60°C)	40° F (5°C) to 140°F (60°C)
Ambient Temperature		50°F (10°C) to 104°F (40°C)	50° F (10°C) to 104°F (40°C)
Fluids		Mineral oil to DIN 51524 Part 1 and 2	Mineral oil to DIN 51524 Part 1 and 2
	·	Water Glycol (HFC Based)	Water Glycol (HFC Based)
Volumetric Efficiency		>90% (When viscosity = 180 SUS)	>90% (When viscosity = 180 SUS)

Construction

	PFC-1	PFC-2	PFC-3
Frame	Steel	Steel	Steel
Cooler Bracket	Steel	Steel/Aluminum	Steel
Drip Pan	n/a	Plastic	Plastic
Heat Exchanger Box	n/a	Aluminum	Steel
Pump Housing	Aluminum	Aluminum	Aluminum
Stator Ring	Steel	Steel	Steel
Pump Motor	Steel	Steel	Steel
Vanes	Steel	Steel	Steel
Pump/Filter Head	Aluminum	Aluminum	Aluminum
Check Valves	n/a	Steel	Steel
Relief Valves	Steel	Steel	Steel
Bypass Valve	Steel	n/a	Steel (PFC-3 only)
Relief/Bypass Springs	Steel	n/a	Steel (PFC-3 only)
Heat Exchanger	Stainless Steel/Cooper Brazed	Stainless Steel/Cooper Brazed	Stainless Steel/Cooper Brazed
Hose	Buna-N (Nitrile)	Buna-N (Nitrile)	Buna-N (Nitrile)
Seals	Buna-N (Nitrile), Viton Shaft Seal Optional	Buna-N (Nitrile), Viton Shaft Seal Optional	Buna-N (Nitrile), Viton Shaft Seal Optional
Fittings	Stainless Steel/Cooper Brazed	Stainless Steel/Cooper Brazed	Stainless Steel/Cooper Brazed

Sound Data

PFC-1 64 dBa

PFC-2		
Pump	14.5 psi (1 bar)	87 psi (6 bar)
15	61 dBa	62 dBa
20	62 dBa	62 dBa
30	62 dBa	63 dBa
40	63 dBa	64 dBa

Measured @ 1 meter using ISO VG46 oil @ 40°C

PFC-3						
Pump	14.5 psi (1 bar)	87 psi (6 bar)				
20	69 dBa	69 dBa				
30	69 dBa	70 dBa				
40	71 dBa	72 dBa				
50	71 dBa	72 dBa				
70	73 dBa	74 dBa				
100	74 dBa	75 dBa				
101 100101010101010						

Measured @ 1 meter using ISO VG46 oil @ 40°C

Pump / Filter / Coolers HYDAC

Weights

PFC-1

PFC-1 + Heat Exchanger

PFC-1	
27 lbs.	
Heat Exchanger	
610-10	3 lbs.
610-20	9 lbs.
615-10	10 lbs.
615-20	15 lbs.

PFC-2 PF-2 + Filter + Heat Exchanger

PF-2	
0.9 kW	35.2 lbs.
1.8 kW	44 lbs.
Filter	
MF180	4.5 lbs.
LF 330	8.8 lbs.
LF500	16 lbs.
Heat Exchanger	
610-20	9 lbs.
610-30	30 lbs.
610-40	31 lbs.
615-20	15 lbs
615-30	37 lbs.
615-40	40 lbs.

PFC-3 PF-3 + Filter + Heat Exchanger

PF-3	
2.5 kW	120 lbs.
4.6 kW	140 lbs.
Filter	
MF180	4.5 lbs.
LF500	16 lbs.
Heat Exchanger	
610-30	30 lbs.
610-40	31 lbs.
610-50	34 lbs.
610-60	36 lbs.
610-70	38 lbs.
610-100	49 lbs.
610-120	55 lbs.
615-30	37 lbs.
615-40	40 lbs.
615-50	47 lbs.
615-60	53 lbs.
615-80	66 lbs.

Pumps

The pump used in the PFC series is a rotary vane type pump. Depending on the fluid being pumped either a 1,800-rpm motor or 1,200 rpm motor can be used to drive the pump. For standard hydraulic fluids, such as ISO VG 22, 32, and 46 oils the 1,800 rpm motor is used. For higher viscosity fluids, it is recommended that the 1,200-rpm motor be used. The ordering data chart can be used as a guide to match up the proper motor and

For other fluid types outside these ranges please consult the factory. The PFC-1/2 are rated for 90 psi (6 bar). The PFC-3 is rated for a max pressure of 140 psi (9.5 bar). All systems include a built in system relief valve.

PFC-1

Available in 3 flow ranges. The code 3.5 and code 7 pumps, 0.63 kW are used motor for high viscosity applications.

PFC-2

Available in 6 flow ranges. The code 15 and code 20 pumps with 1.3 kW,

1,200 rpm motor are used for high viscosity applications.

PFC-3

Available in 8 flow ranges. The code 30, 40, 50, 70, and 100 pumps with

1,200 rpm motors are used for high viscosity applications.

Motors

PFC-1

Order Code	0.43-4-1	0.63-4-3	
H.P.	0.6	0.84	
kW	0.43	0.63	
Amps	6.4/3.2	3.4/1.7	
RPM	1800	1800	
Frame Size	71/IMB34	71/IMB34	
Voltages	115/230 230/460		
Hertz	50/60		
Rotation	CW looking @ motor fan		
Enclosure	TEFC/IP55		

PFC-2

Order Code	1.3-6-3	1.7-4-3	
H.P.	1.75	2.25	
kW	1.3	1.7	
Amps	5.1/3	6.6/3.8	
RPM	1200	1800	
Frame Size	90/IMB34		
Voltages	230/460		
Hertz	50/60		
Rotation	CW looking @ motor fan		
Enclosure	TEFC/IP55		

PFC-3

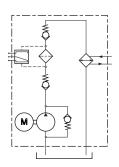
Order Code	4.6-4-3	4.6-6-3	
H.P.	5.4		
kW	4.6	4.6	
Amps	15.6/9	17.7/10.3	
RPM	1800	1200	
Frame Size	100/IMB34	112/IMB34	
Voltages	230/460		
Hertz	50/60		
Rotation	CW looking @ motor fan		
Enclosure	TEFC/IP55		

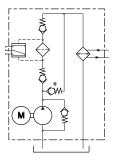
YDAC Pump / Filter / Coolers

PFC Series

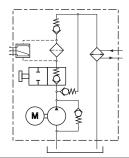
Filters Spin-On

MF 180


Cartridge



LF500 and Dimicron®


Code X.0

Code X.1

Code X.2

PFC-1 Filter Options

MF160 Spin-on

MF160 spin-on elements are an inexpensive high quality element with high dirt holding capacity.

Dimicron® Technology Filter (2 or 20 micron)

Dimicron® technology, which incorporates membrane filtration, sets the PFC-1 apart from conventional filters by providing it with exceptional dirt holding capacity and separation efficiency. Membrane filtration provides the PFC-1 with a separation efficiency over 99.5% for particles 2 micron and larger (β₂> 200) even in a single pass.

The PFC-1 comes standard with a built in 44-psi (3 bar) filter bypass and 29 psi (2 bar) clogging indicator.

PFC-2 & PFC-3 Filter Options

MF180 Filter Element

MF180 Spin-on elements are an inexpensive high quality element with high dirt holding capacity.

PFC-2: LF 330 Cartridge Element

PFC-3: LF 500 Cartridge Element

LF filter elements are contained in a bowl. Nitrile O-ring seals provide a positive reliable seal between the bowl and the PFC head. Suitable for water glycol applications (HFC Based

The PFC-2 & PFC-3 units include built in removable drip pan.

Pump/Filter Head Configurations (PF/PFC-3 only) Order Design Code X.0

Standard

This head configuration includes the built in system relief set at 90 psi (6 bar) on PF-2 and 140 psi (9.5 bar) on PF-3 and includes isolating check valves on either side of the filter. These check valves close when the unit is shut off and is located below fluid level eliminating the need for external ball valves. The standard head can be used with either the MF180 or LF500 filters. Depending on system pressure requirements either the 29 psi (2 bar) or the 72 psi (5 bar) clogging indicators can be used.

Order Design Code X.1 **Head with Filter Bypass**

This head includes the same features as the standard head, but also includes a 44 psi (3 bar) bypass around the filter. This head configuration can be used with either the MF180 or LF500 filters. Can only be used with 29 psi (2 bar) clogging indicator.

Order Design Code X.2 (PF & PFC-3 only)

Head with Filter Bypass and Filter Isolation Valve

This head includes the same features as the two heads listed above, but also includes and manual shut off on the upstream check valve. When this valve is manually shutoff, it causes the flow to pass over the bypass valve. The increased back pressure on the downstream check valve causes it to close isolating the filter. Now the filter can be changed while the unit is still pumping and cooling. This option is used in place of a duplex filter set up with minimal additional cost and no added space requirements.

Note: This option can only be used with the LF500 filter and 29 psi (2 bar) clogging indicator.

Pump / Filter / Coolers (HYDAC)

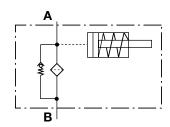
Initial Pressure Drop

∆p Element = Flow x K Factor x Actual Viscosity x Actual Specific Gravity

S:		Dirt Holding Capacities			K Factors					
Size	2 micron	3 micron	5 micron	10 micron	20 micron	2 micron	3 micron	5 micron	10 micron	20 micron
MF160	n/a	47.5 g	52.1 g	49.5 g	49.1 g	n/a	0.220	0.169	0.157	0.087
MF180	n/a	95.9 g	105.5 g	100.1 g	99.5 g	n/a	0.114	0.087	0.082	0.045
LF330	n/a	60.7 g	64.8 g	72.9 g	81 g	n/a	0.266	0.204	0.190	0.105
LF500	n/a	60.7 g	64.8 g	72.9 g	81 g	n/a	0.162	0.124	0.115	0.064
N5DM	200 g	n/a	200 g	200 g	200 g	n/a	n/a	n/a	n/a	n/a

Clogging Indicators

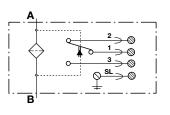
The PFC is available with three different styles of differential pressure type indicators All indicators are magnetically actuated and have no external dynamic seals. High reliability is achieved and magnetic actuation eliminates a leak point.


The clogging indicators are available with two different trip pressures of 29 psi (2 bar) or 72 psi (5 bar). The 29 psi (2 bar) is recommended when high viscosity fluids are being used because or high pressure drops across the PFC. The 72 psi (5 bar) indicator can be used for most applications and will extend times between filter changes.

Note: For more detailed information about clogging indicators, see HYDAC Hydraulic & Lube Oil Filters Catalog.

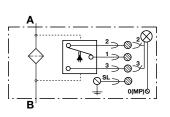
Model BM -Visual Indicator with manual reset

A red marker extends to signal that the filter element is clogged. The marker must be manually pushed in to reset.



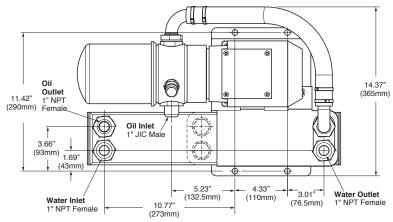
Model C - Electrical Clogging Indicator

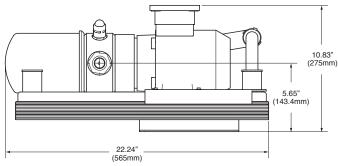
An electric switch is activated when clogging of the filter element occurs. The switch can be connected for normally open or normally closed circuits. Rated for 12 VDC to 230 VAC.



Model D - Electrical Clogging Indicator with Visual Lamp

An electric switch and light activate when clogging of the filter element occurs. The switch can be connected for normally open or normally closed circuits. The Lamp can be activated either on closing or opening of the contact. Model D indicator is available in 24 VDC, 115 VAC, or 230 VAC.

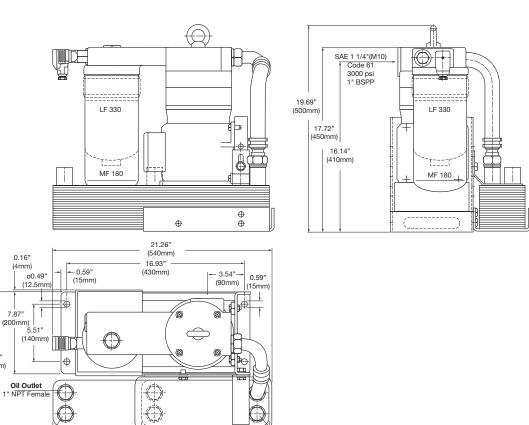




HYDAC Pump / Filter / Coolers

PFC Series

Dimensions Size 1

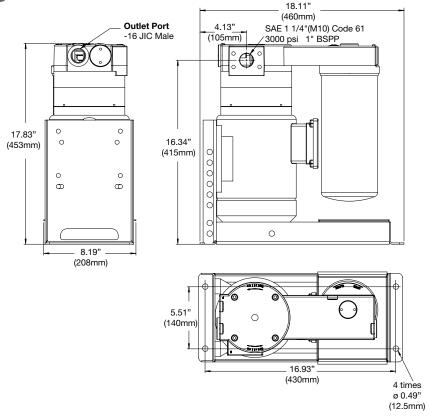


Size 2

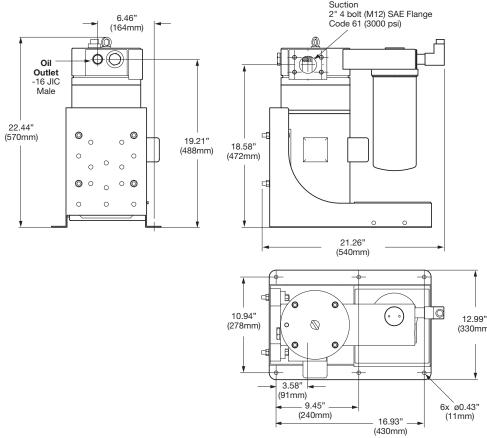
0.16"

7.87"

Water Inlet


Water Outlet

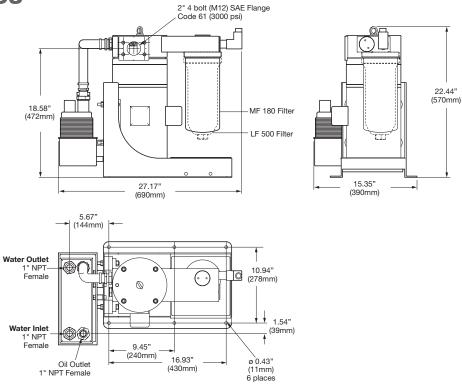
CP526-xx Dimensions are for general information only, all critical dimensions should be verified by requesting a certified print.


Pump / Filter / Coolers HYDAC

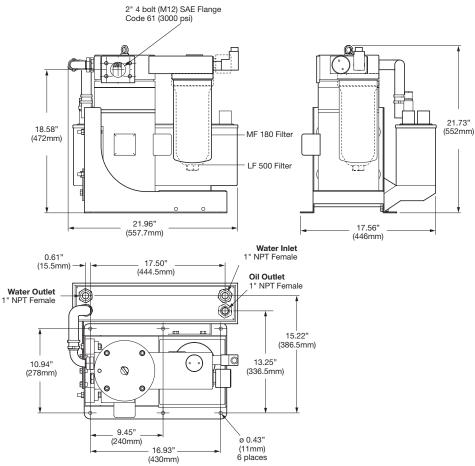
PFC Series

Dimensions Size 2 Base

Size 3 0.0



Dimensions are for general information only, all critical dimensions should be verified by requesting a certified print. Dimensions are in inches.


HYDAC Pump / Filter / Coolers

PFC Series

Dimensions Size 3 1.0

Size 3 2.0

Dimensions are for general information only, all critical dimensions should be verified by requesting a certified print.

Pump / Filter / Coolers HYDAC

PFC / Plate Heat Exchangers

Technical Data Inquiry Sheet

Internal Use Only	
Project Responsibility	
Date	

Distributor:	Company Name:	
Distributor Contact:	Customer Contact:	
Distributor Phone:	Customer Phone:	
Distributor Fax:	Customer Fax:	
Distributor E-mail:	Customer E-mail:	

The following basic information is needed for the proper sizing and ordering of a PFC cooler unit.

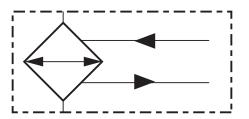
Critical Sizing Data

Heat Load To Be Removed: (BTU/hr)					
Note: B.T.U. = HP X 2545					
Oil Type: (ISO VG or SAE grade)					
Oil Flow: (gpm or PFC pump)					
Desired Oil Temperature: (°F)					
Water Flow: (gpm)					
Note: Water flow is generally based upon a 4:1 ratio of oil:water to start with.					
Inlet Water Temperature: (°F)					

Filter Data

med Bata					
Filter Type:	Spin-on	Cartridge			
PFC-1:	MF 160	Dimicron® —			
PFC-2:	MF 180	LF 330			
PFC-3:	MF 180	LF 500			
Micron Rating:					
2 3 5 10 20 (PFC-1 only)					
Filter Clogging	Indicator: (Trip Pressure	indicated in psi, PFC-1 N	MUST use 29 psi)		
Visual with I	Manual Reset Elect	trical Switch	Visual Electrical Switch (numbers designate lamp voltage)		
BM	(29 psi)	C (29 psi)	D24 (29 psi) (29 psi) (29 psi) (29 psi)		
DIVI	(72 psi)	(72 psi)	$\bigcirc (72 \text{ psi}) \qquad \bigcirc (72 \text{ psi}) \qquad \bigcirc (72 \text{ psi})$		
Note: For more detailed information about clogging indicators, see HYDAC Hydraulic & Lube Oil Filiters catalog.					

This form can be filled out online at www.HYDACusa.com


Dimensions are for general information only, all critical dimensions should be verified by requesting a certified print. Dimensions are in inches.

HYDAC Plate Heat Exchangers

HEX Series Plate Heat Exchangers

Hydraulic Symbol

AIB cooler element bypass option for high viscosity applications.

Description

Heat exchangers are used to exchange heat between two fluids. Plate heat exchangers are high performance components and provide a high level of efficiency combined with compact dimensions and low weight. Their efficiency reduces the amount of cooling water required for heat transfer which results in low operating costs.

Features

Plates and connections are manufactured from stainless steel to AISI 316, 1.4401, vacuum-brazed with copper. The special moulding of the plates produces the turbulent flow necessary for effective heat transfer and provides the plate heat exchanger with a high level of mechanical strength.

Operating Details

Medium:

- Water glycol (coolants)
- HFC operating fluids
- Water
- Oil

Contamination:

The quantity of particles in suspension should be less than 10 mg/l. Particle size < 0.6 mm (spherical).

Thread-like particles cause a rapid rise in pressure drops.

Temperature Range:

50° to 437°F (10° to 225°C) (freezing point and boiling point must be taken into consideration!)

- max. 49 psi (3 bar) (static) up to 257°F (125°C)
- max. 435 psi (30bar) (static) up to 437° (225°C)
- Test pressure: 650 psi

Corrosion:

The following limits refer to a pH value of 7

- free chlorine, CL2 < 0.5 ppm
- chloride ions CL < 700 ppm at 20 °C < 200 ppm at 50 °C

Other Limits:

- ph 7 10
- sulphate SO4 2- <100 ppm
- [H CO3 -] / [SO4 2-] >1
- ammonia, NH3 <10 ppm
- free CO < 10 ppm

The following ions are not corrosive under normal conditions: phophate, nitrate, nitrite, iron, manganese, sodium and potassium

Applications

Pulp & Paper

Generation

Steel / Heavy Industry

Plate Heat Exchangers HYDAC

Model Code

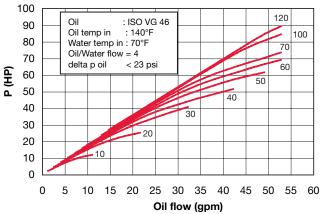
											<u>HEX 610 - 10 C 2</u>	<u> </u>
Series _ HEX 61 HEX 61 HEX 42	15											
Number	of Pl	ates										
	10	20	30	40	50	60	70	80	100	120		
610	Х	Χ	Х	Х	Х	Χ	Х		Х	Χ		
615	Х	Χ	Х	Χ	Χ	Х		Х				
422		Χ	Х	Χ	Χ	Χ		Χ	Х			
Connect	ions											
CB 27	=	1" I	NPT	Fema	ale X	4	_	\ /-!	010 -	- 1\		
C 71	=			P Fen			_	(SIZE	610 oi	'lly)		
CB 52	=	1" ا	NPT	Fema	ale X	4		(oizo	615 oi	2/14)		
C 71	=			P Fen			_	(3/26	015 01	iiy)		
CB 76	=					le X 4		(cizo	422 0	n/v)		
C 72	=	1 1	/2" B	SPP	Fem	ıale X	4 _	(3/26	422 0	iiy)		

Pipes must be connected so that the connections are stress free.

Linear expansion and vibrations from the pipes to the heat exchanger must be avoided.

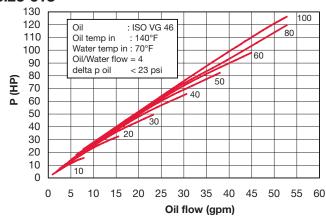
Pressure drop across heat exchanger

This table is based on an ISO VG45 oil at 130°F and shows the pump flows with the 1,800 RPM motors. If other grades of oil are to be used, consult the sizing software. When using the 72 psi clogging indicator the pressure drop should not exceed 15 psi max across the heat exchanger. When using the 29 psi clogging indicator the pressure drop should not exceed 30 psi max across the heat exchanger.

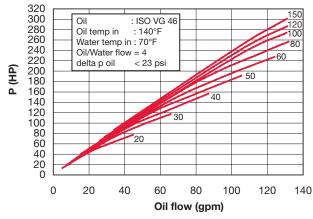

Heat Exchanger Size	Pump 3.5 1.6 gpm (6.3 l/min)	Pump 7 3.3 gpm (12.6 l/min)	Pump 10 4.75 gpm (18 l/min)	Pump 15 7 gpm (18 l/min)	Pump 20 9.5 gpm (18 l/min)	Pump 30 14.5 gpm (55 l/min)	Pump 40 18.5 gpm (70 l/min)	Pump 50 23.5 gpm (90 l/min)	Pump 70 34 gpm (130 l/min)	Pump 100 47.5 gpm (180 l/min)
610-10	3	5	8	-	-	-	-	-	-	
610-20	1	2	3	5	7	13.66	-	-	-	-
610-40	-	-	-	2	3	7.35	9.85	13.4	-	-
610-50	-	-	-	-	-	5.64	7.54	10.27	16.19	-
610-70	-	-	-	-	-	4.1	5.2	7	11.1	16.8
610-100	-	-	-	-	-	3	3.8	4.9	7.6	11.66
610-120	-	-	-	-	-	2.55	3.25	4.2	6.35	9.8
615-10	4	9	15	-	-	-	-	-	-	-
615-20	2	3.3	5	9	13	-	-	-	-	-
615-40	-	-	-	4	5	13.25	17.8	-	-	-
615-60	-	-	-	-	-	8.15	10.8	14.75	-	-
615-80	-	-	-	-	-	5.95	7.75	10.5	16.6	-

HYDAC Plate Heat Exchangers

HEX Series


Technical Data

Size 610


Number of plates (N)	H = 10 + Nx2.4	lbs
10	34	5.5
20	58	8.4
30	82	11.2
40	106	14.0
50	130	17.0
60	154	19.8
70	178	22.6
100	250	31.2
120	298	37.0

Size 615

Number of plates (N)	H = 10 + Nx2.4	lbs
10	34	9.2
20	58	14.3
30	82	19.4
40	106	24.4
50	130	29.7
60	154	35.5
80	202	44.6

Size 422

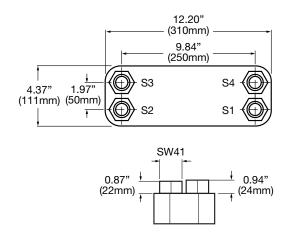
plates (N)	H = 10 + NX2.85 (mm)	lbs
20	67	34.7
30	95.5	44.5
40	124	54.1
50	152.5	63.8
60	181	73.5
80	238	92.8
100	295	112.2

The cooling capacity is also dependent on the viscosity class. At a lower viscosity class the cooling capacity increases, at a higher viscosity class it decreases. In order to make an accurate calculation, the following details are required:

- type of oil
- premissable tank temperature
- required outlet temperature of the oil or necessary cooling capacity
- inlet temperature of the water and maximum water quantity.

Selection Program

The cooler selection program calculates the correct heat exchanger in the case of non–standard operating data.


Please contact our technical sales department.

System requirements:

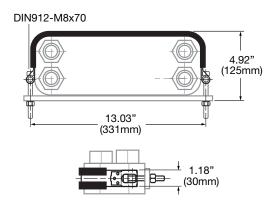
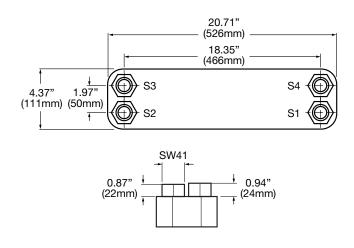
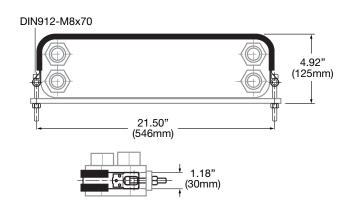
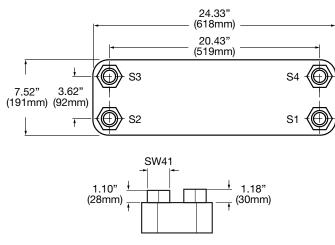

- Windows 95/
- Windows NT/
- Hard disk memory
- 8 MB RAM

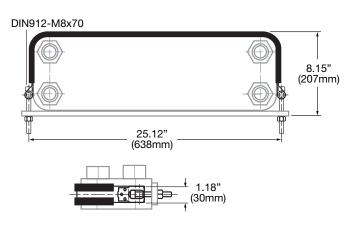
Plate Heat Exchangers (HYDAC)


Dimensions Size 610


Mounting Bracket 610 Mounting Bracket


Size 615

Mounting Bracket 615 Mounting Bracket



Size 422

Dimensions are for general information only, all critical dimensions should be verified by requesting a certified print. Dimensions are in inches.

Mounting Bracket 422 Mounting Bracket

Please note: For mounting heat exchangers with 60 plates and above, two clamps are recommended.

HYDAC Plate Heat Exchangers

H Series Gasketed Plate Heat Exchanger

Description

Heat exchangers are used to transfer heat between two media. Gasketed plate heat exchangers are high performance components and provide a high level of efficiency combined with compact dimensions. They also have a high degree of flexibility. For higher capacity ranges this series is a useful supplement to the brazed

Features

The gasketed plate heat exchanger consists of a pack of individual, embossed heat transfer plates made of stainless steel 1.4401 (AISI 316), 1.4306 (AISI 304). The plates are sealed and the media kept separate by using gaskets in nitrile rubber (NBR) or optionally FKM (Viton) or EPDM.

The plate pack is installed in a frame which consists of a fixed plate and a pressure plate, tightening bolts and supports. There are several sizes with different numbers of plates available to cover the

The heat exchanger is connected inline via threaded or flange connections. Depending on the application, special models are available with higher grade materials (Titanium). For such applications, please contact the relevant department.

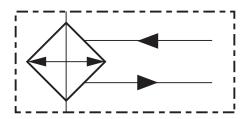
Operating Details

- Water glycol (coolants)
- HFC operating fluids
- Water
- Oil

The quantity of particles in suspension should be less than 10 mg/l. Particle size < 0.6 mm (spherical).

Thread-like particles cause a rapid rise in pressure drops.

Temperature Range:


max. 284°F (140°C)

Pressure:

- max. 145 psi (10 bar)
- max. 232 psi (16 bar)
- max. 363 psi (25 bar)

Note: Pressure surges must be avoided.

Hydraulic Symbol

Applications

For cooling circuits in reverse flow which can be operated using water, coolants, HFC operating fluids or oils. For applications using other media, please contact the relevant department.

Typical applications are:

- Hydraulic systems
- Presses
- Lubrication systems
- Test rigs
- Motors

Railways

Commercial Municipal

Shipbuilding

Power Generation

Steel / Heavy Industry

Plate Heat Exchangers HYDAC

Model Code

H38 - IG 10 - 12 - TKTM 33 - LIQUID Series -H2, H8, H14, H16, H18, H28, H38, H40, H42, H44, H62, H82, H84, H94, H128, H128, H172, H220 Carbon Steel Frame Type -For sizes H8A,H16A,H18A,H38A,H62A,H42A,H44,H94 and H128 For sizes H42,H94,H128 (ASME and length above 1300 mm), H82, H46, H162 ST For sizes H14A,H28A,H40A **Working Pressure** 10 150 psi 232 psi 16 25 362 psi Number of Plates -= Number of plates Plate Design -TMTL = Plate configuration Thermal long TL = ΤK Thermal short Thermal mix i.e TL + TK TM TMTL = Thermal long + Thremal mix TKTM = Thermal mix + thermal short Thermal long + Thermal X TX XX% of last plate configuration (example: TMTL80 = 80% Themal long + 20% Thermal Mix) **Thermal Length** Liquid

Corrosion Limits

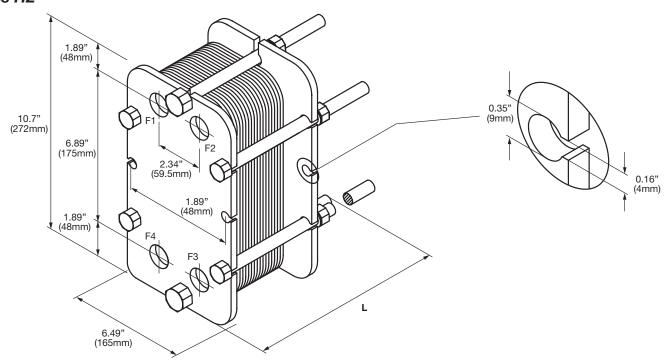
Water Ingredient	Concentration of Ingredient in mg/I	Advice 1.4401
Aluminium (AI) – in Solution	< 0.2 / > 0.2	A/A
Ammonia (NH3)	< 2 / 2 - 20 / > 20	A/A/A
Chlorides (CI)- (max. 60°C)	< 250 / > 250	A/B
Electric Conductivity	< 10 μ S/cm / 10 – 500 μ S/cm / > 500 μ S/cm	A/A/A
Iron (Fe) – in Solution	< 0.2 / > 0.2	A/A
Free Aggressive Carbonic Acid (CO2)	< 5 / 5 - 20 / > 20	A/A/A
Total Hardness	4.0 – 8.5°dH	А
Glycol Content	< 20% / 20 – 50 / > 50%	A/A/A
HCO3 SO4-2	< 1.0 / > 1.0	A/A
Hydrocarbonate HCO3	< 70 / 70 – 300 / > 300	A/A/A
Manganese (Mn) - in Solution	< 0.1 / > 0.1	A/A
Nitrate - in Solution NO3	< 100 / > 100	A/A
pH-Value	< 6 / 6.0 - 7.5 / 7.5 - 9.0 / > 9	B/A/B/A/A
Sulfate SO42-	< 70 / 70 – 300 / > 300	A/A/C
Sulfite So3 / Freies Chlorgas Cl2	<1/1-5/>5	A / A / A/B
Hydrosulfide H2S	< 0.05 / > 0.05	A/A

A = Under normal conditions good consistency

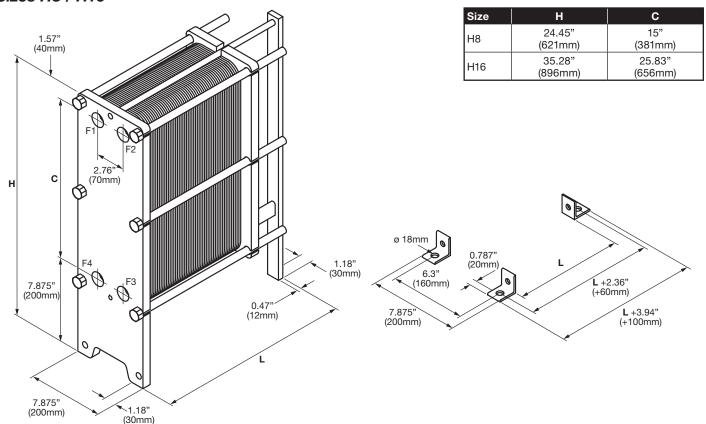
Other Limits

Chlorida Contont	max. Temperature of Wall Surface						
Chloride Contant	140°F (60°C)	176°F (80°C)	248°F (120°C)	266°F (130°C)			
≤ 10 ppm	304 SS	304 SS	304 SS	316 SS			
≤ 25 ppm	304 SS	304 SS	316 SS	316 SS			
≤ 50 ppm	304 SS	316 SS	316 SS	Titan			
≤ 80 ppm	316 SS	316 SS	316 SS	Titan			
≤ 150 ppm	316 SS	316 SS	Titan	Titan			
≤ 300 ppm	316 SS	Titan	Titan	Titan			
> 300 ppm	Titan	Titan	Titan	Titan			

Note: This spreadsheet is not complete, just for orientation (no guarantee)


B = Subject to corrosion, especially if several substances with B

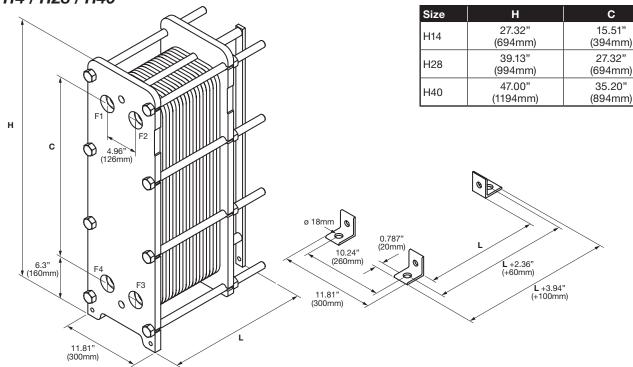
C = Unsuitable


HYDAC Plate Heat Exchangers

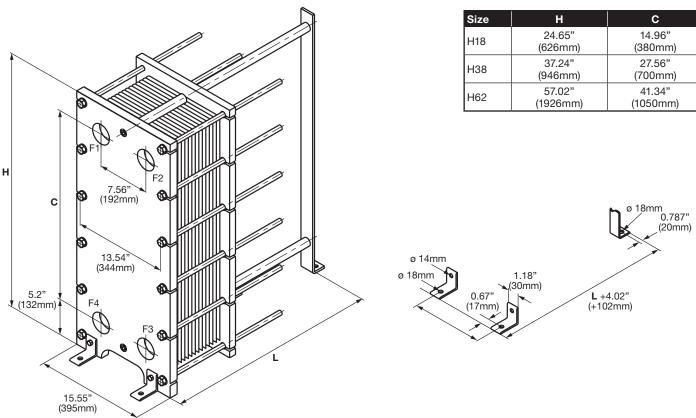
Series H

Dimensions Sizes H2

Sizes H8 / H16



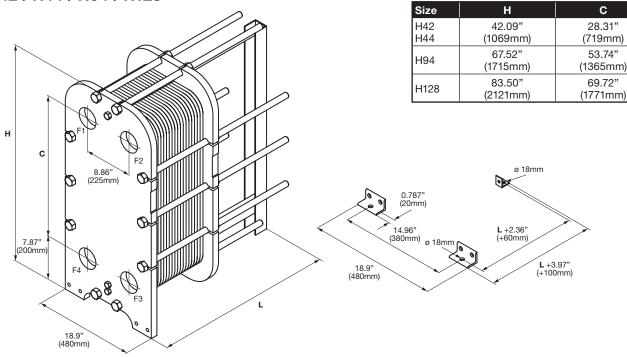
Dimensions are for general information only, all critical dimensions should be verified by requesting a certified print.


Plate Heat Exchangers HYDAC

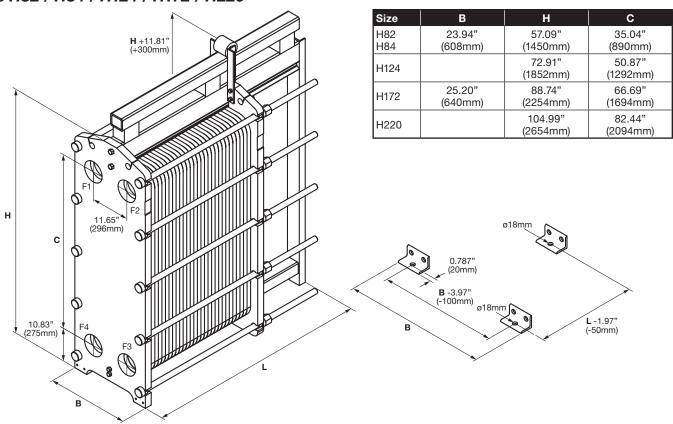
Series

Dimensions Sizes H14 / H28 / H40

Sizes H18 / H38 / H62



Dimensions are for general information only, all critical dimensions should be verified by requesting a certified print. Dimensions are in inches.

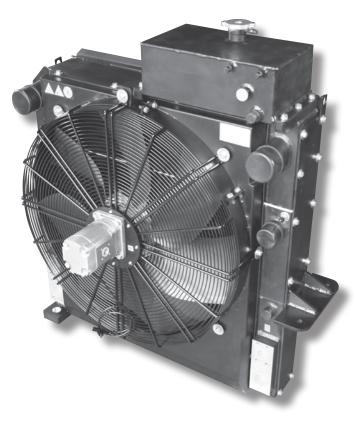

HYDAC Plate Heat Exchangers

Series H

Dimensions Sizes H42 / H44 / H94 / H128

Sizes H82 / H84 / H124 / H172 / H220

Dimensions are for general information only, all critical dimensions should be verified by requesting a certified print. Dimensions are in inches.



Internal Use Only	
Project Responsibility	
Date	

Gasketeu Plate neat	internal coe only				
Technical Data Inquiry Sheet	Project Responsibility				
• •		Date			
Customer Information					
Name	Title				
Company					
Address					
Phone	_				
Application					
Sizing Data					
		Unit of Measurement	Hot Side	Cold Side	
Power Dissipation					
Olala af Assessation					
Flow Rate					
Design Pressure					
Test Pressure					
Design Temperature					
Design					
Type of Construction					
Material					
Plates					
Gaskets					

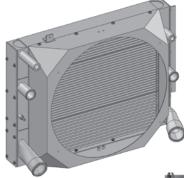
HYDAC Combi-Coolers

Combi-Coolers for Mobile Applications All of Your Needs in ONE Package!

With the increased demands for energy efficiency and noise emission requirements for Mobile Equipment requires Cooling Systems to be developed to specific custom dimensions for each vehicle.

HYDAC coolers use a combination of high performance cooling elements combined with high capacity hydraulic driven fan solutions.

Long life DC electrical fans provide long trouble free operation in mobile hydraulic applications. The compact design of HYDAC cooling systems allows us to fit in most equipment, providing highest cooling performance.


To comply with legal requirements for noise, fuel economy and emissions (TIER IV) we have a series of advantageous solutions, space optimization and increased cooling efficiency available.

- integrated pressure / thermal bypass valves
- hydraulic driven fan with proportional and reversible function
- electrical speed controlled fan drive systems

Multiple Combined Cooling Systems Available For:

- Hydraulic
- Radiator
- · Charge Air
- Fuel
- Auxillary Cooler
- Transmission

Please see following page for our technical data inquiry sheet and contact our cooling department for more details.

Combi-Coolers Technical Data Inquiry Sheet

Internal Use Only	
Project Responsibility	
Date	

Customore	1	Li
Customer I	mmormai	non
Ouctonion i	Oi iii a c	

Name	Title	
Company	E-mail	
Address	State	Zip
Phone	Fax	

Specifications

Description	Combi-Cooler: CAC / RAD / TC
Project	
Engine Type	
Customer	
Ambient Requirement	

Ambient Requirement

Cooling Circuit 1 CAC Required Data

Heat Rejection	_KW
Mass Flow	_Kg/min
Temperature Inlet	_°C
Temperature Outlet	_°C
CAC Pressure Drop	_mbar
Max. Working Pressure	bar

Cooling Circuit 2 RAD Required Data

Heat Rejection	KW
Volume Flow	_L/min
Temperature Inlet	_°F
RAD Pressure Drop	_ mbar
Max. Working Pressure	bar

Cooling Circuit 4 T/C OIL Required Data

Type Of Oil	_
Heat Rejection	KW
Volume Flow	_L/min
Temperature Inlet	_°C
Max. Working Pressure	bar

HYDAC Cooler Crossovers

OKC / OK / ELD / ELH Series

Crossovers

HYDAC	Thermal Transfer	AKG	Oil Air	American Industrial	Hayden
OKC-1H	AO5	-	_	_	108-028510
OKC-2H	AO10, AO15, AOVH5, AOC- 19, AOC-22	-	OAI 04	AC5, AC10, AC15	108-028514
OKC-3H	AO20, AOVH10, AOC-24, BOL-8	AC8	OAI07-4, OAI07-2	AOCH5	-
OKC-4S	AO25, AOVH15, AOC-33, BOL-16		OAI11-4	AC 20, AOCH10	208-028518, 208-028522
OKC-5S	AO30, AOVH20, AOC-37	AC16	OAI11-2, OAI16-6, OAI16-4	AC25, AOCH15, AOCH20	213-028538
OKC-6H	AOVH25, AOC-50	AC30	OAI23-6, OAI23-4	AC30	113-028526, 113-028530, 213-028534
OKC-6S	AO35	_	-	-	-
OKC-7S	BOL-30. APC-54. BOL- 400, AO40	-	-	AC35, AOCH25	-
OK-1H	_	-	-		108-028510
OK-2S	AO5, AO10, AOC-19, AOC-22	-	-	AC5, AC10	108-028514
OK-2H	_	AC8	OAI-04, OAI07-4	AC15, AOCH5	-
OK-3S	BOL-8	_	OAI07-2	-	-
OK-3H	AO20	_	OAI11-4	AC20	208-028518, 208-028522
OK-4L	AOVH15, AOC33	_	_	AOCH10	_
OK-4S	AOVH20, AOC-37	-	OAI11-2	AC25	_
OK-5L	AO25, BOL-16	-	_	_	_
OK-5S	-	-	OAI23-6, OAI16-4	-	_
OK-6L	AO30, AOC-50	AC16	OAI-16-4	AOCH15	113-028530
OK-6S	AO35, AOVH25	AC30	-	AC30, AOCH20	113-028526, 213-028534
OK-7L	AO40		-	-	213-028534
OK-7S	-	-	-	-	313-028542, 313-028546
OK-8L	AOVH30, AOC-54, BOL-30, BOL-400	-	-	AC35, AOCH25	-
OK-8S	AOC-57, BOL-725	AC40	OAI33-6, OAI33-4, OAI44- 6	AC40	318-028926
OK-9L	AOVH35	_	_	-	318-028926
OK-10L	AOC-70, BOL-950	AC10	OAI44-4, QAI56-6	AOCH35	_
OK-11L	AOVH40, BOL-1200, BOL- 1600	AC100	OAI56-4, OAI76-8, OAI76-6	AOCH40	-
ELD-1H	AOC-19	-	_	AOMF-1, LP15	_
ELD-1.5H	DF-11	DC-10	OATBD04	EOC-220	_
ELD-2H	AOC-22, AOC-24, DF-12, MA-12	DC-16	OATBD07	AOMF-2, AOMF-4, LP-30, LP-60, EOC-249	_
ELD-3H	AOC-33	DC-20	-	EOC-337	-
ELD-4H	AOC-37, DF-22, MA-32	_	OATBD11, OATBD16	EOC-375, EOC-505	_
ELD-4.5H	AOC-50	-	-	EOC-545	-
ELD-5H	AOC-54	-	OATBD23	-	-
ELD-6H	AOC-57		_	-	_
ELH-2	AOC-70, DF-11, DF12	HC-14	_	_	-
ELH-3	AOC-22, AOC-24	HC-26	OAH007	-	-
ELH-4	AOC-33, DF-22	HC-32	OAH011, OAH016	-	-
ELH-5	AOC-37		OAH023	-	-
ELH-6	AOC-50	-	-	_	-
ELH-7	-	HC-48	OAH033, OAH094	-	-
ELH-8	AOC-54		OAH056	-	-
ELH-9	AOC-57	HC-120	OAH058, OAH076	_	-
ELH-10	AOC-70	_	OAH028, OAH110	-	-
ELH-11	_	HC-180	OAH112	_	_

Every effort has been made to insure the accuracy of the cooler data and cross reference information. However, due to manufacturer design changes, HYDAC cannot accept responsibility for selection or misapplication of the product. Please contact HYDAC for additional information.

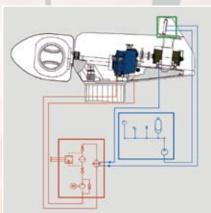
HYDAC the Reliable Partner for Wind Turbines

With 4,000 employees HYDAC is one of the leading manufacturers of fluid technology, hydraulics and electronics worldwide.

We help our customers develop wind energy systems from concept to completion. Our knowledge and application experience is your asset. HYDAC products and solutions can be found in thousands of wind energy systems worldwide:

Complete systems and filtration concepts for lubrication and hydraulics as well as cooling systems for gear drives and generators.

HYDAC is a leading supplier to the Wind Industry and having tens of thousands of coolers installed in many major OEM applications HYDAC is your reliable source for your wind turbine cooling needs. From innovative designs with built in pressure and thermal bypasses and all climate/altitude conditions and ranging applications from gearbox, inverter/electronics and generator cooling HYDAC has the systems to meet your wind turbine cooling needs.


Global yet local.

With 40+ subsidiaries, more than 500 Distributors and service centers HYDAC is a reliable partner, Worldwide.

Solution packages. One supplier. One contact.

Wherever you need us, we're there to help you find the best solution. For every application, from components to a complete system.

Cooling and Filter Systems for Hydraulic and Lube Oil Applications

Cooling of the gearbox oil is via a plate heat exchanger which is supplied by a water / glycol mixture also used to cool the generator. Heat is then dissipated via a heat exchanger.

Air Cooled lubrication system with motor / pump filtration system.

Gearbox Generator Cooling: Fluid: Oil or Water / Glycol

Gearbox Filtration: Motor Pump Unit with Filtration

Gearbox Generator Inverter Cooling: Water pump / control package

Integral pressure and thermallycontrolled bypass valve on the

- System consultation and design (also for extreme climates to -40°F)
- Gearbox lubrication
- Gearbox cooling
- Generator cooling
- Combined cooling of gearbox and generator
- Inverter cooling
- Hydraulic power unit for cooling and filtration

HYDAC INTERNATIONAL Innovative Solutions

Accumulators

Filters

Process Filtration

Fluid Service Products

Valves

Clamps

Accessories

Electronics

Coolers

Compact Power Units

Cartridge Valves

Mobile Systems

(HYDAC) USA

HYDAC TECHNOLOGY CORPORATION **HYCON Division**

2260 City Line Road Bethlehem, PA 18017

610.266.0100

HYDAC TECHNOLOGY CORPORATION Cooling Systems Division

445 Windy Point Drive Glendale Heights, IL 60139

630.545.0800

HYDAC TECHNOLOGY CORPORATION **Electronic Division**

2260 City Line Road Bethlehem, PA 18017

610.266.0100

HYDAC CORPORATION HYDAC TECHNOLOGY CORPORATION

1718 Fry Road • Suite 100

281.579.8100

Sales Office

Houston, TX 77084

HYDAC Canada

HYDAC CORPORATION

14 Federal Road Welland Ontario, Canada L3B 3P2

905.714.9322

HYDAC Mexico

HYDAC INTERNATIONAL SA DE CV

AV. Pirul No. 212 54090 los Reyes Iztacala. Tianepantla EDO. DE Mexico

01152.5.55565.8511

www.HYDACusa.com

HYDAC CORPORATION Accumulator Division

2280 City Line Road Bethlehem, PA 18017

610.266.0100

HYDAC TECHNOLOGY CORPORATION Compact Hydraulic Division

450 Windy Point Drive Glendale Heights, IL 60139

630.545.0800

HYDAC CORPORATION HYDAC TECHNOLOGY CORPORATION Sales Office

12606 NE 95th Street Building VC, Suite 100 Vancouver WA 98682

360.882.0977

HYDAC CORPORATION HYDAC TECHNOLOGY CORPORATION Sales Office

9836-B Northcross Center Court Huntersville, NC 28078

909.476.6777

www.HYDAC.ca

HYDAC CORPORATION

101 - 18207 114 AVE W EDMONTON AB, Canada T5S 2P6

780.484.4228

www.HYDACmex.com

